
Markerless camera-based vertical jump height measurement using

OpenPose

Fritz Webering

Leibniz University Hannover, IMS

Appelstr. 4, 30167 Hannover

webering@ims.uni-hannover.de

Holger Blume

Leibniz University Hannover, IMS

Appelstr. 4, 30167 Hannover

blume@ims.uni-hannover.de

Issam Allaham

Leibniz University Hannover

issam.allaham@stud.uni-hannover.de

Abstract

Vertical jump height is an important tool to measure ath-

letes’ lower body power in sports science and medicine.

This work improves upon a previously published self-

calibrating algorithm, which determines jump height us-

ing a single smartphone camera. The algorithm uses the

parabolic fall trajectory obtained by tracking a single fea-

ture in a high-speed video. Instead of tracking an ArUco

marker, which must be attached to the jumping subject, this

work uses the OpenPose neural network for human pose es-

timation in order to calculate an approximation of the body

center of mass. Jump heights obtained this way are com-

pared to the reference heights from a motion capture system

and to the results of the original work. The result is a trade-

off between increased ease-of-use and slightly diminished

accuracy of the jump height measurement.

Keywords: vertical jump height, sports, human pose es-

timation, convolutional neural network, gravity, parabola

1. Introduction

The assessment of vertical jump height is an important

tool in sports sciences and sports medicine, used to assess

ballistic lower body strength and power output. Vertical

jump height, as defined by Bobbert and van Ingen [4] is

the maximum vertical displacement of the body’s center of

mass (CoM). However, determining the exact CoM during a

continuous movement of an arbitrary person is an involved

procedure, because it depends on the location and mass dis-

tribution of all body parts, including flexible tissue. The

most accurate methods perform full-body motion capture of

the jump and then determine the location of the CoM over

time by summing the torques of all body segments as de-

scribed by Aragón-Vargas [1]. However, full body motion

capture is not a feasible option for everyday sports applica-

tions, due to the high cost, space, and time requirements.

Because of this, most methods do not measure jump

height directly, but instead measure a different quantity and

compute the jump height from that. Several such methods

exist, but each has its own limitations:

• Integrating launch force over time using a force plate.

– Limited to places where an expensive, heavy force

place can be carried.

• Measuring flight time using any of various floor con-

tact detection methods. – Flight time may be distorted

by outstretched feet during launch and landing. [10]

• Measuring flight time through the analysis of high

speed video. – Involves manual frame-by-frame anal-

ysis of the high speed video. [2]

• Measuring flight time using inertial measurement units

(IMUs). – Limited measurement accuracy [13].

• Mechanically determining the highest point reached

with an outstretched arm. – Includes the arm length in

the measurement, and thus does not conform to “verti-

cal displacement of CoM” definition

• Analyzing the free-fall parabola of a feature in a high-

speed video. – Requires markers applied directly on

skin [17].

2. Related Work

This work extends the method proposed by Webering

et al. [17], which determines jump height by analyzing the



Figure 1. Example of a reconstructed CoM trace and the fitted

parabola, shown in pixel coordinates. Jitter of the detected Open-

Pose keypoints results in the noise seen in the blue curve.

free-fall parabola of the jump in a high-speed video. Their

algorithm is based on the principle that the vertical offset

of a body’s center of mass (CoM) describes a parabola over

time while it is in free fall. When filmed with a correctly

aligned camera, the y coordinate of the CoM also describes

a parabola over time, when traced in pixel coordinates. The

second-degree coefficient of this parabola in metric units is

known to be − g

2
, where g is the local gravity. The magni-

tude of same coefficient in pixel coordinates, obtained from

a least squares fit of the parabola, can be be used to de-

termine the scale of the image at the z depth where the

parabola lies. This scale can then be used to convert the

jump height in pixel coordinates into the actual jump height

in metric units.

Conceptually, the algorithm is similar to the camera cal-

ibration works of Chen et al. [6], Sturm and Quan [16],

Zhang [19], Wu et al. [18] and Qi et al. [12, 11]. All of

these works use parabolic trajectories of falling or bounc-

ing objects to calculate the intrinsic and extrinsic camera

parameters of one or multiple cameras. However, in con-

trast to these works, the algorithm proposed by Webering

et al. [17] simplifies the calibration problem to a single de-

gree of freedom—the camera-to-subject distance—by plac-

ing a few constraints on the experimental setup. This allows

the reconstruction of an absolute scale and calculation of the

jump height from a single free-fall parabola.

Other works, such as Balsalobre-Fern et al. [2], also use

high speed video to measure jump height, but with a dif-

ferent approach. Their method calculates the flight time by

counting the number of frames between launch and landing,

and not by measuring distances in the video images.

2.1. Jump Height Algorithm

The jump height calculation algorithm proposed by We-

bering et al. [17] consists of 6 steps, which are summarized

here.

1. The vertical trajectory (y coordinate) over time of a

point on the subject’s body (ideally the center of mass)

is obtained.

2. Starting from such a trajectory, the individual peaks

(jumps) are identified in the data sequence.

3. For each peak, the standing height ystand is calculated

by finding a phase with little movement right before

the jump.

4. The parabolic free-fall trajectory of each jump is ex-

tracted from the whole data series.

5. A parabola in image coordinates y(t) = at2+v0t+y0
is fitted to the extracted data points in order to obtain

the coefficient a, which determines the shape of the

parabola. In real-world coordinates, this second order

coefficient is known to be a′ = −g

2
. The two coef-

ficients a and a′ have units px/s2 and m/s2 respec-

tively, so their ratio k = −g/2a has units m/px. Thus

k can be used to convert lengths between pixels and

meters in the subject plane [17]. Figure 1 shows such

a parabola fitted to an example trace of the free-fall

phase of a single jump.

6. The jump height in metric units is calculated using the

previously determined standing height, the vertex of

the parabola, and the calculated calibration coefficient

as hjump = k · (yvertex − ystand).

3. Proposed Method

Due to the difficulty of acquiring the precise location of

the center of mass (CoM), Webering et al. [17] tracked an

ArUco marker [14, 8] instead, which was attached above the

sacrum as shown in Figure 3. Their assumption was that this

marker moves in unison with the actual CoM, because the

pose of the subject while in free-fall remains mostly static:

Hands on hip, legs stretched, and head held upright, gaze

forward.

In this work, we propose the use of 2D human pose es-

timation frameworks to detect the position of the subject’s

limbs in the image. The OpenPose network by Cao et al. [5]

is used in this work, although other 2D pose estimation

frameworks could be used instead. The skeleton obtained

from the pose estimation, as shown for example in Figure 2,

can then be used to calculate an estimated position of the

CoM in pixel coordinates by computing a weighted mean

of the individual joint positions. Only the vertical coordi-

nate of the CoM is needed for the parabola analysis, so the

formula is:

yCoM =

∑N

i=1
mp

i · yseg,i
∑N

i=1
mp

i

, with (1)

yseg,i = ystart,i + lpi (yend,i − ystart,i), (2)



Segment

Name start — end mp (%) lp (%)

Head* 17— 18 6.94 50.00
Trunk 1— 8 43.46 44.86
Upper arms 2, 5— 3, 6 2.71 57.72
Forearms 3, 6— 4, 7 1.62 45.74
Thighs 9, 12— 10, 13 14.16 40.95
Shanks 10, 13— 11, 14 4.33 44.59
Hands † — 0.61 79.00
Feet † — 1.37 44.15

Table 1. Body segments for males, based on de Leva [7], used

to calculate CoM position. The ‘start’ and ‘end’ columns refer to

OpenPose keypoints, as shown in Figure 2. m
p is the percentage

of total body mass. lp is the relative position along the segment’s

principal axis.

* The OpenPose body 25 model has no gonion and vertex key-

points, so we use the point between the ears.

† Hand and foot segments were not used in the calculation.

Figure 2. OpenPose body 25 skeleton, showing the keypoint num-

bers. Example how OpenPose maps this skeleton to a real person

(segment colors carry no meaning).

where ystart,i and yend,i are the y coordinates of the start and

end point of each individual body segment, and mp
i the pro-

portion of the body mass represented by segment i. The

parameter lpi is the relative position of the segment’s CoM

along the principal axis of segment i.

The coefficients mp
i and lpi for the individual body seg-

ments were taken from the 1996 paper by de Leva [7] and

are shown in Table 1. Only the values for males are pre-

sented in this table because all subject in the data set used

in the evaluation were male. The values for females can be

found in the original work by de Leva [7].

Since the OpenPose body 25 model does not contain ver-

tex and gonion keypoints, the original values for the head

segment from de Leva can not be used. We decided to

use the point in the middle between the ears (keypoints 17

and 18 in Figure 2) as the CoM for the head. A manual

survey of the video sequences used in the evaluation con-

firmed that this point is an acceptable approximation of the

head’s CoM calculated using de Leva’s method, as long

as the subject looks straight ahead, not up or down. The

hand segments were omitted from the calculation because

the body 25 model contains no hand keypoints, and the rel-

ative mass percentage of the hands is quite low. Further-

more, the foot segments were omitted because the detection

of the foot keypoints in the available data set was unreliable.

3.1. Center of Mass Calculation

For the algorithm described in section 2.1 it is not rel-

evant whether the actual CoM is used, or whether another

point is regarded, which moves in unison with the actual

CoM, with a constant vertical offset. Thus, different ap-

proaches to calculate the CoM were evaluated, in order

to determine the approach which yields the most accurate

jump height results. The following CoM models were con-

sidered in this work:

1. Full body CoM calculation using all segments shown

in Table 1, except for hands and feet. Calculated height

is denoted as HOP,Full.

2. Upper body CoM calculation using only the segments

head, trunk, upper arm, and forearm. Calculated height

is denoted as HOP,Upper.

3. Trunk only CoM calculation using only the trunk seg-

ment. Calculated height is denoted as HOP,Trunk.

4. Using only the neck (keypoint 1 from Figure 2) as an

approximation of the CoM. Calculated height is de-

noted as HOP,Neck.

4. Experimental Setup

In order to evaluate the accuracy of the proposed method,

we used the data set of the trial performed by Webering

et al. [17]. The study included 6 healthy male participants,

aged 25-35.

Each participant was asked to perform a series of roughly

ten counter movement jumps, hands resting on the hip, with

a pause of two seconds after each jump. Additionally, the

participants were asked to keep their gaze straight ahead

while jumping, and not move their head up or down, in or-

der to minimize relative movement between face and body

center of mass. For subject no. 6, only 5 usable measure-

ments exist, because a smartphone battery failed during the

test.
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Figure 3. Example frame from one of the back videos with

mislabeled leg. (1) Reconstructed CoM from upper body key-

points. (2) Strap with breast markers. (3) Back 2D ArUco marker.

(4) Back 3D motion capture marker. (5) Mislabeled leg belonging

to a different person.

For all trial jumps, the subject was outfitted with two

retro-reflective motion capture markers and two ArUco

markers [14, 8]. The ArUco markers were tracked in a high-

speed video in order to obtain the free-fall parabolas neces-

sary to determine jump height. One marker of each type

was attached to an elastic strap. Of the two marker sets, one

was attached to the chest of the subject and the other to the

lower back above the sacrum, as shown in Figure 3.

In order to obtain reference height measurements, each

trial was recorded with an 8-camera optical motion capture

system from Vicon, yielding a three-dimensional trajectory

for each of the two markers. A full calibration of the sys-

tem was performed before the test run and the location error

reported by the calibration software was below 1mm.

As suggested by Aragón-Vargas [1], tracking the move-

ment of the body center of mass using an optical motion

capture system is a suitable criterion reference (or ‘gold

standard’) for jump height measurements. A single motion

capture marker, attached above the sacrum, near the center

of mass, was used to calculate the reference heights. We-

bering et al. argue that this is a close enough approximation

of the real center of mass, since the subject’s extremities

do not move significantly during jump. They verified this

by analyzing the parabola coefficients of the parabolic mo-

tion capture trajectory. Leard et al. [9] used the same pro-

cedure and obtained good correlation with other methods,

even though the subjects in that test did not keep their arms

static during the jump.

Additionally, each trial run was recorded with two smart-

phones placed on a tripod in portrait orientation. The

smartphone in front of the subject (year 2015 model)

recorded 240 frames per second (FPS) with a resolution

of 1280×720 px2. The smartphone behind the subject

(year 2018 model) recorded 240 FPS with a resolution of

1920×1080 px2. The high frame-rates were chosen to min-

imize the exposure time, thus minimizing motion blur.

The smartphones were aligned vertically, with the im-

age plane parallel to the direction of gravity, using the incli-

nation tool in the smartphone app phyphox [15]. This ap-

proach assumes that the accelerometer is calibrated in such

a way, that its vertical axis is parallel to the image sensor.

4.1. Camera Calibration

Webering et al. verified that the video images obtained

from the smartphone cameras were already rectified. Fur-

ther checkerboard calibration yielded no improvement, so

the images were processed without further correction steps

applied. A standard pinhole camera model was assumed.

5. Evaluation

In order to assess the accuracy of the proposed method

for calculating jump heights, all 12 videos—6 from the front

camera and 6 from the back—were analyzed using Open-

Pose. For each video, the different CoM models were cal-

culated as described in Section 3.1. All data series were

cleaned up as described below in Section 5.1 and then fur-

ther processed using the algorithm described in Section 2.1

in order to obtain the jump heights. The resulting jump

heights were compared to the jump heights obtained from

the motion capture system HMoCap as determined by We-

bering et al. [17].

5.1. Data Series Cleanup

In principle, the CoM can be calculated from the Open-

Pose results using the weighted mean formula, described in

Section 3.1. However, the analyzed data set posed some

difficulties for OpenPose, such that some keypoints were

mislabeled or unreliably detected in some frames. These

cases would negatively affect the accuracy of the CoM cal-

culation, so they were handles as follows:

• The video camera in front of the subject was too close

to the subject, such that the legs are not visible below

the knee. This made it impossible to use the whole



body model on the front videos, so only the upper

body, trunk, and neck models were evaluated for the

front videos.

• In the videos shot from behind the subject, another per-

son stood close to the subject, monitoring the other

video camera during the jump. This posed problems

for OpenPose, which sometimes misidentified the leg

of the second person as belonging to the first person.

This effect caused the CoM for the whole body model

to be incorrect in frames where the wrong leg was de-

tected.

• The detection accuracy of leg and hip keypoints was

greatly diminished for subjects who wore dark cloth-

ing, because of the low contrast in those areas of the

image. The problem was compounded by the fact that

high speed video footage is generally darker due to

the lower exposure time compared to usual frame rates

such as 30 or 60 fps. Since 4 of the 6 subjects in the

data set were wearing black jeans, this made the lower

body keypoints much more noisy than the keypoints

for the rest of the body.

• Sometimes, OpenPose would randomly fail to detect

arbitrary keypoints in some frames. When this hap-

pened, the respective frames were skipped and not in-

cluded in the data series. When this happened for mul-

tiple frames in a row, it could negatively impact the

parabola fitting.

The setup described above leads to a total of 7 jump

height measurements for each of the 66 jumps in the data

set: Jump heights derived from front videos are denoted

as HOP,method,F and heights derived from back videos as

HOP,method,B. The measurement HOP,Full,F could not be com-

puted because the legs were out of frame in the front videos.

All measurements obtained this way were compared to the

heights HMoCap, which were determined from the motion

capture traces.

For each method, a Bland Altman plot [3] is shown for

visual comparison in Figures 5 and 4. The 95% limits of

agreement (LOA) and the bias (mean of differences) were

also calculated according to [3]. The LOA is the interval

which is expected to contain 95% of the samples and is

calculated as 1.96 times the sample standard deviation of

the differences between the compared methods. The ICC3,1

were calculated for assessing agreement, classified as poor

(< 0.40), fair (0.40 to < 0.60), good (0.60 to < 0.75), or

excellent (≥ 0.75). ICC were calculated using R and the

‘psych’ library, where the two compared methods for each

ICC were compared as ‘raters’. Bland Altman plots, Bias

and LOA were computed using Python 3.

LOA Bias

Method A vs. Method B (cm) (cm) ICC3,1

HArUco† vs. HMoCap ±2.05 −0.77 0.80
HOP,Upper,B vs. HMoCap ±2.75 0.15 0.68
HOP,Trunk,B vs. HMoCap ±3.10 1.50 0.62
HOP,Neck,B vs. HMoCap ±3.10 −0.78 0.60
HOP,Upper,F vs. HMoCap ±3.40 0.79 0.57
HOP,Neck,F vs. HMoCap ±3.35 0.15 0.57
HOP,Trunk,F vs. HMoCap ±3.75 1.60 0.54
HOP,Full,B vs. HMoCap ±4.20 1.50 0.49

Table 2. Method comparison for the 7 OpenPose jump height

measurements to the motion capture results, sorted by 95% LOA.

LOA are the 95% limits of agreement as defined by Bland and Alt-

man [3]. Bias is the mean of the differences HMethodB −HMethodA.

† The HArUco values from [17] are shown for comparison only.

5.2. Results

The results for the different methods are shown in Ta-

ble 2. It can be seen that the OpenPose based jump height

measurements yield a slightly larger LOA than the ArUco

marker based method used by Webering et al. The CoM

reconstruction based on the upper body keypoints when

viewed from the back yields the best LOA of all the Open-

Pose based measurements.

ICC values range from good for the back views (except

the full body model) to fair for the front views, compared to

the excellent correspondence of the ArUco based method.

When compared to other jump height measurement studies

like Rantalainen et al. [13], the ICC values presented here

appear low compared to their ICC = 0.97, especially con-

sidering that Rantalainen et al. report much higher LOA

than our method. This discrepancy can be explained by the

lower spread in absolute jump heights of 34− 42 cm in the

Webering et al. dataset, compared to the dataset used by

Rantalainen et al., who measured jump heights between 13

and 40 cm. The smaller spread decreases the ICC as long as

the absolute measurement error stays the same over whole

range of the measurements.

6. Conclusion and Outlook

The presented method is a viable way to measure the

vertical jump height. The usability is improved, when com-

pared to the system proposed by Webering et al. [17], be-

cause no markers need to applied to the skin of the subject.

Only a video of the person jumping is necessary to obtain a

jump height measurement. Depending on the model used to

reconstruct the center of mass position from the OpenPose

data, the accuracy of the measured jump heights is slightly

diminished, compared to the ArUco marker based method.

In order to further increase the accuracy of the presented

method, different human pose estimation frameworks could



Figure 4. Bland-Altman plots for visual comparison of the different methods to the motion capture reference jump height. Dashed lines

denote the mean bias, and the upper and lower 95% limits of agreement. Test subjects are distinguished using color and symbol.

* HArUco data from Webering et al.

be considered. As seen in Figure 1, the reconstructed CoM

trajectory is still quite noisy. Using a framework which pro-

vides stabler keypoint positions might improve the parabola

fitting.

References

[1] Luis F Aragón. Evaluation of four vertical jump tests:

Methodology, reliability, validity, and accuracy. Measure-

ment in physical education and exercise science, 4(4):215–

228, 2000. 1, 4

[2] Carlos Balsalobre-Fernández, Carlos M Tejero-González,

Juan del Campo-Vecino, and Nicolás Bavaresco. The con-

current validity and reliability of a low-cost, high-speed

camera-based method for measuring the flight time of verti-

cal jumps. The Journal of Strength & Conditioning Research,

28(2):528–533, 2014. 1, 2

[3] J Martin Bland and Douglas G Altman. Agreement between

methods of measurement with multiple observations per in-

dividual. Journal of biopharmaceutical statistics, 17(4):571–

82, 2007. 5

[4] Maarten F Bobbert and Gerrit Jan van Ingen Schenau. Co-

ordination in vertical jumping. Journal of biomechanics,

21(3):249–262, 1988. 1

[5] Zhe Cao, Gines Hidalgo, Tomas Simon, Shih-En Wei, and

Yaser Sheikh. Openpose: realtime multi-person 2d pose

estimation using part affinity fields. IEEE transactions on

pattern analysis and machine intelligence, 43(1):172–186,

2019. 2

[6] Kuan-Wen Chen, Yi-Ping Hung, and Yong-Sheng Chen. On

calibrating a camera network using parabolic trajectories of

a bouncing ball. In 2005 IEEE International Workshop on

Visual Surveillance and Performance Evaluation of Tracking

and Surveillance, pages 185–191. IEEE, 2005. 2

[7] Paolo De Leva. Adjustments to zatsiorsky-seluyanov’s

segment inertia parameters. Journal of biomechanics,

29(9):1223–1230, 1996. 3

[8] Sergio Garrido-Jurado, Rafael Muñoz-Salinas, Francisco
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