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Abstract

Soccer broadcast video understanding has been draw-

ing a lot of attention in recent years within data scientists

and industrial companies. This is mainly due to the lucra-

tive potential unlocked by effective deep learning techniques

developed in the field of computer vision. In this work, we

focus on the topic of camera calibration and on its current

limitations for the scientific community. More precisely, we

tackle the absence of a large-scale calibration dataset and

of a public calibration network trained on such a dataset.

Specifically, we distill a powerful commercial calibration

tool in a recent neural network architecture on the large-

scale SoccerNet dataset, composed of untrimmed broadcast

videos of 500 soccer games. We further release our distilled

network, and leverage it to provide 3 ways of representing

the calibration results along with player localization. Fi-

nally, we exploit those representations within the current

best architecture for the action spotting task of SoccerNet-

v2, and achieve new state-of-the-art performances.

1. Introduction

Soccer is often regarded as one of the most unifying ac-

tivities worldwide, with thousands of professionals enter-

taining millions of amateurs. Such a large audience makes

soccer a very lucrative business, generating billions of dol-

lars of revenue each year from broadcast events [30]. The

audiovisual data recorded during the games hides valuable

insights about the players positions, the tactics, the strengths

and weaknesses of each team. Hence, it is important for

clubs and coaches to stay at the top of the data analyt-

ics wave, and for the fans, the data can be leveraged to

provide customized services, such as personalized replays

(*) Denotes equal contributions to this project. Contacts: an-

thony.cioppa@uliege.be, adrien.deliege@uliege.be, f.magera@evs.com,

silvio.giancola@kaust.edu.sa. More at https://soccer-net.org/.

Figure 1. Overview. We compute and release the camera cali-

bration parameters along player localization in real-world coordi-

nates for the 500 soccer games of the SoccerNet dataset, we gen-

erate various types of calibration-based data representations, and

we leverage them for the task of action spotting in SoccerNet-v2.

or enhanced player and game statistics. However, many

general challenges of computer vision in sports have to be

faced [34, 42]. Besides, the amount of data to process is

so large that automated tools need to be developed. This

explains the recent rise in deep learning algorithms to per-

form various tasks such as action spotting [7, 13, 17], player

counting [9] and tracking [22, 33], ball tracking [25], tactics

analysis [40], pass feasibility [2], talent scouting [12], game

phase analysis [10], or highlights generation [1, 37].

In this work, we investigate the topic of camera cali-



bration for researchers in computer vision focused on soc-

cer. Camera calibration serves as a bridge between the im-

ages recorded and the physical world. It allows to project

any point located on the field of the recorded frame to its

real-world coordinates on a plane of the actual soccer field.

It can thus provide knowledge about the part of the field

recorded by the camera or the localization of the players on

that field. One of the main commercial uses of camera cal-

ibration is the insertion of graphical elements in augmented

reality. Inserting graphical elements may be used to ensure

that the rules of the game are respected, such as automatic

offside or goal line technologies [15]. However, most com-

mon applications aim to improve the viewer experience by

fancier storytelling and with game analytics [48].

Given the value of camera calibration tools, it is not sur-

prising that the best methods belong to private companies.

This prevents scientific research on that topic to flourish at

large scale. For that reason, we leverage a powerful com-

mercial tools [15] to train a neural network on the large-

scale SoccerNet dataset [17], and we release the latter to

the community, along with calibration estimates for the 500

complete games available. Furthermore, we propose 3 dif-

ferent ways of representing the player localization in real-

world coordinates obtained from the camera calibration: a

top view image of the game, a feature representation, and a

player graph. From an application perspective, we investi-

gate the use of calibration-related information for the task of

action spotting in SoccerNet-v2 [13]. Those contributions

are illustrated in Figure 1 and further outlined below.

Contributions. We summarize our contributions as fol-

lows. (i) Calibration for SoccerNet. We provide cali-

bration estimates and player localization for the 500 soc-

cer games of the SoccerNet dataset, and we release the first

calibration algorithm trained on such a large-scale soccer

dataset. (ii) Data representations. We provide top view

image-based, compressed feature-based, and player graph-

based representations of the calibration data and player lo-

calization. (iii) SOTA on action spotting in SoccerNet-v2.

As use case, we investigate the use of these representations

in a state-of-the-art network for the action spotting task of

SoccerNet-v2 and we improve its performances.

2. Related work

Calibration. In the context of sports events, camera cal-

ibration often benefits from the presence of a field whose

layout is specified by the rules of the game. The camera

may be parameterized using the full perspective projection

model, but also using a homography model. Indeed, the

field being most often planar, it is a convenient calibration

rig to estimate the homography between the field plane and

the image. Hereafter, “camera calibration” means the esti-

mation of the intrinsic and extrinsic camera parameters.

For soccer, existing methods are assessed on the World

Cup 2014 dataset [21], which introduces a metric based on

the Intersection over Union (IoU) between the reference

field model and its predicted deprojection from an image.

This work leverages the segmentation of horizontal and ver-

tical lines to derive a set of plausible field poses from the

vanishing points, and selects the best field after a branch-

and-bound optimization. However, it requires at least two of

both vertical and horizontal lines to estimate the vanishing

points. Some areas of the field contain few line markings,

restricting the practical use of the method to goal areas.

Another common approach is to rely on a dictionary of

camera views. The dictionary associates an image pro-

jection of a synthetic reference field model to a homogra-

phy used to produce said projection. Each input image is

first transformed to resemble a projection of the synthetic

field, typically by a semantic segmentation of the field lines

[5, 39] or of the areas defined by the field lines [38]. That

segmentation is then associated with its closest synthetic

view in the dictionary, giving a rough estimate of the camera

parameters, which is eventually refined to produce the final

prediction. One drawback of this kind of approach is that

the processing time scales poorly with the size of the dic-

tionary. Some applications require a large dictionary, which

may become a bottleneck if real-time processing is required.

Some other calibration methods rely on tracking algo-

rithms. Lu et al. [32] use an extended Kalman filter to

track the pan-tilt-zoom (PTZ) camera parameters. Citraro

et al. [11] use a particle filter to track the camera orienta-

tion and position. Due to the nature of tracking, these meth-

ods are restricted to deal with uncut, single-sequence video

streams, making them inappropriate for a dataset of broad-

cast videos with many discontinuities, as in SoccerNet.

Kendall et al. [26] introduced the concept of training a

neural network to directly predict the camera parameters

from an image. This approach was further investigated suc-

cessfully by Jiang et al. [24] where the predicted homog-

raphy is further refined by iterative differentiation through

a second neural network that predicts the error. Due to

the amount of computation needed in this latter step, this

method is quite slow (0.1 fps). Sha et al. [38] also use a neu-

ral network to refine the camera parameters found within the

dictionary for the input image. They use a spatial transform

network, trained to predict the homographic correction nec-

essary to align two segmented images. In our work, we opt

for the latter method because it does not involve tracking,

reports a processing rate of up to 250 fps, and achieves good

performances on the World Cup dataset.

Action Spotting. The task of action spotting in soccer con-

sidered in this work was introduced by Giancola et al. [17]

along with the large-scale SoccerNet dataset. The objective

is to identify at which moment various salient game actions

occur, such as goals, corners, free-kicks, and more. Retriev-



ing such information is valuable for downstream tasks such

as camera selection in live game production, post-game soc-

cer analytics, or automatic highlights generation. While de-

tecting players on broadcast images can now be achieved

with existing deep learning algorithms [8, 19], combining

spatio-temporal information about their localization to in-

fer the occurrence of game actions remains challenging as

it requires a high level of cognition. Besides, in broadcast

videos, several cameras are used and important actions are

replayed, breaking the continuity of the stream.

In SoccerNet [17], Giancola et al. focus on three types

of actions: goals, cards, and substitutions, which are tem-

porally annotated with single anchors to retrieve. Sev-

eral baselines are proposed, all of which rely either on

ResNet [20], I3D [4], or C3D [44] frame features computed

at 2 frames per second followed by temporal pooling meth-

ods (NetVLAD and MaxPool), with the ResNet features

yielding the best results. Several works followed, building

on the same set of pre-computed ResNet features. Cioppa

et al. [7] develop a particular loss function that takes into

account the context surrounding the actions in the tempo-

ral domain. They use it to perform a temporal segmenta-

tion of the videos before using a spotting module, achieving

state-of-the-art results. Similarly, Vats et al. [47] handle the

temporal information around the actions with a multi-tower

CNN that takes into account the noise due to the single an-

chor annotation scheme. Tomei et al. [43] randomly mask

a portion of the frames before the actions to force their net-

work to focus on the following frames, as those may contain

the most discriminative features to spot actions. By fur-

ther fine-tuning the last block of the ResNet backbone, they

achieve a strong state-of-the-art results on SoccerNet-v1.

Rongved et al. [35] directly learn a whole 3D ResNet ap-

plied to the video frames on 5-seconds clips. This turns out

to be an ambitious approach with moderate results, given

the huge volume of data to process from scratch. Vander-

plaetse et al. [46] propose a multimodal approach by includ-

ing audio features, first extracted with a pre-trained VGG-

ish network, then averaged over 0.5 seconds windows and

synced with the 2 fps original ResNet features. They are

processed in parallel streams before undergoing a late fu-

sion, yielding the best results in several action classes.

Besides those works, the literature is rich in papers us-

ing either small custom datasets, such as [16, 23], or fo-

cusing on event recognition from pre-cut clips and selected

frames rather than spotting actions in untrimmed videos,

such as [27, 28, 29], or even targeting a single class, such

as goals [45]. In this work, we tackle the large-scale action

spotting task of SoccerNet-v2, the extension of SoccerNet

proposed by Deliège et al. [13]. It covers 17 classes of ac-

tions, annotated for the 500 untrimmed SoccerNet games,

and constitutes the most appropriate public benchmark for

research on action spotting in soccer.

3. Calibration and player localization

Contribution. In SoccerNet [17], the frames of the raw

videos are subsampled at 2 fps, then transformed into fea-

ture vectors, by passing through a ResNet-152 [20], I3D [4],

or C3D [44] network pre-trained on ImageNet [14], all of

which are released with the dataset. Hence, those vectors

only encode generic information about the frames. As first

contribution, shown in Figure 2, we enrich the SoccerNet

dataset with actionable camera calibration estimates, along

with players and referee localization. Such information pro-

vides a soccer-specific insight and is explicitly linked with

the game in real-world coordinates. Besides releasing the

largest set of calibration estimates to date, we are also the

first to deliver a calibration algorithm trained on a large

scale dataset such as SoccerNet. For synchronization pur-

poses, we compute the calibration, player and referee local-

ization for the 2-fps-subsampled set of frames considered

in SoccerNet. In the following, we make no difference any-

more between players and referees, all of which are called

“players”, and we call “per-frame information” any infor-

mation computed for each of those subsampled frames.

Calibration algorithm. We base our calibration on the

Camera Calibration for Broadcast Videos (CCBV) of Sha

et al. [38], but we write our own implementation, given the

absence of usable public code. They use as calibration pa-

rameterization the homography between the field plane and

the image, which is valid under the assumption of a planar

field [18]. First, we describe their original algorithm, then

we give the details of our changes.

The algorithm relies on a dictionary, i.e. a set of pairs of

artificial field zone segmentations, called “templates”, and

homographies. The dictionary is built in a pre-processing

step, according to the camera parameters distribution over

the training dataset. Since this distribution is unknown, it

is estimated with a clustering algorithm based on Gaussian

Mixture Models, that also determines the number of modes

necessary to fit the distribution. The mean of each mode

corresponds to a homography of the dictionary, that defines

a camera perspective from which its corresponding template

is generated as an artificial semantic image of the field.

CCBV itself consists of three steps, each performed by

a specific neural network. First, a zone segmentation of the

field is computed with a U-Net architecture [36], where a

zone is a field area enclosed by field lines. Second, a rough

estimate of the homography between the field plane and the

image is obtained. A siamese network [3, 6] encodes the

zone segmentation and the templates of the dictionary in

feature vectors. The homography associated with the tem-

plate encoding with the shortest L2 distance to the zone seg-

mentation encoding is the rough estimate of the sought ho-

mography. Third, this template homography is refined, in

two steps. A Spatial Transform Network first regresses the



Figure 2. Calibration and player localization representations. The original SoccerNet dataset (left) provides raw videos of 500 complete

soccer games as well as generic per-frame feature vectors. We distill a commercial calibration tool into a recent network architecture on

SoccerNet, which we release along all the calibrations. We combine Mask R-CNN player detections with the calibration to provide 3

representations of the calibrated data, thus enriching the dataset with specific player-based information: (a) top view representations, (b)

feature vectors representations, (c) a player graph representation. The red boxes, also released, further serve as inputs in neural networks

to investigate the usefulness of calibration for the task of action spotting in SoccerNet-v2, leading to a new state-of-the-art performance.

homography between the zone segmentation and the tem-

plate. Then, the final homography prediction is obtained

by multiplying the regressed homography with the template

homography, giving the estimated calibration parameters.

Our training process. Given the absence of a large-scale

corpus of ground-truth camera calibrations in the literature,

we opt for a student-teacher distillation approach. We con-

sider a commercial tool [15] as teacher to generate a dataset

of 12,000 pseudo-ground-truth calibrations on the Soccer-

Net dataset, which we use to train our student calibration

algorithm. Our training dataset is 60x larger than the World

Cup 2014 dataset [21] used in [38] and contains a larger va-

riety of camera viewpoints, making our student calibration

network a valuable candidate for universal camera calibra-

tion in the context of soccer. In fact, during the creation

of the dictionary, more than 1000 modes are found by the

clustering algorithm. Besides, during the training phase of

the Spatial Transform Network, we notice vanishing gradi-

ent issues. To overcome this problem, we first pre-train it

with a MSE loss and use leaky ReLU activations instead of

ReLUs. After convergence, we compute the calibration es-

timates of the SoccerNet video frames with our trained cal-

ibration network. A binary score about the relevance of the

calibration, set to 1 for frames with a plausible estimated

calibration, is also computed by our student. This allows

to discard cameras views that are not recorded by the main

camera, such as close-up views, or public views. We re-

lease those estimates along our trained calibration network,

which can be used with a wide variety of soccer videos. We

denote CCBV-SN our student trained on SoccerNet.

Player localization. For each calibrated frame, we use

Mask R-CNN [19] to obtain a bounding box and a segmen-

tation mask per detected person instance. Then, we com-

pute a field mask following [10] to filter out the bounding

boxes that do not intersect the field, thus removing e.g. staff

and detections in the public. We use the homography com-

puted by CCBV-SN to estimate the player localization on

the field in real-world coordinates from the middle point of

the bottom of their bounding box. Finally, we also store the

average RGB color of each segmented player to keep track

of a color-based information per person. As for the calibra-

tions, we release this raw player-related information.

4. Calibrated data representation

Contribution. The calibration estimates and player local-

ization are not easy to handle efficiently. Hence, to encour-

age their use in subsequent soccer-related works, we pro-

pose and release various easy-to-use representations of the

calibration data extracted from the previous section. We il-

lustrate these representations in Figure 2 and describe them

in this section. We also discuss their pros and cons.

4.1. Top view image representations

In this section, we provide image representations of the

player localization information. We use the calibration of

CCBV-SN to generate a synthetic top view of the game con-

taining generic field lines, the players represented by small

squares, and the polygon delimiting the portion of the field

seen by the camera. We represent that top view in two ways.

Color composition (CC). We generate a RGB image where



we first set field pixels in black and line pixels in white.

Then, we superimpose with white pixels the contour of the

polygon of the field seen by the camera. Finally, we repre-

sent the players by squares filled with their associated RGB

color, overriding previous pixels in case of intersection.

Binary channels (BC). We generate an “image” composed

of 3 binary channels: one for the generic field lines, one for

the filled polygon of the field seen by the camera, and one

for the players without their color information.

Pros and cons. A major advantage of image representations

is their interpretability, since a human observer can directly

understand relevant information about the game from such

top views. Besides, they can be easily processed with con-

volutional neural networks in deep learning pipelines. As

a drawback, they have a relatively large memory footprint

compared with the low amount of actionable information

that they actually contain. The color composition view has

the advantage over the binary channels of keeping track of

the color of the players, necessary for team discrimination

and tactics analysis. On the other hand, the representation

of a player in the binary channels is not influenced by a

poor segmentation in the raw image or a color shift due to

e.g. an occlusion. Also, players located on field lines do not

prevent those lines to be encoded properly in their binary

channel, while they hide the lines in the color composition.

4.2. Feature vector representation

Inspired by Giancola et al. [17], we compress our top

views as frame feature vectors extracted by pre-trained

backbones. This is common practice in deep learning ap-

proaches, as universal networks trained on e.g. ImageNet

have an excellent transfer capability to encode meaningful

visual information about any given image. We use top views

of 224 × 224 pixels, with field lines of 4 pixels width and

players of 8 × 8 pixels. We consider two backbones with

similar number of parameters, both trained on ImageNet.

ResNet-34 (RN). This network has 21.8 million parameters

and achieves 73.27% top-1 accuracy on ImageNet. We use

a frozen ResNet-34 [20] and collect the feature vectors of

dimension 512 in its penultimate layer.

EfficientNet-B4 (EN). This more recent network has 19

million parameters and achieves 82.6% top-1 accuracy on

ImageNet. We use EfficientNet-B4 [41], which yields fea-

ture vectors of dimension 1792 in its penultimate layer.

Pros and cons. We choose these networks for their good

trade-off between performance on ImageNet and inference

time. Indeed, they allow for a much faster training of neu-

ral networks compared with the top views, as computation-

ally expensive spatial convolutions have already been per-

formed. As a drawback, the features collected from these

networks are not interpretable anymore, which may reduce

the possibilities of developing explainable models.

4.3. Player graph representation

Player graph (PG). Our third approach consists in encod-

ing per-frame players information in a graph. Each player

is represented with a node, whose features are defined by

their associated RGB color, their position in real-world co-

ordinates, and the area of the detected bounding box in the

image frame. Two players are linked to each other with an

edge if their real-world distance is below 25 meters, which

we consider sufficient to pass contextual information be-

tween the nodes in the graph (i.e. the players in the field).

Pros and cons. The player graph is a compromise between

the compactness of feature representations and the inter-

pretability of top views. Indeed, it explicitly encodes in a

compact way the interpretable information that we want to

embed in our descriptive features: the players color, their

position in the field and their interactions with each other.

Contrary to top view images, it does not encode any empty

portion of the field, nor considers the field lines that are con-

stant across the videos, which makes the learning focusing

more on the interesting player features. The graph convo-

lutional network (see next section) that processes the player

graph aggregates features from neighboring players, which

helps it understand real-world distances by discarding play-

ers further away. Yet, that aggregation does not consider

different clusters of neighbors, which could lead to a mis-

understanding between teammates and adversaries.

5. Experiments

Contribution. In this section, we first validate with perfor-

mance metrics the effectiveness of CCBV-SN as calibration

algorithm. Then, we leverage our various calibration data

representations in the particular use case of the action spot-

ting task in SoccerNet-v2. We build on top of the current

best network to achieve a new state-of-the-art performance.

5.1. Validating the camera calibration distillation

In order to validate our calibration-based data represen-

tations and their use for an action spotting task, we first val-

idate CCBV-SN as camera calibration algorithm.

Dataset. The World Cup 2014 dataset [21] stands as ref-

erence for evaluating soccer camera calibration methods.

The test set comprises 186 calibrated images taken from 10

different games in various stadiums, perspectives, lighting

conditions, and moments of the day.

Metric. Following [5, 38], for each test image, we compute

the entire intersection over union (IoU entire) between the

top view projections of the field model by the ground-truth

camera and by the estimated camera, as well as the IoU

restricted to the part of the field actually shown on the image

(IoU part). For both metrics, we report the mean and the

median value across the test images.



Figure 3. Examples of calibrations obtained with CCBV-SN.

Globally, the results are satisfying and allow for an effective use

of the calibration for downstream tasks such as action spotting.

Results. We report the calibration performances in Table 1.

The private teacher achieves the best results on 2 out of

4 metrics, which validates its use as a teacher in our dis-

tillation approach. It is topped by Citraro et al. [11] on

the IoU (entire) metrics, which finetune their method with

additional manual annotations on the dataset. In compar-

ison, none of our methods are trained on the that evalua-

tion dataset. Thus we actually measure the generalization

capabilities of our teacher and CCBV-SN on a completely

new dataset. This evaluation also allows us to quantify

the performance drop induced by our distillation procedure.

CCBV-SN loses 6 to 12 points in the distillation process,

making its performances close to [39], especially on the

IoU (part). This metric is actually the most relevant for us,

as our use of the calibration is limited to the visible part of

the field for the calibration data representations. Therefore,

CCBV-SN is legitimately usable in the rest of our experi-

ments, and is presumably even better on SoccerNet, since it

is the dataset on which it has been trained. Some calibration

results obtained with CCBV-SN are shown in Figure 3.

5.2. Use case: calibration­aware action spotting

In this section, we investigate a possible use case of our

calibration representations, by leveraging a state-of-the-art

network for the task of action spotting in SoccerNet-v2.

Dataset. The action spotting dataset of SoccerNet-v2 [13]

consists in 110,458 action timestamps spread over 17

classes within the 500 complete games of the Soccer-

Net [17] dataset, with 22,551 actions related to the 100 test

games. Each action is annotated with a single timestamp,

that must be retrieved as precisely as possible.

Table 1. Calibration results on the World Cup 2014 dataset [21].

The teacher tool outperforms the other methods on the IoU (part)

metric. Our publicly released student network CCBV-SN, ob-

tained by distilling the teacher in the CCBV architecture on Soc-

cerNet, achieves acceptable transfer learning results.

IoU (entire) IoU (part)

Method Mean Med. Mean Med.

DSM [21] 83 - - -

Sharma et al. [39] - - 91.4 92.7

Chen et al. [5] 89.4 93.8 94.5 96.1

Sha et al. [38]- CCBV 88.3 92.1 93.2 96.1

Jiang et al. [24] 89.8 92.9 95.1 96.7

Citraro et al. [11] + 93.9 95.5 - -

Teacher [15] * 91.7 93 96.7 98.7

Our CCBV-SN * 79.8 81.7 88.5 92.3

* no finetuning on WC14 + used extra annotations on WC14

Figure 4. Our action spotting pipeline for the patterned actions.

We include calibration information within CALF [7], by concate-

nating frame feature vectors extracted from our various representa-

tions. This allows us to mix generic information from the Soccer-

Net features with player-specific information from the calibration.

For each chunk, the network outputs p spotting predictions.

CALF architecture. We focus on integrating the cali-

bration information along the original SoccerNet features

in the Context-Aware Loss Function (CALF) architecture

of Cioppa et al. in [7]. This architecture achieves state-

of-the-art performances on the task of action spotting in

SoccerNet-v2. As original features, we choose the ResNet

features further reduced from 2048 to 512 components by

PCA, as they yield the best results both in [7] and in [17],

which we also noticed in our preliminary experiments.

CALF is composed of three trainable modules: a frame

feature extractor, a temporal segmentation module, and an

action spotting module. The first one is a convolutional

spatio-temporal pyramid (STP) that aggregates the ResNet

features across various time scales, and outputs a feature

vector of user-defined dimension d per frame. Our goal is

to concatenate such features judiciously along frame fea-

ture vectors extracted from our calibration representations,

as shown in Figure 4. The remaining two modules and the

training protocol are kept as is to assess the improvement

brought by only the calibration information.



Processing our representations. Each calibration data rep-

resentation must be processed appropriately for a seamless

integration within the network. We proceed as follows.

Top views. We process our top views with our own 3D-

convolutional network (3D). We choose the same structure

as the STP module but where the kernels are extended to

take into account the extra spatial dimension of the top view

compared to the original ResNet features. The output is a

d-dimensional vector for each frame that gathers the spatial

and temporal information of the top view representation.

Feature vectors. We investigate two ways of further pro-

cessing the feature vectors obtained from the pre-trained

backbones: (1) we use the trainable STP of CALF to extract

d-dimensional frame feature vectors (STP), (2) we fully

connect our feature vectors through a trainable layer di-

rectly to feature vectors of dimension d followed by a ReLU

activation (FCL). In the second case, we obtain per-frame

feature vectors solely based on the raw frame information,

without any temporal aggregation.

Player graph. We design a graph convolutional neu-

ral network (GCN) to extract per-frame features from the

player graph. For that purpose, we follow DeeperGCN [31].

In particular, we build our architecture with 14 GCN blocks

with residual skip connections. We leverage two layers

of GENeralized Graph Convolution (GENConv) per block,

that aggregate the lifted neighboring nodes using a softmax

with a learnable temperature parameter. Then, a max oper-

ation across the node pools a global feature for the player

graph. This feature is later lifted with a single fully con-

nected layer to the desired dimension d.

Class separation. Intuitively, the player localization ex-

tracted with the calibration can prove more helpful for spot-

ting some classes (e.g. penalty) than others (e.g. shot off

target). Hence, we leverage our domain knowledge to split

the 17 action classes of SoccerNet-v2 into two sets: “pat-

terned” and “fuzzy” actions. We consider an action as “pat-

terned” when its occurrence is systematically linked with

typical player placements: penalty, kick-off, throw-in (one

player outside the field), direct free-kick (player wall), cor-

ner, yellow card, red card, yellow then red card (players

grouped around the referee for the card-related actions). On

the other hand, a “fuzzy” action may occur in many differ-

ent player configurations: goal, substitution, offside, shot

on target, shot off target, clearance, ball out of play, foul,

indirect free-kick. Given our class separation, we train two

networks: one on the patterned classes that uses the calibra-

tion information and the original ResNet features, one on

the fuzzy classes that only uses those ResNet features.

Feature fusion. For the network trained on the patterned

classes, we input SoccerNet’s ResNet features to the STM,

collect d-dimensional feature vectors, and concatenate them

with our d-dimensional vectors extracted by one of the

above processing steps. This is illustrated in Figure 4. We

set d =152, which allows us to simply plug a calibration-

related branch next to the original branch of CALF working

on SoccerNet’s ResNet features. The concatenation yields

feature vectors of dimension 304 and is performed just be-

fore the temporal segmentation module of the whole net-

work. For the network trained on the fuzzy classes, we

use SoccerNet’s ResNet features only as in CALF, and set

d = 304 after the STM to have the same input dimension

for the segmentation modules of the two networks.

Training. Following CALF, we process 2-minute video

chunks. We extract frame feature vectors as described

above, concatenate them when necessary, and input them

to a temporal segmentation module, that provides per-class

features and per-class actionness scores per frame. This

module is trained with a context-aware loss that aggregates

the temporal context around the actions. Those features and

scores are concatenated and sent to an action spotting mod-

ule, which provides predicted action vectors for the chunk,

containing a localization estimate and a classification per

predicted action. An iterative one-to-one matching connects

those predictions with ground-truth action vectors, allowing

to train the module with an element-wise MSE loss.

Metric. As defined in [17], we measure the action spotting

performance with the Average-mAP. First, predicted action

spots are said positive when they fall within a margin δ of a

ground-truth timestamp from their predicted class. Then,

the Average Precision (AP) is computed from Precision-

Recall curves, then averaged over the classes (mAP). Fi-

nally, the Average-mAP is the AUC of the mAP obtained at

margins δ varying from 5 to 60 seconds. Given our class

separation, we merge the predictions of our two networks

before computing the Average-mAP.

Results. We achieve our best result with the color composi-

tion reduced to frame features by ResNet-34 as calibration

data representation, further bridged to d-dimensional fea-

ture vectors with a fully connected layer. This yields an

Average-mAP of 46.8% on the test set, reported in Table 2,

the current SoccerNet-v2 action spotting leaderboard. We

achieve a novel state-of-the-art performance, outperforming

the other methods by a comfortable margin. In particular,

we prevail on 15 of the 17 classes, only topped by Vander-

plaetse et al. [46] for kick-offs and penalties. Besides, kick-

offs are the only actions for which our performances de-

grade compared to the original network, most probably be-

cause those actions are regularly unshown in soccer broad-

casts [13]. We illustrate some action spotting results in Fig-

ure 5. We manage to spot actions that CALF misses, and

some false positives of CALF are correctly avoided. On the

current open competition of action spotting in SoccerNet-

v2, organized on EvalAI, we achieve an Average-mAP of

46.4% on the private challenge dataset. This validates the

generalization capabilities of our network.

For completeness, we give additional results with the dif-



Table 2. Leaderboard for action spotting (Average-mAP %) on SoccerNet-v2. Patterned actions are indicated with a * . We report the

results of our best method, based on [7], which outperform the other techniques on almost all the classes.
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Counts (test set) 22551 6460 3809 2414 2283 1631 1175 1058 999 579 514 431 416 382 337 41 14 8

MaxPool [17] 18.6 38.7 34.7 26.8 17.9 14.9 14.0 13.1 26.5 40.0 30.3 11.8 2.6 13.5 24.2 6.2 0.0 0.9

NetVLAD [17] 31.4 47.4 42.4 32.0 16.7 32.7 21.3 19.7 55.1 51.7 45.7 33.2 14.6 33.6 54.9 32.3 0.0 0.0

AudioVid [46] 39.9 54.3 50.0 55.5 22.7 46.7 26.5 21.4 66.0 54.0 52.9 35.2 24.3 46.7 69.7 52.1 0.0 0.0

CALF [7] 40.7 63.9 56.4 53.0 41.5 51.6 26.6 27.3 71.8 47.3 37.2 41.7 25.7 43.5 72.2 30.6 0.7 0.7

Ours (CC + RN + FCL) 46.8 68.7 59.9 56.2 45.5 55.4 32.5 33.0 78.7 60.4 34.8 50.4 33.6 48.6 76.2 50.5 3.1 8.5

Figure 5. Examples of action spotting results on a game between

Manchester United and Chelsea in December 2015. In this case,

we spot correctly two more direct free-kicks than the original net-

work, and we rightly avoid predicting a corner around 35 minutes.

ferent combinations of calibration data representation and

feature extraction in Table 3. We see that the color compo-

sition with the 3D network and the player graph representa-

tion yield performances that are practically equivalent to our

best result, while other variants are less effective. Hence,

each calibration data representation is able to reach com-

petitive performances. We do not report any result with ex-

tracted feature representations from top view images com-

posed of binary channels as they globally yield much lower

performances. Finally, fusing features from the top view

and the player graph does not appear useful either as these

contain essentially the same type of information.

6. Conclusion

In this paper, we examine the problem of computing, rep-

resenting, and exploiting the camera calibration information

Table 3. Action spotting results (Average-mAP %) obtained with

our various data representations, feature vectors, and networks.

Data repres. Features Network Av.-mAP

Binary channels - 3D 44.7

Color compos. - 3D 46.7

Color compos. ResNet-34 STP 43.5

Color compos. ResNet-34 FCL 46.8

Color compos. Effic.Net-B4 STP 42.5

Color compos. Effic.Net-B4 FCL 45.5

Player graph - GCN 46.7

for the large-scale SoccerNet dataset, composed of 500 soc-

cer games. We leverage a powerful commercial tool to gen-

erate pseudo ground truths and manage to distill it into a

recent deep learning algorithm. As first contribution, we re-

lease our distilled network, which is the first public soccer

calibration algorithm trained on such a large dataset, along

with its calibration estimates for the SoccerNet videos to en-

rich the dataset. We use our calibration and a player detec-

tion algorithm to obtain the player localization in real-world

coordinates. To further serve the scientific community, our

second contribution is to provide three actionable ways of

representing those calibration data: top view images, fea-

ture vectors representations, and player graphs. Eventually,

we investigate the benefit of using these representations in

a deep learning network for the task of action spotting in

SoccerNet-v2. Standing for our third contribution, we de-

sign an appropriate concatenation of generic video and spe-

cific calibration information within the current best network

to achieve a novel state-of-the-art performance.
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