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Abstract

Soccer broadcast video understanding has been draw-
ing a lot of attention in recent years within data scientists
and industrial companies. This is mainly due to the lucra-
tive potential unlocked by effective deep learning techniques
developed in the field of computer vision. In this work, we
focus on the topic of camera calibration and on its current
limitations for the scientific community. More precisely, we
tackle the absence of a large-scale calibration dataset and
of a public calibration network trained on such a dataset.
Specifically, we distill a powerful commercial calibration
tool in a recent neural network architecture on the large-
scale SoccerNet dataset, composed of untrimmed broadcast
videos of 500 soccer games. We further release our distilled
network, and leverage it to provide 3 ways of representing
the calibration results along with player localization. Fi-
nally, we exploit those representations within the current
best architecture for the action spotting task of SoccerNet-
v2, and achieve new state-of-the-art performances.

1. Introduction

Soccer is often regarded as one of the most unifying ac-
tivities worldwide, with thousands of professionals enter-
taining millions of amateurs. Such a large audience makes
soccer a very lucrative business, generating billions of dol-
lars of revenue each year from broadcast events [30]. The
audiovisual data recorded during the games hides valuable
insights about the players positions, the tactics, the strengths
and weaknesses of each team. Hence, it is important for
clubs and coaches to stay at the top of the data analyt-
ics wave, and for the fans, the data can be leveraged to
provide customized services, such as personalized replays

(*) Denotes equal contributions to this project. Contacts: an-
thony.cioppa@uliege.be, adrien.deliege @uliege.be, f.magera@evs.com,
silvio.giancola@kaust.edu.sa. More at ht tps: //soccer—net.org/.

Bernard Ghanem
KAUST

Silvio Giancola*
KAUST

Floriane Magera*
EVS Broadcast Equipment

Marc Van Droogenbroeck
University of Liege

Calibrated broadcast videos

QY
Action Spotting X7 3 .
on SoccerNet-v2 ‘»{ s——— Action Spotted !
o0

Figure 1. Overview. We compute and release the camera cali-
bration parameters along player localization in real-world coordi-
nates for the 500 soccer games of the SoccerNet dataset, we gen-
erate various types of calibration-based data representations, and
we leverage them for the task of action spotting in SoccerNet-v2.

or enhanced player and game statistics. However, many
general challenges of computer vision in sports have to be
faced [34, 42]. Besides, the amount of data to process is
so large that automated tools need to be developed. This
explains the recent rise in deep learning algorithms to per-

form various tasks such as action spotting [7, 13, 17], player
counting [9] and tracking [22, 33], ball tracking [25], tactics
analysis [40], pass feasibility [2], talent scouting [12], game

phase analysis [10], or highlights generation [1, 37].
In this work, we investigate the topic of camera cali-



bration for researchers in computer vision focused on soc-
cer. Camera calibration serves as a bridge between the im-
ages recorded and the physical world. It allows to project
any point located on the field of the recorded frame to its
real-world coordinates on a plane of the actual soccer field.
It can thus provide knowledge about the part of the field
recorded by the camera or the localization of the players on
that field. One of the main commercial uses of camera cal-
ibration is the insertion of graphical elements in augmented
reality. Inserting graphical elements may be used to ensure
that the rules of the game are respected, such as automatic
offside or goal line technologies [15]. However, most com-
mon applications aim to improve the viewer experience by
fancier storytelling and with game analytics [48].

Given the value of camera calibration tools, it is not sur-
prising that the best methods belong to private companies.
This prevents scientific research on that topic to flourish at
large scale. For that reason, we leverage a powerful com-
mercial tools [15] to train a neural network on the large-
scale SoccerNet dataset [17], and we release the latter to
the community, along with calibration estimates for the 500
complete games available. Furthermore, we propose 3 dif-
ferent ways of representing the player localization in real-
world coordinates obtained from the camera calibration: a
top view image of the game, a feature representation, and a
player graph. From an application perspective, we investi-
gate the use of calibration-related information for the task of
action spotting in SoccerNet-v2 [13]. Those contributions
are illustrated in Figure 1 and further outlined below.

Contributions. We summarize our contributions as fol-
lows. (i) Calibration for SoccerNet. We provide cali-
bration estimates and player localization for the 500 soc-
cer games of the SoccerNet dataset, and we release the first
calibration algorithm trained on such a large-scale soccer
dataset. (ii) Data representations. We provide top view
image-based, compressed feature-based, and player graph-
based representations of the calibration data and player lo-
calization. (iii) SOTA on action spotting in SoccerNet-v2.
As use case, we investigate the use of these representations
in a state-of-the-art network for the action spotting task of
SoccerNet-v2 and we improve its performances.

2. Related work

Calibration. In the context of sports events, camera cal-
ibration often benefits from the presence of a field whose
layout is specified by the rules of the game. The camera
may be parameterized using the full perspective projection
model, but also using a homography model. Indeed, the
field being most often planar, it is a convenient calibration
rig to estimate the homography between the field plane and
the image. Hereafter, “camera calibration” means the esti-
mation of the intrinsic and extrinsic camera parameters.

For soccer, existing methods are assessed on the World
Cup 2014 dataset [2 1], which introduces a metric based on
the Intersection over Union (IoU) between the reference
field model and its predicted deprojection from an image.
This work leverages the segmentation of horizontal and ver-
tical lines to derive a set of plausible field poses from the
vanishing points, and selects the best field after a branch-
and-bound optimization. However, it requires at least two of
both vertical and horizontal lines to estimate the vanishing
points. Some areas of the field contain few line markings,
restricting the practical use of the method to goal areas.

Another common approach is to rely on a dictionary of
camera views. The dictionary associates an image pro-
jection of a synthetic reference field model to a homogra-
phy used to produce said projection. Each input image is
first transformed to resemble a projection of the synthetic
field, typically by a semantic segmentation of the field lines
[5, 39] or of the areas defined by the field lines [38]. That
segmentation is then associated with its closest synthetic
view in the dictionary, giving a rough estimate of the camera
parameters, which is eventually refined to produce the final
prediction. One drawback of this kind of approach is that
the processing time scales poorly with the size of the dic-
tionary. Some applications require a large dictionary, which
may become a bottleneck if real-time processing is required.

Some other calibration methods rely on tracking algo-
rithms. Lu et al. [32] use an extended Kalman filter to
track the pan-tilt-zoom (PTZ) camera parameters. Citraro
et al. [11] use a particle filter to track the camera orienta-
tion and position. Due to the nature of tracking, these meth-
ods are restricted to deal with uncut, single-sequence video
streams, making them inappropriate for a dataset of broad-
cast videos with many discontinuities, as in SoccerNet.

Kendall et al. [26] introduced the concept of training a
neural network to directly predict the camera parameters
from an image. This approach was further investigated suc-
cessfully by Jiang et al. [24] where the predicted homog-
raphy is further refined by iterative differentiation through
a second neural network that predicts the error. Due to
the amount of computation needed in this latter step, this
method is quite slow (0.1 fps). Sha ez al. [38] also use a neu-
ral network to refine the camera parameters found within the
dictionary for the input image. They use a spatial transform
network, trained to predict the homographic correction nec-
essary to align two segmented images. In our work, we opt
for the latter method because it does not involve tracking,
reports a processing rate of up to 250 fps, and achieves good
performances on the World Cup dataset.

Action Spotting. The task of action spotting in soccer con-
sidered in this work was introduced by Giancola et al. [17]
along with the large-scale SoccerNet dataset. The objective
is to identify at which moment various salient game actions
occur, such as goals, corners, free-kicks, and more. Retriev-



ing such information is valuable for downstream tasks such
as camera selection in live game production, post-game soc-
cer analytics, or automatic highlights generation. While de-
tecting players on broadcast images can now be achieved
with existing deep learning algorithms [8, 19], combining
spatio-temporal information about their localization to in-
fer the occurrence of game actions remains challenging as
it requires a high level of cognition. Besides, in broadcast
videos, several cameras are used and important actions are
replayed, breaking the continuity of the stream.

In SoccerNet [17], Giancola et al. focus on three types
of actions: goals, cards, and substitutions, which are tem-
porally annotated with single anchors to retrieve. Sev-
eral baselines are proposed, all of which rely either on
ResNet [20], I3D [4], or C3D [44] frame features computed
at 2 frames per second followed by temporal pooling meth-
ods (NetVLAD and MaxPool), with the ResNet features
yielding the best results. Several works followed, building
on the same set of pre-computed ResNet features. Cioppa
et al. [7] develop a particular loss function that takes into
account the context surrounding the actions in the tempo-
ral domain. They use it to perform a temporal segmenta-
tion of the videos before using a spotting module, achieving
state-of-the-art results. Similarly, Vats et al. [47] handle the
temporal information around the actions with a multi-tower
CNN that takes into account the noise due to the single an-
chor annotation scheme. Tomei et al. [43] randomly mask
a portion of the frames before the actions to force their net-
work to focus on the following frames, as those may contain
the most discriminative features to spot actions. By fur-
ther fine-tuning the last block of the ResNet backbone, they
achieve a strong state-of-the-art results on SoccerNet-v1.
Rongved et al. [35] directly learn a whole 3D ResNet ap-
plied to the video frames on 5-seconds clips. This turns out
to be an ambitious approach with moderate results, given
the huge volume of data to process from scratch. Vander-
plaetse et al. [46] propose a multimodal approach by includ-
ing audio features, first extracted with a pre-trained VGG-
ish network, then averaged over 0.5 seconds windows and
synced with the 2 fps original ResNet features. They are
processed in parallel streams before undergoing a late fu-
sion, yielding the best results in several action classes.

Besides those works, the literature is rich in papers us-
ing either small custom datasets, such as [16, 23], or fo-
cusing on event recognition from pre-cut clips and selected
frames rather than spotting actions in untrimmed videos,
such as [27, 28, 29], or even targeting a single class, such
as goals [45]. In this work, we tackle the large-scale action
spotting task of SoccerNet-v2, the extension of SoccerNet
proposed by Deliege ef al. [13]. It covers 17 classes of ac-
tions, annotated for the 500 untrimmed SoccerNet games,
and constitutes the most appropriate public benchmark for
research on action spotting in soccer.

3. Calibration and player localization

Contribution. In SoccerNet [17], the frames of the raw
videos are subsampled at 2 fps, then transformed into fea-
ture vectors, by passing through a ResNet-152 [20], I3D [4],
or C3D [44] network pre-trained on ImageNet [14], all of
which are released with the dataset. Hence, those vectors
only encode generic information about the frames. As first
contribution, shown in Figure 2, we enrich the SoccerNet
dataset with actionable camera calibration estimates, along
with players and referee localization. Such information pro-
vides a soccer-specific insight and is explicitly linked with
the game in real-world coordinates. Besides releasing the
largest set of calibration estimates to date, we are also the
first to deliver a calibration algorithm trained on a large
scale dataset such as SoccerNet. For synchronization pur-
poses, we compute the calibration, player and referee local-
ization for the 2-fps-subsampled set of frames considered
in SoccerNet. In the following, we make no difference any-
more between players and referees, all of which are called
“players”, and we call “per-frame information™ any infor-
mation computed for each of those subsampled frames.

Calibration algorithm. We base our calibration on the
Camera Calibration for Broadcast Videos (CCBV) of Sha
et al. [38], but we write our own implementation, given the
absence of usable public code. They use as calibration pa-
rameterization the homography between the field plane and
the image, which is valid under the assumption of a planar
field [18]. First, we describe their original algorithm, then
we give the details of our changes.

The algorithm relies on a dictionary, i.e. a set of pairs of
artificial field zone segmentations, called “templates”, and
homographies. The dictionary is built in a pre-processing
step, according to the camera parameters distribution over
the training dataset. Since this distribution is unknown, it
is estimated with a clustering algorithm based on Gaussian
Mixture Models, that also determines the number of modes
necessary to fit the distribution. The mean of each mode
corresponds to a homography of the dictionary, that defines
a camera perspective from which its corresponding template
is generated as an artificial semantic image of the field.

CCBY itself consists of three steps, each performed by
a specific neural network. First, a zone segmentation of the
field is computed with a U-Net architecture [36], where a
zone is a field area enclosed by field lines. Second, a rough
estimate of the homography between the field plane and the
image is obtained. A siamese network [3, 6] encodes the
zone segmentation and the templates of the dictionary in
feature vectors. The homography associated with the tem-
plate encoding with the shortest L? distance to the zone seg-
mentation encoding is the rough estimate of the sought ho-
mography. Third, this template homography is refined, in
two steps. A Spatial Transform Network first regresses the
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Figure 2. Calibration and player localization representations. The original SoccerNet dataset (left) provides raw videos of 500 complete
soccer games as well as generic per-frame feature vectors. We distill a commercial calibration tool into a recent network architecture on
SoccerNet, which we release along all the calibrations. We combine Mask R-CNN player detections with the calibration to provide 3
representations of the calibrated data, thus enriching the dataset with specific player-based information: (a) top view representations, (b)
feature vectors representations, (c) a player graph representation. The red boxes, also released, further serve as inputs in neural networks
to investigate the usefulness of calibration for the task of action spotting in SoccerNet-v2, leading to a new state-of-the-art performance.

homography between the zone segmentation and the tem-
plate. Then, the final homography prediction is obtained
by multiplying the regressed homography with the template
homography, giving the estimated calibration parameters.

Our training process. Given the absence of a large-scale
corpus of ground-truth camera calibrations in the literature,
we opt for a student-teacher distillation approach. We con-
sider a commercial tool [15] as teacher to generate a dataset
of 12,000 pseudo-ground-truth calibrations on the Soccer-
Net dataset, which we use to train our student calibration
algorithm. Our training dataset is 60x larger than the World
Cup 2014 dataset [2 1] used in [38] and contains a larger va-
riety of camera viewpoints, making our student calibration
network a valuable candidate for universal camera calibra-
tion in the context of soccer. In fact, during the creation
of the dictionary, more than 1000 modes are found by the
clustering algorithm. Besides, during the training phase of
the Spatial Transform Network, we notice vanishing gradi-
ent issues. To overcome this problem, we first pre-train it
with a MSE loss and use leaky ReLLU activations instead of
ReLUs. After convergence, we compute the calibration es-
timates of the SoccerNet video frames with our trained cal-
ibration network. A binary score about the relevance of the
calibration, set to 1 for frames with a plausible estimated
calibration, is also computed by our student. This allows
to discard cameras views that are not recorded by the main
camera, such as close-up views, or public views. We re-
lease those estimates along our trained calibration network,
which can be used with a wide variety of soccer videos. We
denote CCBV-SN our student trained on SoccerNet.

Player localization. For each calibrated frame, we use
Mask R-CNN [19] to obtain a bounding box and a segmen-
tation mask per detected person instance. Then, we com-
pute a field mask following [10] to filter out the bounding
boxes that do not intersect the field, thus removing e.g. staff
and detections in the public. We use the homography com-
puted by CCBV-SN to estimate the player localization on
the field in real-world coordinates from the middle point of
the bottom of their bounding box. Finally, we also store the
average RGB color of each segmented player to keep track
of a color-based information per person. As for the calibra-
tions, we release this raw player-related information.

4. Calibrated data representation

Contribution. The calibration estimates and player local-
ization are not easy to handle efficiently. Hence, to encour-
age their use in subsequent soccer-related works, we pro-
pose and release various easy-to-use representations of the
calibration data extracted from the previous section. We il-
lustrate these representations in Figure 2 and describe them
in this section. We also discuss their pros and cons.

4.1. Top view image representations

In this section, we provide image representations of the
player localization information. We use the calibration of
CCBV-SN to generate a synthetic top view of the game con-
taining generic field lines, the players represented by small
squares, and the polygon delimiting the portion of the field
seen by the camera. We represent that top view in two ways.

Color composition (CC). We generate a RGB image where



we first set field pixels in black and line pixels in white.
Then, we superimpose with white pixels the contour of the
polygon of the field seen by the camera. Finally, we repre-
sent the players by squares filled with their associated RGB
color, overriding previous pixels in case of intersection.

Binary channels (BC). We generate an “image” composed
of 3 binary channels: one for the generic field lines, one for
the filled polygon of the field seen by the camera, and one
for the players without their color information.

Pros and cons. A major advantage of image representations
is their interpretability, since a human observer can directly
understand relevant information about the game from such
top views. Besides, they can be easily processed with con-
volutional neural networks in deep learning pipelines. As
a drawback, they have a relatively large memory footprint
compared with the low amount of actionable information
that they actually contain. The color composition view has
the advantage over the binary channels of keeping track of
the color of the players, necessary for team discrimination
and tactics analysis. On the other hand, the representation
of a player in the binary channels is not influenced by a
poor segmentation in the raw image or a color shift due to
e.g. an occlusion. Also, players located on field lines do not
prevent those lines to be encoded properly in their binary
channel, while they hide the lines in the color composition.

4.2. Feature vector representation

Inspired by Giancola ef al. [17], we compress our top
views as frame feature vectors extracted by pre-trained
backbones. This is common practice in deep learning ap-
proaches, as universal networks trained on e.g. ImageNet
have an excellent transfer capability to encode meaningful
visual information about any given image. We use top views
of 224 x 224 pixels, with field lines of 4 pixels width and
players of 8 x 8 pixels. We consider two backbones with
similar number of parameters, both trained on ImageNet.

ResNet-34 (RN). This network has 21.8 million parameters
and achieves 73.27% top-1 accuracy on ImageNet. We use
a frozen ResNet-34 [20] and collect the feature vectors of
dimension 512 in its penultimate layer.

EfficientNet-B4 (EN). This more recent network has 19
million parameters and achieves 82.6% top-1 accuracy on
ImageNet. We use EfficientNet-B4 [41], which yields fea-
ture vectors of dimension 1792 in its penultimate layer.

Pros and cons. We choose these networks for their good
trade-off between performance on ImageNet and inference
time. Indeed, they allow for a much faster training of neu-
ral networks compared with the top views, as computation-
ally expensive spatial convolutions have already been per-
formed. As a drawback, the features collected from these
networks are not interpretable anymore, which may reduce
the possibilities of developing explainable models.

4.3. Player graph representation

Player graph (PG). Our third approach consists in encod-
ing per-frame players information in a graph. Each player
is represented with a node, whose features are defined by
their associated RGB color, their position in real-world co-
ordinates, and the area of the detected bounding box in the
image frame. Two players are linked to each other with an
edge if their real-world distance is below 25 meters, which
we consider sufficient to pass contextual information be-
tween the nodes in the graph (i.e. the players in the field).

Pros and cons. The player graph is a compromise between
the compactness of feature representations and the inter-
pretability of top views. Indeed, it explicitly encodes in a
compact way the interpretable information that we want to
embed in our descriptive features: the players color, their
position in the field and their interactions with each other.
Contrary to top view images, it does not encode any empty
portion of the field, nor considers the field lines that are con-
stant across the videos, which makes the learning focusing
more on the interesting player features. The graph convo-
lutional network (see next section) that processes the player
graph aggregates features from neighboring players, which
helps it understand real-world distances by discarding play-
ers further away. Yet, that aggregation does not consider
different clusters of neighbors, which could lead to a mis-
understanding between teammates and adversaries.

5. Experiments

Contribution. In this section, we first validate with perfor-
mance metrics the effectiveness of CCBV-SN as calibration
algorithm. Then, we leverage our various calibration data
representations in the particular use case of the action spot-
ting task in SoccerNet-v2. We build on top of the current
best network to achieve a new state-of-the-art performance.

5.1. Validating the camera calibration distillation

In order to validate our calibration-based data represen-
tations and their use for an action spotting task, we first val-
idate CCBV-SN as camera calibration algorithm.

Dataset. The World Cup 2014 dataset [21] stands as ref-
erence for evaluating soccer camera calibration methods.
The test set comprises 186 calibrated images taken from 10
different games in various stadiums, perspectives, lighting
conditions, and moments of the day.

Metric. Following [5, 38], for each test image, we compute
the entire intersection over union (loU entire) between the
top view projections of the field model by the ground-truth
camera and by the estimated camera, as well as the IoU
restricted to the part of the field actually shown on the image
(loU part). For both metrics, we report the mean and the
median value across the test images.
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Figure 3. Examples of calibrations obtained with CCBV-SN.
Globally, the results are satisfying and allow for an effective use
of the calibration for downstream tasks such as action spotting.

Results. We report the calibration performances in Table 1.
The private teacher achieves the best results on 2 out of
4 metrics, which validates its use as a teacher in our dis-
tillation approach. It is topped by Citraro et al. [11] on
the IoU (entire) metrics, which finetune their method with
additional manual annotations on the dataset. In compar-
ison, none of our methods are trained on the that evalua-
tion dataset. Thus we actually measure the generalization
capabilities of our teacher and CCBV-SN on a completely
new dataset. This evaluation also allows us to quantify
the performance drop induced by our distillation procedure.
CCBV-SN loses 6 to 12 points in the distillation process,
making its performances close to [39], especially on the
IoU (part). This metric is actually the most relevant for us,
as our use of the calibration is limited to the visible part of
the field for the calibration data representations. Therefore,
CCBV-SN is legitimately usable in the rest of our experi-
ments, and is presumably even better on SoccerNet, since it
is the dataset on which it has been trained. Some calibration
results obtained with CCBV-SN are shown in Figure 3.

5.2. Use case: calibration-aware action spotting

In this section, we investigate a possible use case of our
calibration representations, by leveraging a state-of-the-art
network for the task of action spotting in SoccerNet-v2.

Dataset. The action spotting dataset of SoccerNet-v2 [13]
consists in 110,458 action timestamps spread over 17
classes within the 500 complete games of the Soccer-
Net [17] dataset, with 22,551 actions related to the 100 test
games. Each action is annotated with a single timestamp,
that must be retrieved as precisely as possible.

Table 1. Calibration results on the World Cup 2014 dataset [21].
The teacher tool outperforms the other methods on the IoU (part)
metric. Our publicly released student network CCBV-SN, ob-
tained by distilling the teacher in the CCBV architecture on Soc-
cerNet, achieves acceptable transfer learning results.

IoU (entire) IoU (part)
Method Mean | Med. | Mean | Med.

DSM [21] 83 - - -
Sharma et al. [39] - - 91.4 | 92.7
Chen et al. [5] 89.4 | 93.8 | 945 | 96.1
Sha et al. [38]- CCBV | 88.3 92.1 93.2 96.1
Jiang et al. [24] 89.8 | 929 | 95.1 | 96.7

Citraroetal. [11] T 93.9 | 95.5 - -
Teacher [15] * 91.7 93 96.7 | 98.7
Our CCBV-SN * 79.8 | 81.7 | 88.5 | 923

* no finetuning on WC14 T used extra annotations on WC14

Spotting
predictions

Concatenated
features

2-minute /

video chunk

Figure 4. Our action spotting pipeline for the patterned actions.
We include calibration information within CALF [7], by concate-
nating frame feature vectors extracted from our various representa-
tions. This allows us to mix generic information from the Soccer-
Net features with player-specific information from the calibration.
For each chunk, the network outputs p spotting predictions.

CALF architecture. We focus on integrating the cali-
bration information along the original SoccerNet features
in the Context-Aware Loss Function (CALF) architecture
of Cioppa et al. in [7]. This architecture achieves state-
of-the-art performances on the task of action spotting in
SoccerNet-v2. As original features, we choose the ResNet
features further reduced from 2048 to 512 components by
PCA, as they yield the best results both in [7] and in [17],
which we also noticed in our preliminary experiments.

CALF is composed of three trainable modules: a frame
feature extractor, a temporal segmentation module, and an
action spotting module. The first one is a convolutional
spatio-temporal pyramid (STP) that aggregates the ResNet
features across various time scales, and outputs a feature
vector of user-defined dimension d per frame. Our goal is
to concatenate such features judiciously along frame fea-
ture vectors extracted from our calibration representations,
as shown in Figure 4. The remaining two modules and the
training protocol are kept as is to assess the improvement
brought by only the calibration information.



Processing our representations. Each calibration data rep-
resentation must be processed appropriately for a seamless
integration within the network. We proceed as follows.

Top views. We process our top views with our own 3D-
convolutional network (3D). We choose the same structure
as the STP module but where the kernels are extended to
take into account the extra spatial dimension of the top view
compared to the original ResNet features. The output is a
d-dimensional vector for each frame that gathers the spatial
and temporal information of the top view representation.

Feature vectors. We investigate two ways of further pro-
cessing the feature vectors obtained from the pre-trained
backbones: (1) we use the trainable STP of CALF to extract
d-dimensional frame feature vectors (STP), (2) we fully
connect our feature vectors through a trainable layer di-
rectly to feature vectors of dimension d followed by a ReLU
activation (FCL). In the second case, we obtain per-frame
feature vectors solely based on the raw frame information,
without any temporal aggregation.

Player graph. We design a graph convolutional neu-
ral network (GCN) to extract per-frame features from the
player graph. For that purpose, we follow DeeperGCN [31].
In particular, we build our architecture with 14 GCN blocks
with residual skip connections. We leverage two layers
of GENeralized Graph Convolution (GENConv) per block,
that aggregate the lifted neighboring nodes using a softmax
with a learnable temperature parameter. Then, a max oper-
ation across the node pools a global feature for the player
graph. This feature is later lifted with a single fully con-
nected layer to the desired dimension d.

Class separation. Intuitively, the player localization ex-
tracted with the calibration can prove more helpful for spot-
ting some classes (e.g. penalty) than others (e.g. shot off
target). Hence, we leverage our domain knowledge to split
the 17 action classes of SoccerNet-v2 into two sets: “pat-
terned” and “fuzzy” actions. We consider an action as “pat-
terned” when its occurrence is systematically linked with
typical player placements: penalty, kick-off, throw-in (one
player outside the field), direct free-kick (player wall), cor-
ner, yellow card, red card, yellow then red card (players
grouped around the referee for the card-related actions). On
the other hand, a “fuzzy” action may occur in many differ-
ent player configurations: goal, substitution, offside, shot
on target, shot off target, clearance, ball out of play, foul,
indirect free-kick. Given our class separation, we train two
networks: one on the patterned classes that uses the calibra-
tion information and the original ResNet features, one on
the fuzzy classes that only uses those ResNet features.

Feature fusion. For the network trained on the patterned
classes, we input SoccerNet’s ResNet features to the STM,
collect d-dimensional feature vectors, and concatenate them
with our d-dimensional vectors extracted by one of the
above processing steps. This is illustrated in Figure 4. We

set d =152, which allows us to simply plug a calibration-
related branch next to the original branch of CALF working
on SoccerNet’s ResNet features. The concatenation yields
feature vectors of dimension 304 and is performed just be-
fore the temporal segmentation module of the whole net-
work. For the network trained on the fuzzy classes, we
use SoccerNet’s ResNet features only as in CALF, and set
d = 304 after the STM to have the same input dimension
for the segmentation modules of the two networks.

Training. Following CALF, we process 2-minute video
chunks. We extract frame feature vectors as described
above, concatenate them when necessary, and input them
to a temporal segmentation module, that provides per-class
features and per-class actionness scores per frame. This
module is trained with a context-aware loss that aggregates
the temporal context around the actions. Those features and
scores are concatenated and sent to an action spotting mod-
ule, which provides predicted action vectors for the chunk,
containing a localization estimate and a classification per
predicted action. An iterative one-to-one matching connects
those predictions with ground-truth action vectors, allowing
to train the module with an element-wise MSE loss.

Metric. As defined in [17], we measure the action spotting
performance with the Average-mAP. First, predicted action
spots are said positive when they fall within a margin § of a
ground-truth timestamp from their predicted class. Then,
the Average Precision (AP) is computed from Precision-
Recall curves, then averaged over the classes (mAP). Fi-
nally, the Average-mAP is the AUC of the mAP obtained at
margins § varying from 5 to 60 seconds. Given our class
separation, we merge the predictions of our two networks
before computing the Average-mAP.

Results. We achieve our best result with the color composi-
tion reduced to frame features by ResNet-34 as calibration
data representation, further bridged to d-dimensional fea-
ture vectors with a fully connected layer. This yields an
Average-mAP of 46.8% on the test set, reported in Table 2,
the current SoccerNet-v2 action spotting leaderboard. We
achieve a novel state-of-the-art performance, outperforming
the other methods by a comfortable margin. In particular,
we prevail on 15 of the 17 classes, only topped by Vander-
plaetse et al. [46] for kick-offs and penalties. Besides, kick-
offs are the only actions for which our performances de-
grade compared to the original network, most probably be-
cause those actions are regularly unshown in soccer broad-
casts [13]. We illustrate some action spotting results in Fig-
ure 5. We manage to spot actions that CALF misses, and
some false positives of CALF are correctly avoided. On the
current open competition of action spotting in SoccerNet-
v2, organized on EvalAl, we achieve an Average-mAP of
46.4% on the private challenge dataset. This validates the
generalization capabilities of our network.

For completeness, we give additional results with the dif-



Table 2. Leaderboard for action spotting (Average-mAP %) on SoccerNet-v2. Patterned actions are indicated with a * .

We report the

results of our best method, based on [7], which outperform the other techniques on almost all the classes.

SN-v2
Ball out
Throw-in *
Foul

Ind. f.-kick
Clearance

Shot on tar.

Shot off tar.
Corner *
Substitution
Kick-off *
Yel. card *
Offside

Dir. f.-kick *
Penalty *
Yel.—Red *
Red card *

—_
=
o

O

Counts (test set)

|| 22551 || 6460 | 3809 | 2414 | 2283 | 1631 | 1175 | 1058 | 999 | 579 | 514 | 431 | 416 | 382 | 337 | 41

|14 8

MaxPool [17]

|| 18.6 || 38.7|34.7 | 26.8 | 17.9 | 14.9 | 14.0 | 13.1]|26.5|40.0|30.3| 11.8| 2.6 | 13.5]|24.2] 6.2 |0.0]0.9

NetVLAD [17]

|| 314 || 47.4] 424320 167|327 | 21.3 | 19.7|55.1 | 51.7|45.7|33.2| 14.6]33.6| 54.9| 32.3| 0.0] 0.0

AudioVid [46]

|| 39.9 || 54.3|50.0 | 55.5 | 22.7 | 46.7 | 265 | 21.4 | 66.0 | 54.0| 52.935.2| 24.3 | 46.7| 69.7| 52.1| 0.0 | 0.0

CALF[7]

|| 40.7 || 63.9]56.4 | 53.0 | 41.5| 51.6 | 26.6 | 27.3 | 71.8 |47.3 | 37.2| 41.7|25.7|43.5| 72.2| 30.6 | 0.7 | 0.7

Ours (CC + RN +FCL) || 46.8 || 68.7 | 59.9 | 56.2 | 45.5 | 55.4 | 32.5 | 33.0 | 78.7| 60.4 | 34.8| 50.4 | 33.6 | 48.6 | 76.2| 50.5| 3.1|8.5

Direct free-kick *

* = Spotting prediction ours
* = Spotting prediction CALF
| = Ground-truth labels

0 10 20 30 40

Fodok * *

il * . Corner
0 10 20 30 40

Game Time (in minutes)

Figure 5. Examples of action spotting results on a game between
Manchester United and Chelsea in December 2015. In this case,
we spot correctly two more direct free-kicks than the original net-
work, and we rightly avoid predicting a corner around 35 minutes.

ferent combinations of calibration data representation and
feature extraction in Table 3. We see that the color compo-
sition with the 3D network and the player graph representa-
tion yield performances that are practically equivalent to our
best result, while other variants are less effective. Hence,
each calibration data representation is able to reach com-
petitive performances. We do not report any result with ex-
tracted feature representations from top view images com-
posed of binary channels as they globally yield much lower
performances. Finally, fusing features from the top view
and the player graph does not appear useful either as these
contain essentially the same type of information.

6. Conclusion

In this paper, we examine the problem of computing, rep-
resenting, and exploiting the camera calibration information

Table 3. Action spotting results (Average-mAP %) obtained with
our various data representations, feature vectors, and networks.

Data repres. Features ‘ Network ‘ Av.-mAP
Binary channels - 3D 44.7
Color compos. - 3D 46.7
Color compos. ResNet-34 STP 43.5
Color compos. ResNet-34 FCL 46.8
Color compos. | Effic.Net-B4 STP 42.5
Color compos. | Effic.Net-B4 FCL 45.5
Player graph - GCN 46.7

for the large-scale SoccerNet dataset, composed of 500 soc-
cer games. We leverage a powerful commercial tool to gen-
erate pseudo ground truths and manage to distill it into a
recent deep learning algorithm. As first contribution, we re-
lease our distilled network, which is the first public soccer
calibration algorithm trained on such a large dataset, along
with its calibration estimates for the SoccerNet videos to en-
rich the dataset. We use our calibration and a player detec-
tion algorithm to obtain the player localization in real-world
coordinates. To further serve the scientific community, our
second contribution is to provide three actionable ways of
representing those calibration data: top view images, fea-
ture vectors representations, and player graphs. Eventually,
we investigate the benefit of using these representations in
a deep learning network for the task of action spotting in
SoccerNet-v2. Standing for our third contribution, we de-
sign an appropriate concatenation of generic video and spe-
cific calibration information within the current best network
to achieve a novel state-of-the-art performance.
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