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Abstract

We introduce a novel method for collecting table tennis
video data and perform stroke detection and classification.
A diverse dataset containing video data of 11 basic strokes
obtained from 14 professional table tennis players,
summing up to a total of 22111 videos has been collected
using the proposed setup. The temporal convolutional
neural network model developed using 2D pose estimation
performs multiclass classification of these 11 table tennis
strokes with a validation accuracy of 99.37%. Moreover,
the neural network generalizes well over the data of a
player excluded from the training and validation dataset,
classifying the fresh strokes with an overall best accuracy
of 98.72%. Various model architectures using machine
learning and deep learning based approaches have been
trained for stroke recognition and their performances have
been compared and benchmarked. Inferences such as
performance monitoring and stroke comparison of the
players using the model have been discussed. Therefore, we
are contributing to the development of a computer vision
based sports analytics system for the sport of table tennis
that focuses on the previously unexploited aspect of the
sport i.e., a player's strokes, which is extremely insightful
for performance improvement.

1. Introduction

Performance monitoring is a very essential aspect of
professional sports training. It helps in constantly tracking
the progress of a sportsperson and also helps to determine
the areas which have scope for improvement. The
traditional methods of sports training involving just players
and coaches have saturated over the years and hence, there
exists a dire need for the incorporation of technology in this
field. Computer vision based sports analytics systems are
being developed for this purpose to provide effective means
for collecting characteristic data pertaining to the sport,
draw meaningful insights from the data, and provide user-
friendly representations of the inferences made. These
inferences can be used for continuous improvement in the
performance level of a sportsperson which might not be
possible using traditional training methods.

Table tennis is an intricate sport involving a wide variety
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of strokes. These strokes when analysed can provide helpful
inferences which in turn can lead to an improvement in the
performance of a player. We propose a start in this process
of stroke analysis by first collecting the appropriate dataset
and developing a neural network which recognizes the table
tennis stroke executed by a player, classifying it into one of
eleven major strokes.

The strokes executed by a player are clearly visible to the
opponent and hence, valuable inferences about the strokes
can easily be made from the front view of the player. A
major challenge faced was to collect a suitable video dataset
as there were no public datasets available for the purpose of
table tennis stroke recognition or from which it could be
effectively performed. Therefore, we collected a diverse
dataset using a novel setup, which has minimal interference
with the players as well as the sport.

Different strokes are executed by varying the trajectory
of the table tennis racket with respect to the ball which leads
to the fact that the nature and range of motion of the arm
vary for each kind of stroke. Hence, we propose a method
wherein we use two-dimensional human pose estimation to
recognize a player’s stroke.

2. Related works

Table tennis is a popular sport with a wide corpus of
strokes. This has attracted plenty of researchers to work in
the field of stroke detection and classification for the sport.
The initial attempts in this direction are mainly comprised
of sensor-based approaches. For example, in the work
carried out by Peter Blank et al. [1], Inertial Sensors were
attached to table tennis rackets to collect stroke data.
Strokes were detected using an event detection algorithm
with a sensitivity of 95.7% and a classifier used for stroke
classification provided an accuracy of 96.7% for 8 basic
strokes. Liu R. et al. [2] have employed Body Sensor
Networks (BSN) to collect motion data pertaining to the
upper arm, lower arm and the back of players executing
strokes. They obtained an accuracy of 97.41% using
Principal Component Analysis (PCA) over a Support
Vector Machine (SVM) to recognise the strokes. A
comparative study of table tennis forehand strokes has been
done by SS Tabrizi et al. [3] between SVM with Radial
Basis Function (RBF) as its kernel, Long Short-Term
Memory (LSTM) and two-dimensional Convolutional



Neural Network (2D-CNN) models using the signals
generated by a BNOOS5S5 sensor during the execution of
forehand table tennis strokes.

The application of computer vision based approaches on
table tennis data is a recent trend and there is a scarce
amount of work done in the area of stroke recognition. IR
depth camera has been used by Habiba Hegazy et al. [4] for
the detection and efficiency classification of strokes. An
average accuracy of 88% to 100% was obtained by them
using the fastDTW algorithm. A Twin Spatio-Temporal
Convolutional Neural Network (TSTCNN) based approach
for action recognition in table tennis was introduced by
Pierre-Etienne Martin et al. [5]. It performed stroke
detection and recognition on the TTStroke-21 dataset with
an accuracy of 91.4%. Roman Voelikov ef al. [6] presented
a neural network, TTNet, for real-time temporal and spatial
event spotting for table tennis. They obtained a 97.0%
accuracy in event spotting and an accuracy of 97.5% in ball
detection on the test part of their multi-task dataset,
OpenTTGames. Another multi-task dataset for tracking and
action recognition in table tennis, SPIN, was presented by
Steven Schwarcz et al. [7], where pose tracking and spin
prediction have been explored.

3. Dataset collection

Although datasets exist for table tennis video data, they
did not provide an optimum viewing angle to observe a
stroke with high detail. Our dataset has been collected in a
way that it provides the most optimum view of a player to
break down and analyse the stroke executed by the player.
Hence, we developed a system for video data collection
which automated the labelling process for the entire dataset.
Tab. 1 and Tab. 2 show a detailed description of the dataset
collected.

Class Number of videos

(strokes executed)
1 Forehand Topspin 2003
2 Backhand Topspin 2403
3 Forehand Push 2082
4 Backhand Push 2066
5 Forehand Block 2019
6 Backhand Block 2025
7 Forehand Flick 2068
8 Backhand Flick 2048
9 Forehand Lob 1811
10 Backhand Lob 1795

Table 1: Stroke-wise distribution of the dataset.

Total Total Average Total
Number of | Number Number of Number of
Strokes of Frames (per | Data Points
Frames stroke) Collected
22,111 873,028 39.48 6,984,224
Table 2: Statistics of the dataset.
3.1. Setup

The camera is positioned facing the player, right in front
of the net and parallel to it. This enables the camera to
capture videos of the player during stroke execution from
the front view. To facilitate this, a wooden frame was
designed as shown in Fig. 1 to be placed on the table as
depicted in Fig. 2 such that it has least interference with
regular game play. The height of the net above the table
tennis table according to the rules of the sport is 152.5 mm.
The total height of the frame is 135 mm so that it does not
protrude above the height of the net. A Raspberry Pi
Camera Module interfaced with a Raspberry Pi 4 are both
mounted onto the rear side of the frame to eliminate the
chances of ball impact with the hardware. The camera
aperture is at a height of 105 mm above the table surface.
The width of the frame is 100 mm providing sufficient
clearance for the mounting of the Raspberry Pi 4 and the
maximum thickness of the frame is 25 mm at the base.

Figure 2: Top view of our setup for dataset collection.

A frame captured by the camera using the setup is



depicted in Fig. 3. It captures the entire upper torso of the
player executing the stroke along with a small extent of the
edge of the table at the bottom of the frame.
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Figure 3: A frame captured using the setup with the outputs
of pose estimation mapped for right wrist, right elbow and
shoulder points of the player during stroke execution.

Generally, a table tennis player prepares for the
consecutive stroke immediately after the execution of the
previous stroke. The preparation stage consists of the
movement of the player towards the anticipated incoming
ball pitch location and the backswing phase of the stroke.
This stage contains very less features that can be used for
stroke recognition. The next stage of the stroke begins post
ball-pitch on the table and it includes the forward stroke
phase until ball-contact with the racket and the follow
through post ball-contact, which continues approximately
till the ball pitches on the other side of the table. These two
phases of the stroke are distinct for different strokes and
hence provide a high density of features that are necessary
for stroke recognition. The final phase of the stroke is the
return to neutral position which does not contain any useful
features for our purpose. Therefore, video data collected in
the time duration between the pitch of the ball on the camera
side of the table and the pitch of the ball on the opposite
side provides sufficient features to carry out stroke
recognition. To automate this aspect of video data
capturing, we used two SW-420 digital vibration sensor
modules, one mounted on each side of the table.

3.2. Procedure and execution

The sensitivities of the vibration sensor modules
mounted on each side of the table were calibrated to detect
ball pitch on the respective side of the table without
producing any false positives or negatives. The camera was
set to record videos with an image resolution of width=1280
and height=720 at 60 frames per second (fps).

Data collection and labelling was automated based on the
stroke executed, dominant hand of the player in-frame, and
number of strokes executed. The vibrations sensors were
triggered by the pitching of the ball, providing the
opportunity to collect data at a rapid pace as the
professional players of the dataset carried on at their natural
rally pace, without having to change any aspect of their

game to aid the data collection process. The vibration
sensor on the player’s side of the table, when triggered,
initiated recording of the video, and the vibration sensor on
the other side, when triggered, stopped the recording of the
video. Thus, each video contained a player executing one
single stroke. The 11 strokes considered in our dataset were
topspin, block, push, flick and lob in both their forehand
and backhand variants, and forehand flat.

Data collection for each stroke was made as efficient as
possible by recording only the stroke action in the forward
stroke and follow through phases. The setup also eliminated
the need for manual labelling or trimming of the video data
collected. Blocks, pushes, lobs, and forehand flat were
collected by allowing the two players to have a continuous
free-flowing rally. This accelerated our process of data
collection for these strokes. For topspins and flicks, we
adopted the multi-ball approach of collecting data. This
approach involves an individual feeding table tennis balls
to a player on the opposite end of the table. Strokes are
executed by the player without any return from the opposite
side. This helped reduce the errors made by the player
executing the stroke and thus, accelerated our process of
data collection for technical strokes.

3.3. Dataset preparation and cleaning

Video data quality is oftentimes influenced by changes
in ambient lighting conditions. In the initial stages of
dataset collection, we experimented with different lighting
conditions and video editing for best results. Based on the
results of these experiments, we automated the process of
changing brightness and sharpness of each frame to the
most optimum values for pose estimation. This gave us
better results in our subsequent steps.

The data underwent a cleaning process where we
manually removed videos where the player had not
executed any stroke, or said player executed an
ambiguous/different stroke than the labelled stroke.

3.4. Data diversity

Generalisation is an important aspect for developing
scalable models. To recognize strokes executed by various
table tennis players, a diversity in the players of our training
set was necessary. Players were picked in a manner such
that there was a variety in age, height, dominant hand, and
years of experience playing table tennis. Diversity observed
in these features ensures a range of variation in the forward
stroke and follow through stages of a stroke, thus improving
the generalisation of the network.

Fig. 4 shows the variation in the age of table tennis
players included in the training dataset. The ages have a
distribution from 10 years all the way up to 32 years of age.
This provides an inherent variation in height as well. As the
distribution indicates, there are multiple players in the 16 to
22 years of age category. This is because a large variation



in height can be found in this age distribution owing to
different timings in growth spurts.

A conscious effort was made to include a diversity in the
years of experience each player has in our dataset. This
factor is almost always in direct correlation with the
perfection in execution of different strokes. This means that
the timing of each stroke, the speed of movement, and the
ROM (range of motion) will differ among players. Fig. 4
also shows the distribution of years of experience of the
players in the dataset, which varies from 4 to 17 years.
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Figure 4: Distribution of age and table tennis experience in
years of the players in our dataset.

4. Proposed method

4.1. Pose estimation

The collected video data has many varying factors such
as player height, player gender, racket color, table color,
and the general environment in which the video was
recorded. Extracting features that are as independent from
these factors as possible provides the potential to make
accurate predictions in previously unseen or largely varying
environments. Hence, we make use of two-dimensional
(2D) human-body pose estimation to extract the most
relevant features.

The only relevant moving parts in a given video sequence
are the parts of the body of the player in reference. Using
2D pose estimation on each frame of a video sequence, we
obtain a skeleton of the player’s position at each time step.
This effectively provides us with a trend in motion of the
table tennis player across all the frames of a given video.
As an initial step, a human detection algorithm is run to
minimize computation costs for pose estimation. To
perform this, we have used Single Shot Multibox Detector
(SSD) [8] to help identify the position of the table tennis
player as quickly as possible with a fairly high accuracy.
Once the player’s position has been localised, only this
particular part of the frame is then passed through the High-
Resolution Net (HRNet) [9] model to finally give us the
player’s pose in the corresponding frame.

4.2. Data preparation

Features extracted from each frame via pose estimation
tend to be noisy in nature. Table tennis strokes executed by
players are very quick and hence, result in slightly blurred
frames in a video. This results in pose estimation mistaking
different parts of the body, jittery joint localization, as well
as swapping of right and left joints for certain parts of the
body. To minimize this noise in the data, a Savitzky-Golay
filter [10] was used. This is discussed further in section 5.3.
In order to find the most suitable sample length to include
as well as the most suitable order of the polynomial used to
fit the samples, we mapped the extracted features onto a
corresponding player over multiple test videos to look for
acceptable noise reduction. It was found that the most
suitable window length for the filter was 13 and the most
suitable order of the polynomial was 2 (Eq. 1).
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Once smoothening of the data was accomplished, data
collected from left handers was prepared to be input into
our model. To simplify our further stroke recognition
models, we used only the temporal pose data of right
handed players and not left handed. To be able to input left
handed players’ data, the coordinates were flipped along the
x-axis by subtracting the original x-coordinate from the
width of the video resolution. To verify our results, we
flipped each frame of a left handed players’ video along the
horizontal axis and mapped the new coordinates onto each
frame.

Normalizing the input data i.e., the X and Y coordinates
of the pose estimation output with respect to the video
resolution, provided us with poor results. Hence, no
normalization was done prior to routing the pose estimation
data obtained from HRNet into our classification model.

4.3. Stroke recognition

In table tennis, every player has a different technique to
execute certain strokes. Despite this variation, the four
points of the body that show similar trends in motion
between players executing the same stroke are the wrist,
elbow, and the two shoulders. These four points of the body
are the most necessary features in identifying a stroke being
played. Thus, from the pose estimation data obtained from
each video, we took the smoothened coordinates of these 4
joints (X, y coordinates for each joint) resulting in 8 features
per time step.

Since input time steps vary highly with different speeds
in stroke execution, we chose 100 time steps as our standard
input time step size. Each of these time steps had 8 features



that consisted of the coordinates of the 4 joints. In the event
that the input time series data had fewer than 100 time steps,
the input sequence was padded with zeros. This input
sequence consisting of 100 time steps corresponding to a
stroke X was fed into stroke recognition models which then
classified it as X.

The methods discussed in sections 4.4 and 4.5 use a
training-validation split of 95%-5% of the dataset collected.

4.4. Machine learning approach

Our dataset consists of multiple videos, all of 100 time
steps and 8 features per time step. To input this data into a
machine learning model, we first flattened this data making
it 800 (100x8) features per video in the dataset. The
flattened representation eliminates the temporal dimension
of the pose estimation data. This data was then fit using
different machine learning models adopting different
algorithms. Tweaking the hyperparameters for each model,
we present the best results obtained in Tab. 3.

Model Validation
Accuracy
(%)
1 Random Forest 96.20
(trees=21)
2 K-Nearest Neighbours 92.40
(k=3)
3 Decision Tree 90.32

(max depth=15)

4 | XGBoost - Random Forest 91.68

5 | Support Vector Machine 98.37
(SVM)

(RBF kernel, c=800)

6 XGBoost 98.10

Table 3: Comparison of machine learning models.

We tested and compared multiple machine learning
models, tweaking their hyperparameters to obtain optimal
training and validation results. Using the Random Forest
model with more number of trees led to overfitting. The
best results were obtained when the number of trees in the
model were limited to 21. The KNN (K-Nearest
Neighbours) model with k=3 provided the best results.
Increasing this k value resulted in decreasing accuracy,
hence a low k value was chosen. With a decision tree model,
when the depth of the tree was not limited, it overfit onto
the training data. Decreasing the depth yielded lower
accuracies. A max depth of 15 for the decision tree model
provided the best training and validation results, although
the variance was quite high. Using an XGBoost model with
Random Forest produced poorer results than an XGBoost
without using Random Forest. A multi-class Support
Vector Machine (SVM) model using the Radial Basis
Function (RBF) kernel was also used to classify the strokes.

A one-vs-rest approach was adopted, and the normalization
constant with the value ¢=800 yielded the best validation
accuracy.

Hence, we conclude that the SVM model yields the best
results since we obtained accuracies with lower variance
and an acceptable bias.

4.5. Deep learning approach

In our deep learning approach, we use the data obtained
as time series data for each video. The 100-frame input was
fed into a neural network model that then classified the
input stroke into one of eleven classes. Here, we compare 3
main architectures for time series analysis, an LSTM model
[11], a TCN model [12], and a combined TCN + LSTM
model and the overview as presented in Tab. 4. Regardless
of the main architecture, the last two layers always
consisted of a fully connected layer with a ReLU activation,
followed by a fully connected layer with a Softmax
activation for classification.

Model LSTM | TCN+LSTM | TCN
Parameters 303,259 353,243 206,299
(Trainable)

Validation 98.46 99.37 99.37
Accuracy (%)
Inference Time 2.12 2.61 0.79
(s) [per 20000
strokes]

Table 4: Comparison of deep learning models. The inference
time is evaluated using an NVIDIA RTX 3070 GPU with
8GB VRAM.

Using only LSTM layers, a high bias and high variance
in the training and validation accuracies were obtained. The
best LSTM based model yielded validation accuracy of
96.43% when trained for 94 epochs. It was also observed
from the loss curves of these LSTM models that they were
sensitive to outliers in data. We experimented with models
that adopted both, LSTM and TCN network architectures.
A TCN was used to convolve the initial input data to fewer
time steps comprising a higher number of features before
propagating it through an LSTM network. The best TCN +
LSTM model produced a maximum validation accuracy of
99.37% when trained for 93 epochs. However, the two
above implementations using LSTM layers involved a large
number of trainable parameters, higher training time per
epoch, and greater inference time.

Temporal convolutions have been shown to outperform
RNNs and LSTMs [13]. Hence, we experimented with
models consisting of only temporal convolutional layers.
As shown in Fig. 5, the 100-frame input is fed into a single
temporal convolutional layer followed by a layer
normalization. As mentioned in [14], layer normalization is
most suitable for recurrent neural networks. However, here
we found that layer normalization helps improve training
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Figure 5: TCN model architecture. k — kernel size, s — stride.

even with temporal convolutional networks. Using batch
normalization preceded by convolutions yielded sub-par
results in terms of validation accuracy. This layer
normalization is then followed by multiple ReLU-activated
temporal convolutional layers and an intermediate layer
normalization. These features were then flattened and
propagated to a fully connected dense layer. Finally, the last
layer of our model is responsible for classifying the input
stroke into one of the 11 classes. This TCN based model
provided the best accuracy of 99.37% on the validation set
when trained for 99 epochs. The model used approximately
two thirds of the trainable parameters and predicts in less
than half the inference time as compared to the previously
discussed models.

5. Experiments on TCN model

The temporality of the pose estimation data being in its
own independent dimension is not necessary for the
purpose of stroke classification. This is supported by the
fact that machine learning based models achieved high
accuracies on flattened data as explained in section 4.4.
However, deep learning approaches discussed in section 4.5
use the pose estimation data with a dedicated temporal
dimension and show an improvement in validation
accuracy as well as the generalisation of the model.
Additionally, the temporal dimension is very essential for
stroke analysis which is discussed under future scope of our
work in section 7. Hence, further experiments were
conducted using the deep learning based TCN model.

5.1. COCO vs MPII

Pose estimation is the first step in our task of stroke
recognition. To ensure robust classification models, we
experimented with pose estimation models trained on
different pose estimation datasets. This was done by

comparing the quality of pose estimation outputs for table
tennis video data obtained from models trained on the
COCO dataset [15], and the MPII dataset [16]. The HRNet
[9] human pose estimation model was used for these
comparisons.

It was found that the HRNet model trained on the COCO
dataset, coupled with our TCN classification model,
performed the best with a validation accuracy of 99.37%.
On the other hand, the HRNet model trained on the MPII
dataset, coupled with the same TCN classification model,
performed worse with a validation accuracy of 82.36%. We
observed that using the MPII dataset, the model has a
training and validation accuracy of 80% at the 21st epoch.
After this point, the training accuracy continues to steadily
increase while the validation accuracy remains at 80-82%,
resulting in high variance in the results.

5.2. Generalisation

Generalisation is of profound importance when it comes
to sports analysis tasks. The measure of a model’s
scalability is through evaluation of its performance on data
it has not been trained upon. In our case, we tested the
model on the strokes executed by a player who has not been
a part of the training dataset. In this way, we evaluate the
behaviour of the TCN model during real world application
of classifying strokes executed by a variety of players.

The strokes executed by a male right handed player with
13 years of table tennis experience (Player A) was
considered first for the generalisation test. The TCN model
provided an overall accuracy of 98.72% considering all 11
strokes. The confusion matrix for the predictions is depicted
in Fig. 6. The player was observed to have well defined
stroke actions which matched the general trend in motion
for corresponding strokes from the dataset of professional
players that the TCN model was trained on. This is inferred



from the high generalisation accuracy for each stroke
achieved by the model on his dataset.
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Figure 6: Confusion matrix of generalisation results for
player A.

Similar generalisation test was conducted on the strokes
data of a female left handed player with 10 years of
experience (Player B) in table tennis. An overall accuracy
of 88.81% accuracy was obtained from the TCN model.
The confusion matrix of the predictions in Fig. 7(a) shows
that the accuracy for her forehand push stroke was only
38%. It was observed that the player had an unorthodox
forehand push action which did not agree with the general
trend in motion of the same stroke from our dataset. This is
a problem which could be commonly encountered in the
sport of table tennis. Therefore, to make our model adapt,
we accommodated these previously unseen strokes into the
learning corpus. We trained the TCN model further on the
data of all the 11 strokes of the player for 2 epochs, and
found that the new overall accuracy was 99.22% for the
same player. The confusion matrix for the model
predictions is depicted in Fig. 7(b).

-Backhand Topspin
-Backhand Push
-Backhand Block
-Backhand Flick
-Backhand Lob

-Push
-Flick
-Lob
Flat

o
o
o
(=4
o
]
©
o
o
=)

0.019

o

Topspin 0.019

0 00063 0 0.051 0.00630.0063 0 0.0063

o

Backhand Topspin

Push 0 0 038 o 0 0043 0 0O

Backhand Push 0 0022 o0

o
o
o
S
ol
2

Block 0.0051

Backhand Block 0 0011 0

Flick o o0 o0 6

Backhand Flick 0 018 0
Lob © 0 0
-0.2

Backhand Lob 0 0 0 0.0056 L]

Flat 017 © 0 0 0017 0 0 0 0.0056
-0.0
£
oy = 5 ~
S 3 S i) .
] a @ o d
° o ° ° °
c = c c c
£ £ $ s s $
% ~ = ) -~ N ~ x ~
aQ Q [ O g O o [} a o} =
) ° S © ©° @© = @© e © ®©
2 2 & o @ o ik a I a & "
Topspin 0 0 0 0019 O 0 0 0 0 0019

Backhand Topspin
Push

Backhand Push
Block

Backhand Block
Flick 0.4

Backhand Flick
Lob

-0.2

Backhand Lob

Flat

-0.0

Figure 7(a) and 7(b): Confusion matrix of results for player
B before training (a) and after training for 2 epochs (b).

5.3. Effects of Savgol filtering

Savgol filtering proved effective in reducing jittery pose
estimation. This was evident upon visual inspection of pose
estimation data mapped onto the video clips. One such
example is shown in Fig. 8. The model shown in Fig. 5 was
trained from scratch on the unfiltered pose estimation data
obtained from the dataset with the same training-validation
split of 95%-5%. A validation accuracy of 97.74% was



obtained. Hence, Savgol filtering on the pose estimation
data contributes to the improvement of validation accuracy
of the model.

Figure 8: Pose estimation output on an intermediate frame of
a forehand topspin without Savgol filtering (left) and
with Savgol filtering(right).

6. Results and discussions

Our proposed TCN model achieves 99.37% average
accuracy over the validation data with a dataset split of 95%
for training and 5% for validation. As shown in Tab. 5, the
model is capable of classifying each stroke executed with a
high degree of accuracy leaving less room for false
positives.

Class Validation
Accuracy (%)
1 Forehand Topspin 99.01
2 Backhand Topspin 100.00
3 Forehand Push 98.07
4 Backhand Push 100.00
5 Forehand Block 99.01
6 Backhand Block 97.03
7 Forehand Flick 100.00
8 Backhand Flick 100.00
9 Forehand Lob 100.00
10 Backhand Lob 100.00
11 Forehand Flat 100.00

Table 5: Stroke-wise validation accuracy of the TCN model.

As mentioned in 5.2, a lower accuracy in classification
of a particular stroke for a particular player can be attributed
to an unorthodox/unconventional way of playing that
particular stroke, since our model learnt the general trend of
each stroke’s execution across 14 players. This gives rise to
the discussion of stroke error detection where a player’s
stroke can be compared with another player’s stroke,
providing differences/mismatches between the two players’
strokes. Pertaining to a single player executing a single
stroke continuously during multi-ball training, dips in
confidence of the stroke classification could imply that the
executed strokes in this time interval deviated from the
player’s general trend. Insights obtained from these

inferences can further be used for performance monitoring
during training, which may not have been obtained by
conventional training methods.

7. Conclusion and future work

A novel method for collecting video data pertaining to
table tennis has been developed for the purpose of stroke
recognition. A setup with minimal interference with the
gameplay and automated labelling of the feature-rich video
snippets are the key features in our data collection process.
The characteristic data for stroke recognition in terms of
wrist, elbow and shoulder joints was extracted from the data
using two-dimensional human pose estimation. Various
machine learning and deep learning based models have
been compared and benchmarked based on their
performance on the pose estimation data. Further, the
generalisation aspect of the TCN model has also been
discussed.

The temporal aspect of each stroke is of utmost
importance in order to analyse the quality of a stroke. Our
work can be further improved upon by automating
advanced methods of analysis. As discussed by Zhou Jun
[17], there are 3 stages to each executed stroke. Event
detection can be performed and the quality of each stage in
terms of quickness and finesse can be evaluated, and
inferences can be drawn. Another aspect of stroke analysis
is to correct an individual player’s stroke by comparing it
to another world class/professional player using a neural
network, providing a detailed level of correction pertaining
to each stage of the stroke.

The sparingly intrusive setup for data collection as
described in section 3.1, with a few modifications such as
mounting the vibration sensors under the table, can be used
for match analysis in competitions. Statistics for the
performance of a player during a game can be provided in
terms of the type and number of strokes executed, strokes
which helped the player earn points and also the erroneous
strokes due to which the player lost points. A player profile
can be generated from the data, listing situation based as
well as overall strengths and weaknesses of each player.

Lastly, lack of analytics in table tennis tends to inhibit
the popularity and public outreach of such a highly
competitive and interesting sport. An automated system
that not only provides surface level analytics to an audience
in a user-friendly manner, but also provides in-depth
analytics to active professional players and coaches, can
help boost the popularity of table tennis.
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