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Abstract

Tracking players in sports videos is commonly done

in a tracking-by-detection framework, first detecting play-

ers in each frame, and then performing association over

time. While for some sports tracking players is sufficient

for game analysis, sports like hockey, tennis and polo may

require additional detections, that include the object the

player is holding (e.g. racket, stick). The baseline so-

lution for this problem involves detecting these objects as

separate classes, and matching them to player detections

based on the intersection over union (IoU). This approach,

however, leads to poor matching performance in crowded

situations, as it does not model the relationship between

players and objects. In this paper, we propose a sim-

ple yet efficient way to detect and match players and re-

lated objects at once without extra cost, by considering

an implicit association for prediction of multiple objects

through the same proposal box. We evaluate the method

on a dataset of broadcast ice hockey videos, and also a

new public dataset we introduce called COCO +Torso. On

the ice hockey dataset, the proposed method boosts match-

ing performance from 57.1% to 81.4%, while also improv-

ing the meanAP of player+stick detections from 68.4% to

88.3%. On the COCO +Torso dataset, we see matching im-

proving from 47.9% to 65.2%. The COCO +Torso dataset,

code and pre-trained models will be released at https:

//github.com/foreverYoungGitHub/detect-

and-match-related-objects.

1. Introduction

Detecting players is the foundation of automated player

tracking in sport games [18, 12, 4], in a tracking-by-

detection framework [2, 21, 20]. The detection task nor-

mally focuses on finding bounding boxes around players

and, for some applications, a box around the ball. For sports

like soccer or basketball, these detections can be sufficient

for game analysis and estimation of players’ physical met-

rics [15]. In sports like hockey, polo and tennis, where play-

ers use a tool (e.g. a racket or a hockey stick), these detec-

tions are not sufficient for all applications. For these sports,

it is also important to detect additional bounding boxes, ei-

ther around the tools, or a larger bounding box around the

player with the tool, and make the association to the player

wielding it.

As an example, we consider a tracking system for

hockey. For the application of classifying the type of a

shot, the hockey stick needs to be tracked, and associated

with the player holding it. In order to estimate the player’s

pose and stick location, a bounding box containing both

the player and the stick can be used. On the other hand,

for player identification (recognizing jersey numbers, or ex-

tracting Re-ID features), a bounding box only detecting the

player is more appropriate. During crowded scenes (e.g.

players fighting over a puck), players are close to each other,

and the extended bounding box can contain part of another

player, degrading performance for player identification.

The naive solution for this problem is to detect these

boxes independently. This requires associating the regular

and extended bounding boxes for the player, for instance

using the Hungarian method. In crowded scenes, heuris-

tics such maximizing intersection-over-union (IoU) or min-

imizing visual feature distance are not reliable for matching.

Therefore, it is appealing to solve the problem of detecting

the related boxes and matching them together at the same

time in an end-to-end framework.

In this work, we propose a robust yet efficient method

to extract both types of bounding boxes at the same time,

where the association between them is implicit. This im-

plicit association comes at no extra cost, making it appeal-

ing for real-time tracking systems. Furthermore, the model

can be trained without annotating the extended boxes in ev-

ery image, thereby reducing the overall annotation effort.

The main contributions for this paper are:

• We propose a method to simultaneously detect and

match related bounding boxes. The related objects are

naturally grouped by implicit association without ex-

tra cost. This includes the introduction of SetNMS to

suppress duplicate sets of detections and to keep more

possible detection sets in crowded scenes.



• We validate our proposed method on a broadcast ice

hockey dataset and a public dataset we introduce called

COCO +Torso dataset. Compared with the baseline

model, the proposed methods performs better in both

detection and matching for these datasets. Based on

the ablation study, the proposed method is particularly

suited for applications with highly overlapped associ-

ations.

2. Related work

2.1. Object Detection in Sports

Object detection has been widely used in automated

tracking systems for sports [18, 12, 4, 19]. The task poses

additional challenges to generic object detection, including

camera distortion and fast movement (for broadcast videos),

as well as frequent crowded scenes. Thaler et al. [17] and

Faulkner et al. [7] adopt HOG and Haar features to detect

and classify players in a sliding window for soccer and foot-

ball. Acuna [1] introduces an end-to-end CNN-based object

detector in the basketball. In order to improve the detection

result for fisheye cameras in soccer, Cioppa et al. [4] ap-

plies a single stage object detector on cropped and rotated

image patches.

2.2. Object Detection with Multiple Predictions

Object detection with multiple predictions is a new ap-

proach for end-to-end CNN-based object detectors. The

methods proposed in the literature are applied to two stage

object detectors, with the goal of improving detector perfor-

mance in crowded scenes. Chu et al. [3] introduces multiple

instance detection head to improve the object detection in

the extremely high overlap scenario by predicting multiple

unmatched objects from single proposal box. Zhang et al.

[22] and Huang et al. [11] propose paired-RPN to predict

the matched human visible part and human body with two

proposal boxes to improve the pedestrian detection in crowd

scenes. It is worth noting that these methods were designed

to improve human detection in the crowded scenes, rather

than jointly solving the detection and matching problems.

3. Framework

In order to detect and match related objects, we design

the detector to output multiple predictions from a single pro-

posal box, as shown in Figure 1.

During training, we introduce a specific loss function to

jointly optimize the prediction of multiple associated ob-

jects from a single prediction box. For inference, we intro-

duce the SetNMS procedure to suppress duplicated sets of

detections.

Detection
Heads

Score

Player Box
Player+Stick Box

SetNMS

ClassDecoder

Figure 1: Illustration of the proposed network architec-

ture for one proposal multiple prediction, applied to the ice

hockey application. The arrows represent the data flow in

the network: the red arrows indicate the loss functions ap-

plied to the networks during training, while the blue arrows

shows the post-processing operations in inference.

3.1. Detection Head Design for One Proposal Mul­
tiple Predictions

The loss functions in modern end-to-end detectors are

based on proposal boxes: given a set of ground truth bound-

ing boxes for an image, these are first matched to proposed

boxes and then each proposal box is refined to its box lo-

cation and target label. Besides not modeling relationships

between boxes that belong to the same group, this creates

another problem: each proposed box is forced to correspond

to a single ground truth box, which creates an issue when

multiple ground truth boxes are too close to each other. This

is a common situation in the problems at hand. For exam-

ple, the box for a player and for the player holding the stick

normally have high overlap.

We formulate the detection problem to jointly predict

a set of related objects, such that the association between

the objects is implicit, addressing both the issue of asso-

ciating bounding boxes, and the problem of training a de-

tector when multiple ground-truth boxes overlap. We con-

sider bbase = {xbase, ybase, wbase, hbase} the base bounding

box (e.g. for the player), and a sequence of N associ-

ated bounding boxes Bextra = {bi|1 ≤ i ≤ N}. We

model the associated bounding boxes as offsets from the

base box. That is, for the extra box i, the model esti-

mates {xi
offset, y

i
offset, w

i
offset, h

i
offset}, and the bounding box

is specified as bi = {xbase + xi
offset, ybase + yioffset, wbase +

wi
offset, hbase + hi

offset}. Finally, given an input image X , the

detector estimates a set of paired (matched) boxes {bbase} ∪
Bextra, together with a class c (for the whole set) and and an

objectness score s.

This formulation assumes that the related objects can be

predicted from the base object. Based on this assumption,

the proposal boxes are first matched to the objects in the

base class, and the related objects are matched to the same



proposal boxes. Therefore, the same proposal box is used

for the group of related objects. Since the predicted ob-

jects are already matched, there is only one predicted score

and class for each matched group. Additionally, the prob-

lem for high overlapped ground truth bounding boxes (for

objects on the same group) is solved, as the related objects

share the same proposal box, instead of competing for it.

It should be noticed that, even though the detection head

we propose is designed on top of single-stage detectors like

Yolo/FPN, it can be easily extended to other two stage de-

tector frameworks like Faster R-CNN and Mask R-CNN.

3.2. Loss Functions

We consider the following loss function:

Ltotal = Lcls + Lbase
loc +

n
∑

i=1

(Li
loc + Li

constraint) (1)

Where Lcls is the classification loss for the set. In this

work we use the focal loss [13]; Lbase
loc and Li

loc are the local-

ization losses for the base box and extra boxes, respectively,

that are defined below. Finally, Li
constraint is a term to repre-

sent the relationship between boxes from the base classes

and the related classes i. This is an optional term, that we

can use to model domain knowledge for a particular appli-

cation, as described below and in Equation 3.

For the localization losses, we use the Distance-IoU Loss

[23], defined as follows:

Lloc = 1− IoU +
||c− cgt||

2

d2
(2)

Where IoU indicate the intersection-over-union of the pre-

dicted and ground-truth boxes, c and cgt are the center points

of the predicted and GT boxes (respectively), d is the diago-

nal length of the smallest enclosing box that covers the two

boxes.

We also model an optional constraint loss, that can be

used to model relationships between base and extra bound-

ing boxes. In particular, we consider a term to encourage

that an extra bounding box bi be strictly larger than the base

bounding bbase. This term is appropriate for situations where

the extra bounding boxes are intended to always enclose the

base bounding box. This loss term is defined by adding a

penalty if the extra bounding box does not cover the base

bounding box. We use the following loss for the x compo-

nent:

Li
constraint x =

{

smoothL1(xbase − xi), if xi > xbase

0, otherwise
(3)

Where smoothL1 is the Smooth L1 loss defined in [8]. We

use equivalent losses for y, x+w and y+ h, penalizing the

following conditions: yi > ybase, xi + wi < xbase + wbase,

and yi + hi < ybase + hbase.

Algorithm 1 SetNMS

Input

B =
{{

b11, ..., b
C
1

}

, ...,
{

b1N , ..., bCN
}}

: boxes.

S = {s1, ..., sN}: scores.

C = {c1, ..., cN}: classes.

ΩIoU : IoU threshold for SetNMS.

1: procedure SETNMS(B,S,C,ΩIoU )

2: R← {}
3: while B 6= ∅ do

4: Let T be the highest scored group

5: Remove T from B, S and C, add it to R

6: for
{

b1i , ..., b
C
i

}

∈ B do

7: if ci 6= cT then Continue

8: IoUset ←
{

IoU(b1T , b
1
i ), ..., IoU(bCT , b

C
i )

}

9: if min(IoUset) > ΩIoU then

10: Remove i-th element from B, S, C
return R

3.3. SetNMS

During inference time, detectors normally use a non-

maximum suppression (NMS) algorithm to avoid dupli-

cated predictions to the same object. In the method above,

we predict a set of matched boxes for each proposal, and

therefore we need to adapt this procedure to work with a set

of predictions - we name this process SetNMS.

The SetNMS algorithm is described in Algorithm 1.

Since the predicted matched group shares the same clas-

sification result and confidence score, SetNMS suppresses

false positive predictions by taking all the matched boxes

in the group into consideration rather than taking one pre-

dicted box. Only all the matched boxes in the group that

have high overlap with the boxes in the kept group will be

considered as false positive predictions and be removed.

Since the SetNMS compares the ensemble group of the

matched boxes rather than a single box, it also keeps more

reliable boxes in the crowd scene and more robust for the

whole ensemble group compared to the original NMS.

4. Experiments

In this section, we discuss our evaluation protocol, and

discuss the results of our approach on our ice hockey dataset

and the COCO +Torso dataset.

4.1. Datasets and Evaluation Metric

Ice hockey dataset is a dataset for ice hockey player de-

tection in broadcast videos. The images are sampled from

multiple ice hockey leagues including the National Hockey

League (NHL) and minor leagues. Figure 2 shows two im-

ages of this dataset. Two classes are considered: “player” -



(a) Ice Hockey (b) COCO +Torso (c) COCO +Torso

Figure 2: Samples from the Ice hockey, COCO +Torso and COCO +TorsoS datasets. The blue boxes indicate the detections

for the base class, which is the player class in ice hockey dataset and person class in COCO +Torso dataset, while the green

boxes are the bounding boxes for the related classes, which is the player+stick class in ice hockey dataset and torso class in

COCO +Torso dataset.

a tight bounding box around the player, and “player+stick”

- a bounding box that includes the player and the hockey

stick. Only part of the images contains the “player+stick”

label. This dataset contains 15095 images in the training

set and 1886 images in the validation set. Of these, only

3286 images in the training set and 1634 images in the val-

idation set have the annotation for the “player+stick” class.

For the samples where the player+stick annotation is not

available, we simply remove the localization loss for the

related classes in Equation 1. Note that we always con-

sider the constraint loss, that drives the model to predict

player+stick bounding boxes that are always larger than the

player bounding boxes, even when we do not have annota-

tions for player+stick. We benchmark the proposed method

to predict both classes.

COCO +Torso dataset is a public dataset introduced

in this work, based on the COCO[14] and DensePose[9]

datasets. The DensePose dataset is mainly used to pre-

dict dense human body joints and contains 3 labels: human

bounding boxes, human body joints and human densepose.

Based on these three labels, we generated the COCO +Torso

dataset featuring detections for two classes: a “person” class

with their matched “torso”. The human body joints are used

to filter the human bounding boxes which does not contains

the any torso joints annotation, while the DensePose anno-

tation is used to generate the torso bounding boxes. Two

sample images in this dataset are shown in Figure 2 (b). The

training and validation sets for COCO +Torso dataset are

split based on its original split set in the DensePose dataset.

The final COCO +Torso dataset contains 26437 and 5984

images in training and validation set respectively.

COCO +TorsoS dataset In order to simplify the COCO

person-torso detection and matching task, we also sample

an easier dataset from COCO +Torso dataset and named

it as COCO +TorsoS dataset. This simplified dataset only

contains the images which all the persons in the image have

the matched torso bounding boxes. Two sample images in

this dataset is shown in Figure 2 (c). After sampling, the

training and validation sets for the COCO +TorsoS dataset

contain 13483 and 2215 images separately.

Evaluation Metric. Since we consider a joint detec-

tion and matching task, the standard log-average miss rate

(MR) [5] and average precision (AP .50) [6] are adopted

as detection evaluation metrics for each class. The MR

is computed in the false positive per image (FPPI) with

a range of [10−2, 100](MR−2), while the AP 0.5 calcu-

lates the average precision with IoU threshold 0.5 with

a range of [0, 1]. In order to evaluate model perfor-

mance in object matching, we also extend the log-average

miss rate and average precision and introduce the match-

ing log-average miss rate (MRmatch) and average preci-

sion (AP .50
match). Compared with the standard MR and

AP .50, in MRmatch and AP .50
match, the true positive (TP ) is

counted only if the IoU score for all the objects in the group

is higher than IoU threshold. The range of AP .50
match is in

[0,min(AP .50
1 , ..., AP .50

C )], while the range of MRmatch

is in [max(MR1, ...,MRC), 100], where C is the classes

for the grouped objects.



Dataset Method AP 0.5(↑) MR−2(↓)
Player Player+Stick Match Player Player+Stick Match

Ice Hockey

Yolo Player Only 98.9 1.6

Yolo 98.5 68.4 57.1 1.9 52 63.1

Yolo+MP 99 88.3 81.4 1.5 20.8 33.2

Person Torso Match Person Torso Match

COCO +Torso

Yolo 72.7 67.6 47.9 34.2 45.6 71.8

Yolo+MP 74.7 66.1 65.2 29.2 48.5 52.1

FPN 71 67.7 45.9 35.7 46.1 73.3

FPN+MP 72.7 64.4 63.3 30.7 48.9 52.3

COCO +TorsoS

Yolo 97.1 90.5 69.3 4.6 15 51.1

Yolo+MP 98.1 87.3 86.1 2.7 21.5 24.1

FPN 96.3 91.2 68.3 5.5 13.8 51.2

FPN+MP 97.7 87.7 87.1 3.1 21.5 22.8

Table 1: Detection and matching results on the three datasets. +MP indicates using the detection head and postprocessing

methods proposed in this paper.

4.2. Experimental protocol

In these experiments, we adopt the state-of-the-art sin-

gle stage object detector pretrained at COCO dataset [14]

as our baseline. The feature extractor in the baseline mod-

els is ResNet-18[10], while YOLOv3[16] and FPN[13] are

used as the detection head in the baseline models. It should

be noted that there is only 1 anchor box for each proposal

region in the anchor-based single stage detector. The model

input size for ice hockey dataset is 1280x720, while the in-

put size for COCO +Torso datasets is 320x320.

The same training strategy is applied for all experiments:

we first train only the detection head for 60 epochs, using

Adam with learning rate 4 × 10−4 and then fine-tune the

whole network for 250 epochs using Adam with learning

rate 10−4. During the training, we adopt center sampling

and scale matching to match the proposal boxes with ground

truth bounding box. We also use standard data augmenta-

tion methods: random resizing, cropping, flipping, random

contrast and saturation. We do not employ multi-scale pre-

dictions during training or testing.

4.3. Results

Ice hockey dataset: We consider two baselines for this

dataset: a detector trained only for the player class and

a detector trained on the full dataset, but treating the two

classes as separate. For the latter, we match the player and

player+stick predictions at inference time using the Hun-

garian algorithm, based on the IoU and confidence score

between boxes of the two classes. We compare these base-

lines to the proposed method that outputs detections for both

classes from the same proposal, which performs the match-

ing implicitly. The results are shown in Table 1. We can

see that the baseline detector achieves 98.9 AP in player

class when it is only trained for this class. When the ex-

tra player+stick class is introduced to the baseline detec-

tor, the APplayer drops 0.4 and the APplayer+stick only

achieves 68.4. We hypothesize that this worse performance

is caused by the the two classes competing for the same pro-

posal boxes in situations with high overlap between the two

classes. The proposed detector solves this issue by design,

and achieve similar accuracy for the Player class, while sig-

nificantly boosting performance for the Player+stick class

to 88.3%.

We notice a more significant difference on the the match-

ing performance (APmatch and MRmatch). The APmatch

for the baseline method is 57.1 which is 83.4% of its upper

bound (AP for the player+stick class), while the APmatch

for the proposed detector achieves 81.4%, which is the

92.2% of its upper bound. The MRmatch for the proposed

detector is also 1.90 times lower than the baseline detector

as well, showing that the proposed detector the best result

in all detection and matching evaluation metrics.

COCO +Torso dataset: In order to check the gener-

alization of our proposed method on non-sport tasks, we

trained and evaluated the proposed framework in the COCO

+Torso dataset to detect the bounding boxes for the person

and torso classes and matched the corresponding boxes for

each person. The result for this experiment is shown in Ta-

ble 1. Compared with the baseline models, the proposed de-

tector with one proposal multiple prediction head improves

APperson by 1-2 percent points, but decreases APtorso

by 1.5-3.5 percent points. We notice, however, a signifi-

cant improvement in matching performance: APmatch has

1.36 and 1.24 improvement for COCO +Torso and COCO

+TorsoS dataset respectively. This result shows that the

proposed framework is suitable for applications where the

matching task is important.

Ablation Study on Proposal Boxes Matching: The re-



hockey COCO +Torso COCO +TorsoS
dataset

0.0

0.2

0.4

0.6

0.8

1.0

io
u

Figure 3: Density distribution for IoU scores between the

base objects and related objects among ice hockey, COCO

+Torso and COCO +TorsoS dataset.

sults from Table 1 show that the proposed method achieves

better results on base class detection and group matching

in all experiments. However, while the proposed model

trained with ice hockey dataset has significant improvement

in the related classes, the same model trained on the COCO

+Torso dataset performs worse than the regular detector for

the extra “Torso” class. In order to obtain insights on which

situation the proposed framework works better, we con-

ducted two ablation studies: we first analyze the distribu-

tion of IoU scores between base and extra bounding boxes

(Figure 3). In a second experiment, we compute the aver-

age number of proposal boxes matches per image, among

all feature maps (Figure 4).

Figure 3 shows the distribution of the IoU scores for

matched objects in the three datasets (e.g. the IoU between

a player and the associated box of player+stick). We no-

tice a very different distribution for the ice hockey dataset,

where the overlap between the two classes is very high

(mean of 0.94), whereas for the COCO +Torso datasets, we

see a mean around 0.5 (0.46 for COCO +TorsoS). Since the

IoU score of paired objects is only 0.5 in the COCO +Torso

dataset, in the regular detector, the groundtruth boxes can
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Figure 4: The number of proposal boxes matched per image

in each feature map for the three datasets. The x axis is the

stride between the feature map and original input size, while

the y axis is the number of matched proposal boxes for each

class.

Dataset Method AP 0.5(↑)
Player +Stick Match

Ice Hockey

NMS 98.9 88.1 81.2

JointNMS[22] 98.8 88 81

SetNMS 99 88.3 81.4

Person Torso Match

COCO

+Torso

NMS 76.4 66.7 66.5

JointNMS[22] 76.3 66.6 65.3

SetNMS 74.7 66.1 65.2

COCO

+TorsoS

NMS 98.4 87 85.7

JointNMS[22] 98.2 86.9 85.4

SetNMS 98.1 87.3 86.1

Table 2: Ablation studies on NMS methods for the one pro-

posal multiple prediction model.

be assigned with the suitable proposal boxes based on its

center and size. However, for ice hockey dataset, since

the matched objects are highly overlapped with each other,

these objects almost always need to compete for the same

proposal boxes in regular detector. Therefore, the proposed

method is particularly suited for tasks with high-overlap be-

tween the base bounding box and extra boxes.

Figure 4 shows the number of proposal box matches,

per feature map, in the three different resolutions consid-

ered by the detection heads (for stride s the feature map has

size h
s
× w

s
). The left plot (a) shows that the player and

player+stick tend to match to the proposal boxes located

in the same feature maps in ice hockey dataset. This in-

dicates that the same feature maps should contain the rich

information for both matched classes in this dataset. How-

ever, in COCO +Torso dataset, since the torso objects are

much smaller than the person objects, the paired objects are

matched to the proposal boxes in the different feature maps

in the regular detectors (plots (b) and (c)). In the proposed

method, the proposal boxes are matched to the bounding

box of the base objects, and its feature map may not be

suitable for the related matched objects. Therefore, the pro-

posed detector performs slightly worse in the torso classes

in COCO +Torso dataset. This reinforces the previous find-

ing that the proposed method is particularly suited for appli-

cations where the base and extra classes have high overlap.

Ablation Study on NMS methods: In order to validate

the proposed SetNMS, we conducted an ablation study with

three different NMS methods: (i) the baseline (denoted sim-

ply by NMS) considers performing NMS only with the IoU

score of the base class; (ii) JointNMS[22] removes group of

objects as long as objects in one class are overlapped; (iii)

the proposed SetNMS, which removes the group only if all

of objects in the group are overlapped with other groups.

The result of this comparison is shown in Table 2.

Based on its formulation, the proposed SetNMS should

keep the highly overlapped groups in a crowded scene,



but also introduce more false alarm groups with low con-

fidence scores. In Table 2, we see that the results for differ-

ent methods differ only by less than 1 percent point. Set-

NMS achieves the best result in all detection and match-

ing evaluation metrics for Ice Hockey dataset, while NMS

achieves the best result for COCO +Torso dataset. For

COCO +TorsoS dataset, NMS has better AP in person de-

tection while the best torso detection and objects match AP

is generated by SetNMS. This result indicates that when

the model is not confident about the predicting boxes, the

SetNMS actually performs worse than the normal NMS.

Therefore, the choice of the best NMS procedure can be

application-specific.

5. Conclusion

In this paper, we propose an efficient object detector that

can simultaneously detect and match player bounding boxes

and related bounding boxes (e.g. player holding a stick),

that can be used for applications where detecting just the

player is not sufficient. This method considers an implicit

association for the multiple predictions through the same

proposal box to detect and match the related objects without

extra cost. Our experiments show that this method is partic-

ularly suited for applications that require high matching ac-

curacy, and situations where the base and related bounding

boxes have high overlap.
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