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Abstract

Video analysis in tackle-collision based sports is highly

subjective and exposed to bias, which is inherent in human

observation, especially under time constraints. This lim-

itation of match analysis in tackle-collision based sports

can be seen as an opportunity for computer vision appli-

cations. Objectively tracking, detecting and recognising an

athlete’s movements and actions during match play from a

distance using video, along with our improved understand-

ing of injury aetiology and skill execution will enhance our

understanding how injury occurs, assist match day injury

management, reduce referee subjectivity. In this paper, we

present a system of objectively evaluating in-game tackle

risk in rugby union matches. First, a ball detection model is

trained using the You Only Look Once (YOLO) framework,

these detections are then tracked by a Kalman Filter (KF).

Following this, a separate YOLO model is used to detect

persons/players within a tackle segment and then the ball-

carrier and tackler are identified. Subsequently, we utilize

OpenPose to determine the pose of ball-carrier and tackle,

the relative pose of these is then used to evaluate the risk

of the tackle. We tested the system on a diverse collection

of rugby tackles and achieved an evaluation accuracy of

62.50%. These results will enable referees in tackle-contact

based sports to make more subjective decisions, ultimately

making these sports safer.

1. Introduction

The tackle is a physically and technically dynamic con-

test between two opposing players for territory and ball pos-

session. The tackle event is common in all tackle-contact

based sports, such as Rugby Union, Rugby Sevens, Rugby

League and American Football. During a tackle, the de-

Figure 1. Illustration of the tackle frame - highlighting the ball,

tackler and ball-carrier detection. The figure further displays the

key point estimates of both players (outline of skeleton) and esti-

mate of the head-centre of both players (red dot).

fending player(s), known as the tackler, attempts to im-

pede the attacker’s (the ball-carrier) progression towards the

goal-line and regain possession of the ball [15, 22, 6]. This

action is called tackling and is the main form of defence

in tackle-collision based sports. As a result, it is the most

frequently occurring contact event in tackle-collision based

sports and associated with player and team performance

[14, 3]. For example, in Rugby League, the tackle event

can occur up to 700 times in an 80-minute match [17]. At

the same time, the frequency of occurrence and technical-

physical nature of the tackle places both the ball-carrier and

tackler at high-risk of injury. In the Rugby Union, tackle

injuries have the highest injury incidence [34] - which may

cause the greatest number of days lost (severity) [2] and

carry a high injury burden (injury incidence rate × mean

days absent per injury)[33].

Head injuries during the tackle specifically, is a major

concern for these tackle collision-based sports. The over-

all incidence (injuries/1000 playing hours) of concussion in



the rugby union, rugby sevens and rugby league are 4.7[10]

, 8.3 [7] and 8.0-17.5 [9], respectively. Preventing these

head injuries will require a multi-faceted approach – under-

standing injury mechanisms and risk factors, driving player,

coach, referee and stakeholder education, advancing how

we train the tackle, and modifying the laws of the game. A

key risk factor for tackle head injuries is ball-carrier and

tackler technique (13-17) . Specifically, tacklers are not

moving from an upright to low body position, thereby in-

creasing the likelihood of head to head contact [31].

Recently, to nudge tacklers to modify their tackling tech-

nique and reduce their tackling height, World Rugby (WR),

rugby union’s governing body, have implemented stricter

rulings around high tackles and trialled a law change to

lower the height of a legal tackle, from above the line of

the shoulders to above the line of the armpit [23, 28]. Im-

plementing these law change injury prevention strategies is

highly reliant on referee decision-making, and in 2018, the

second season of stricter high tackle sanctioning, WR noted

intra-competition and inter-competition inconsistencies, es-

pecially when referees issued yellow and red cards. These

inconsistencies exposed WR to public criticism, which can

diminish the potential effectiveness of an injury preven-

tion initiative. In response and to improve consistency and

fairness, WR introduced the high tackle decision making

framework – a flow chart to assist match day officials in

sanctioning high-tackles [23]. The match day referee and

assistant referees can apply this decision making framework

in real-time or when reviewing video replays (in slow mo-

tion and from different angles). Referee decisions however,

are influenced by a number of factors such as decision-

making time, home advantage and crowd [27]. A system

that can objectively classify tackle head injury risk may as-

sist referees with their decision-making. Spectators, players

and coaches can also then view the decision-making process

of the referee.

In the world of rugby, the final referee rulings are based

on whether a tackle was legal or illegal. From a coaching

technical perspective, not all high-risk tackles are illegal.

However, they do influence the referee’s decision as they

are dangerous and prone to injury. According to an ana-

lyst with expertise and experience in rugby video analysis,

a high-risk tackle is defined as a tackle in which the heads

of the tackler and ball-carrier are in proximity [13]. These

are identified by the ball-carrier and tackler having the same

body position when contact is made (upright or low). On the

other hand, a low-risk tackle is defined as one whereby the

body positions differ. The risk is referred to any player in-

volved (overall) and not specific to the ball-carrier or tackler

[13].

Video footage plays an important role in the world of

rugby. Throughout the match, team doctors compile a video

analysis of concussion incidents - with the goal of prevent-

ing future concussive injuries [11]. Furthermore, television

match officials (TMOs) make use of video footage to assist

the referee in making a fair decision [25]. Therefore, the

aim of this paper is to explore computer vision solutions to

address an alternative strategy of concussion prevention (us-

ing in-game live video footage). The objective is to identify

a high and low-risk tackle which in future may aid coaches

in improved training tackle techniques and referees in gen-

erating an objective decision.

Video analysis plays a vital role in understanding injury

mechanisms and risk factors, and assisting medical proto-

cols (e.g., head injury assessment) [8, 12] and referee deci-

sion making (e.g., television match official reviewing dan-

gerous play). However, video analysis for tackle-collision

based sports still remains subjective. In this paper, we

present a method of automatic tackle risk assessment for

rugby union. This system automatically detects the ball,

ball-carrier and tackler and uses their relative pose to pre-

dict tackle risk as depicted in 5.

2. Related Works

There is seen to be a great opportunity in computer vi-

sion applications of capturing statistical data in sports. The

use of capturing data at a distance - without any contact,

allows for a non-invasive strategy whereby the actions of

the players are not influenced [20]. With the advantage of

tracking, detection and recognition - the understanding of

injuries can be improved [20].

A recent approach in detecting tackle risk (specifically

concussions) embeds sensors within the player kits (ac-

celerometers) [21]. The main downfall of this approach is

that acceleration alone does not provide enough information

to identify tackle risk [21]. Implementing additional sensors

can become invasive to the natural behaviour of players and

therefore would influence the collected data. Other methods

such as marker based motion capture (Vicon) require mul-

tiple marker key points which may result in high cost and

limited to a control test environment (as shown in [29]).

One study investigated a non-invasive method (Organic

Motion markerless motion tracking) in determining the

kinematic measurements of players who are at high-risk of

concussion [21]. The experiments conducted focused on

testing the cognitive behaviour of four players in a given ob-

stacle course [21]. Video capture of the experiments were

collected using 16 stationary cameras by tracking key player

points. To our knowledge, there is currently no previous

study which utilized computer vision for tackle risk evalua-

tion (high or low-risk) from in-game (live) footage.

3. Proposed Approach

Automatic tackle risk evaluation during a rugby match

has become a new challenge in the world of rugby. The



Figure 2. Illustration representing the system overview. An input tackle video is passed through two YOLO networks (ball detection and

person/player detection). The boundary box centre coordinates (x and y) are then filtered to track the ball - using a Kalman Filter (KF).

The filter and person detection outputs are then used to determine the tackle frame, ball-carrier and tackler. The tackler and ball-carrier

boundary box coordinates are then passed through the OpenPose network - producing key head points (head-centre). The head-centre of

the ball-carrier and tackler are then compared and evaluated for the tackle type (high or low-risk).

aim of this research project was to explore and implement

a computer vision approach to aid rugby referees in mak-

ing objective decisions. Specifically, to influence their final

ruling by classifying a tackle as either high or low-risk us-

ing the baseline criterion as mentioned above (focusing on

head proximity). This paper is limited to focusing on the

position of the player’s heads in determining the tackle risk.

In this study, a high-risk tackle was defined as the orienta-

tion whereby the head-centre of the ball-carrier aligns with

the head-centre of the tackler. Whereas a low-risk tackle is

defined as the orientation whereby the head-centres do not

align.

The study focusses on implementing an unstudied ap-

proach by using markerless motion capture frameworks,

namely: You Only Look Once version 4 (YOLO) Object

Detection and Tensorflow OpenPose (OP) – along with in-

game rugby union videos. A Kalman Filter (KF) was used

as an intermediate step to refine detections made by the neu-

ral networks. The initial step was to determine the boundary

box of the ball (using a YOLO trained network) and all per-

sons/players within each frame. Using this information, the

location of the ball-carrier, tackler and tackle frame could be

determined. Thereafter, the boundary box coordinates were

used in estimating the pose of the tackler and ball-carrier

(using OpenPose). Finally, the pose estimates were used to

evaluate the tackle – classifying it as either high or low-risk

tackle (within the frame at which pre-contact is made). An

overview of this system is shown in Figure 2 and illustrated

in the supplementary video.

3.1. Data Collection

The main source of data used to compile project models

and test evaluations were qualitative. Therefore, the data

comprised of images, video segments and a classification

table provided by an analyst with expertise and experience

in rugby video analysis. A detailed description of the data

is described in the upcoming subsections. The project re-

ceived its data from secondary data sources as the required

images and videos were pre-existing (specifically in-game

footage).

3.1.1 Training Data

A total of 551 images were used to train the ball detection

network. These images were collected from open-source

websites (royalty free images) such as OpenImage, Adobe

Stock, MS-COCO dataset, Pexels, Pixabay and Unsplash.

When exploring these databases, the search was refined us-

ing keywords: “sports”, “rugby”, and “ball”. Specifically,

any image relating to the sport of rugby was selected as part

of the training dataset (in-game, training, or any frolic re-

lating to rugby). Therefore, any image containing a rugby

ball - restricted to only include one rugby ball per image

was included. In addition, these images were not restricted

to any location, time, league, clothing type and colour, or

player/person. Furthermore, the images were selected us-

ing various zoom levels varying from 36 to 1023 pixels in

height and 16 to 1023 pixels in width – however, the en-

tire shape of the ball was required in order to be included

in the dataset. The camera angles of these images were not

restricted while the image quality was limited to 1024x518

to 1024x1007. Furthermore, the various light intensity im-

ages were included - limited to the ability for the user to

see the rugby ball. These images along with annotations are

provided as part of the paper1.

3.1.2 Testing/Input Data

To evaluate the reliability of the system output, truth/ground

data was required as a baseline of comparison. Multiple

rugby union match videos (tackle segments) were provided

1Link to ball detection data: https://drive.google.com/

drive/folders/1GvtlN-3CBxiI4CCvQW0dtIiupx39yEg_

?usp=sharing.



to test the reliability of system’s output. These tackle seg-

ments were obtained from a registered rugby video analysis

database and labelled (high or low-risk) by an analyst with

expertise and experience in rugby video analysis [15]. A

total of 109 tackle segments were provided which can be

found at link.2 These videos varied in quality (pixel di-

mensions 854 x 480 to 1920 x 1080), frames per second

(25 to 30), zoom, angle (similar to the above mentioned).

The length of these tackle segments begun from the point at

which ball-carrier is visible to the point of pre-contact. The

participants in these videos were limited to those part of the

Rugby World Cup and Super Rugby teams. Furthermore,

the video segments selected were front-on one-on-one tack-

les. It should be noted that the camera frame follows the

ball-carrier (the camera is not stationary as it ensures that

the ball-carrier is present in every frame). Tackle segments

were omitted when the camera zoom was far out (players’

boundary box were <14% of the video frame pixel height)

and/or too much occlusion occurred. The ground truth data

was not based on the referee’s outcome or ruling for the

given tackle.

3.2. You Only Look Once Object Detection (YOLO)

The goal of YOLOv4 is to detect the location, confidence

(accuracy of prediction model) and number of instances of

an object in a single scan of an image [24]. Therefore, it

involves appending boundary boxes around the detected ob-

jects (categorising them in the corresponding object class)

[24]. The confidence score is calculated as shown in equa-

tion (1) which comprises of the intersection over union

(of predicted and ground truth). Therefore, the confidence

score is set to zero if there is no object detected. The proba-

bility of an object within a grid cell is defined as Pr (Object).

confidence = Pr(Object)×
area of overlap

area of union
(1)

3.2.1 Original Network

The original YOLOv4 weights/network using the MS-

COCO dataset was implemented on several videos. The

Darknet-framework was used, with a network size of 608

× 608 (height x width) which produces a 65.7% mAP@0.5

with 128.5 BFlops (while smaller networks such as 320

× 320 produced a 60.7% mAP@0.5 with 35.5 BFlops).

Therefore, detections were expected to be accurate and fast.

This network was used to detect the location of all the hu-

mans/players within each frame (second step in Figure 2).

2Link to evaluated tackle segments: https://drive.

google.com/drive/folders/14VQ2s83sjGHFlXr4vfmQ_

agU4XvF90R3?usp=sharing.

3.2.2 Trained Network

Images were labelled using LabelImg software by append-

ing boundary boxes which allowed for YOLO annota-

tion formatting (class index; x centre; y centre; width and

height) parameters being measured in pixels. After la-

belling 551 images, the dataset was split 8:2 (train:test data).

Training parameters for ball detection (single class) were

set using the recommendations provided by [1]. Therefore,

the learning rate was set to 0.001, batch size of 64, 64 subdi-

visions, network width and height to 352, iterations to 8000,

and filter size (preceding the “yolo” layer in the neural net-

work) was set to 18. Equations (2) and (3) represents the

calculation used to determine the recommended (minimum)

number of iterations and the filter size, respectively.

iterations = 2000× classes (2)

filter size = (classes+ 5)× 3 (3)

Methods of data augmentation were investigated to pre-

vent the possibility of over-fitting the trained model. This

was achieved by image adjustment of hue value of 0.1,

tilt/rotation (10 degrees), saturation gradient (1.5), exposure

(1.2), and mosaic (1). Normal distribution curves of the er-

rors (x and y) between the ground truth data and inferences

made by the ball detection network were compiled. Errors

were calculated using the centre coordinates of the bound-

ary box (x and y). A total of 547 points were compared.

The resulting standard deviation for the x and y coordinate

errors were 2.65 and 3.46, respectively. Furthermore, the

resulting mean of the x and y coordinate errors were -0.43

and -0.09 pixels, respectively.

3.3. Kalman Filter (KF)

To optimally produce a boundary box estimate in the

presence of noise and outliers, a KF [32] was employed.

For the sake of brevity we omit some details but the reader

is encouraged to read [5] for further information on the KF

for computer vision applications.

A constant acceleration model was assumed with

total of six state variables, generating the state ma-

trix (x position; x velocity; x acceleration; y position;

y velocity; y acceleration). It is recommended by [18] that

the square root of the process covariance matrix elements is

the maximum change in corresponding acceleration. After

investigating 22 video segments, a maximum change in the

x acceleration and y acceleration was 6000 pixels/s2 and

7000 pixels/s2 respectively. The parameters for the mea-

surement covariance matrix were obtained from the stan-

dard deviation of the YOLO coordinate error data. After

fine-tuning adjustable parameters, it was observed that a

standard deviation of 31 pixels in the x and 15 pixels in

the y, produced the best output.



When initializing the state matrix, the position states

were set to the centre of the image (pixels), while the ve-

locity and acceleration states were set to zero (both x and

y). The initial values of the covariance matrix were 50 pix-

els for the position states, 10 pixels/s for the velocity states

and the acceleration state covariance was set to 1 pixel/s2

for both x and y.

Outlier rejection was required to maintain the stability

of the filter. A common approach used for outlier detec-

tion is to monitor the residual error (innovation) [30]. This

extends to evaluating whether the innovation remains within

three standard deviations computed by the filter [30]. To im-

prove the number of reliable data measurements, the bound-

ary was extended to five standard deviatons. The innova-

tion y, covariance of the innovation S, and confidence score

of the detection are required to evaluate whether the mea-

sured point is an outlier. Once the confidence score was

less than 0.1 or/and the innovation for a measurement falls

outside five times the square root of the innovation covari-

ance, S, the innovation for that measurement was set to zero.

Additionally, if the YOLO confidence score was less than

0.1, the variance values of the measurement covariance ma-

trix R was set to the pixel dimensions and the maximum

change in acceleration of both x and y would be set to

50pixels/s2. As real time estimation was not required, a

Kalman Smoother was also implemented to further improve

the system results [18].

3.4. Ball­Carrier, Tackle Frame and Tackler Detec­
tion

Using the filtered coordinates of the ball detection, the

ball-carrier was determined by selecting the closest player

to the ball. This was done by calculating the euclidean dis-

tance from each player’s boundary box centre to ball. The

analyst indicated that a tackle frame is required to evalu-

ate the risk of a tackle, this frame occurs within a seconds

before the ball-carrier and tackler makes direct contact (pre-

contact). The approach used in determining the tackle frame

involved the use of boundary box overlap between “specta-

tor” players and the ball-carrier.

Therefore, a counter registered the total number of over-

laps throughout the tackle segment and the final overlap was

labelled as the tackle frame. Furthermore, the tackler was

identified as the player: (i) with the boundary box centre

(y-coordinate) within the height range of the ball-carrier’s

boundary box and (ii) closest to the ball-carrier in the tackle

frame (horizontal distance between boundary box centres).

The resulting output is shown at step 4 in Figure 2.

3.5. Pose Estimation And Tackle Evaluation

Using the boundary box coordinates of the tackler and

ball-carrier, the pose estimates for the two players were

determined. These coordinates were passed through the

Tensorflow OpenPose network where the pose estimates (x
and y coordinates of 18 key points) of the tackler and ball-

carrier were determined as shown in step 5 and 6 in Figure

2. OpenPose provides pose estimates of a person in a given

frame, highlighting key points and generating a 2D skele-

ton [4]. Given that high-risk tackles focus on the head loca-

tion and orientation of the player/s, the pose estimates cor-

respond x and y pixel coordinates of the left and right ear,

left and right eye, and nose were averaged (head-centre).

It should be noted that OpenPose is subjected to potential

errors when generating inferences (mislabelling key head

points or not being able to generate a label when analysing

a video). Therefore, in an attempt to reliably estimate the lo-

cation of the ball-carrier’s head-centre (in the tackle frame),

the head-centres of the final three frames were averaged af-

ter being passed through a KF. The same filter parameters

were used as the above mentioned KF with the exception

of the measurement covariance matrix parameters (both x
and y were set to 50 pixels), position state variance was set

to 70 and evaluating the innovation within three standard

deviations as less outliers were detected.

On the other hand, due to the limitation of not detecting

the tackler in frames prior to the tackle frame - a filter could

not be implemented. Therefore, to address the issue men-

tioned above, the y-coordinate of the head-centre produced

by OpenPose was averaged with the estimated location of

the tackler’s head-centre. The estimation takes advantage

that the head to body height ratio is 1:8 (12.5% 1̃5%) [19].

Therefore, the pixel position of 7.5% (assuming head-centre

is the middle of the head) of the boundary box height (from

the top) was used to obtain the y-coordinate head-centre es-

timate. This parameter was then averaged with the Open-

Pose head data.

When evaluating the tackle, head-centres of the tackler

and ball-carrier in the tackle frame (step 6 in Figure 2) are

compared. If the head-centre (y-coordinate) of the tackler

falls within the high-risk region (as shown in Figure 3), the

tackle would be classified as a high-risk tackle (otherwise

low-risk). The high risk-region is defined as boundary limit

with the head-centre of the ball-carrier located in the mid-

dle. The head-centre of the ball-carrier was normalised to

the height of the boundary box to the height of an average

male. To obtain the best limits, the boundary limits were

adjusted relative to the ball-carrier’s head-centre (5%, 10%,

15%, 20%, and 25%).

4. Results and Discussion

This section will evaluate the output of the KF and the

reliability of the system output. In addition, the system lim-

itation and shortcomings will be discussed and addressed.



Figure 3. Illustration of the tackle frame - highlighting the ball-

carrier and tackler. Two high risk- regions are displayed (15% and

20%) with reference to the ball-carrier’s head-centre. It should be

noted that the head-centre of the tackler falls within both 15% and

20% high- risk region - classifying the tackle as a high-risk.

4.1. Kalman Filter Output

4.1.1 Ball Detection

Figure 4 represents the input and output of the ball detec-

tion KF. The figure displays YOLO inferences made across

three frames (16, 17 and 18) from a 24-frame tackle seg-

ment. When viewing the frames of the Pre-Filter in Figure

4a, it is observed that the YOLO network incorrectly iden-

tifies the ball in the second image (frame 17). All YOLO

ball detection inferences made can be viewed in Figure 4b

and can be seen that the measured coordinate in frame 17

is an outlier. Therefore, after filtering the coordinate in-

ference points, it is observed that the algorithm correctly

reduces the error between the measured and predicted data

points. Furthermore, it is observed that the smoothing algo-

rithm generates a refined transition dataset of the estimates

from one frame to the next (Figure 4b). Finally, Figure 4c

displays the final filtered output, Post-Filter (omitting and

replacing the outlier with refined data point).

4.1.2 Pose Estimation

When implementing the KF for the pose estimates of the

head-centres, some measured coordinates were outliers (in

some instances the key points of the ball-carrier was an out-

lier on the tackle frame). Therefore, it was discovered that

filtering and averaging (the corresponding coordinates of

the head-centres in the final three frames) key points were

required. The KF produced head-centre coordinates with

improved accuracy in the tackle frame (corresponding to the

ball-carrier’s head position).

4.1.3 Challenges

Although the KFs mentioned above refined the coordinates,

many challenges and limitations reduced the robustness of

Figure 4. Tackle segment displaying three frames (16, 17 and 18)

of the YOLO ball detection network before and after applying the

KF. The YOLO ball detection network mislabels frame 17 as an

outlier whereby the KF rectifies.

the system. One key challenge was the consecutive out-

liers detected within a dataset when implementing the KF

for the ball detection network. This convinced the algo-

rithm that the outlier points were part of the true dataset.

A potential solution is to improve the ball detection training

regime. This can be done by expanding the dataset such that

more samples can be used for training and testing. Addi-

tionally, increasing the number of iterations with augmented

data would also improve the inferences made by the model.

Another challenge faced was the large magnitude of the

change in acceleration parameters. Any large jump in the

measured position would cause the filter to diverge and be-

come unstable. One approach used to overcome this limita-

tion was to adjust the change in acceleration relative to the

confidence score produced by the YOLO network. There-

fore, should the confidence score be less than 0.1 (indicat-

ing that the model is uncertain about detections), the change

in acceleration would be set to 50 pixels/s2. Another ap-

proach is to utilise techniques from a Moving Horizon Esti-

mation as done in markerless 3D pose estimation [16].

4.2. System Evaluation

A total of 109 tackles were used and evaluated on the

system. These tackles were selected based on the appro-

priate zoom level, camera angle and tackle type (head-on)

of the recorded tackle. Of these 109 tackles, 58 of them

ran successfully without any manual adjustments made to

the system’s algorithm. Six additional tackles ran success-

fully after manually adjusting selected algorithm parame-

ters. These parameters include adjusting the ball detection



5% 10% 15% 20% 25%

Accuracy

(n=109)

39.44% 37.61% 36.70% 33.03% 30.28%

Accuracy

(n=64)

67.19% 64.06% 62.50% 56.25% 51.56%

Recall) 29.41% 47.06% 70.59% 70.59% 82.35%

Precision 35.71% 36.36% 38.71% 34.29% 33.33%

F1 Score 0.32 0.41 0.50 0.46 0.47

Table 1. Evaluation of overall tackle accuracy, recall, precision and

F1 Score for high-risk regions of 5%, 10%, 15%, 20% and 25%

using the total number of tackles (109) and evaluated tackles (64).

threshold (to 0.3), tackle frame (two/three frames before

contact), and KF parameters (standard deviation in the x

and y to 50 pixels) to obtain the correct tackler within the

tackle frame. Therefore, a total of 64 tackles were success-

fully evaluated (73.4% classified as low-risk tackles by the

analyst).

The values in Table 1 represent the overall tackle accu-

racy calculated using equation (4) . The accuracy calcula-

tion was done using the total number of tackles (109) and

the total number of tackles that ran successfully without any

adjustments (64). Furthermore, the accuracy calculation

was done for multiple high-risk regions (5%, 10%, 15%,

20% and 25%) containing high and low-risk tackles.

Accuracy of Tackles =
Correct Detections

Total Number of Tackles
(4)

It is observed that the high-risk region of 5% produces

the highest overall tackle accuracy in both total and eval-

uated tackles. A possible data influence is that 26.6% of

the total tackles are high-risk (17/64). Therefore, the 5%

region is most likely to classify a tackle as low-risk given

it is the smallest high-risk region compared to the 10% to

25% regions (small window for both tackler and ball-carrier

head-centres to be located). However, it is observed that the

25% high-risk region obtains the highest high-risk accuracy

(82.35%) while the 5% high-risk region obtains the highest

low-risk accuracy (80.85%). Therefore, the 15% high-risk

region represents a midway point for high-risk and low-risk

tackle accuracy.

Given that the low-risk tackles greatly outnumber the

number of high-risk tackles, it can be viewed as an imbal-

anced classification problem. Therefore, the recall statistic

would model the relevant cases (high-risk tackles) in the

dataset. To compensate for the low precision of the recall

metric, the actual relevant data (influenced by the propor-

tion of points) should be determined (precision). Therefore,

the F1 score finds the harmonic mean (optimal balance) be-

tween precision and recall. With CHD, HLL and LLH be-

Ground Truth

High Risk Low Risk

System

Output

High Risk [5, 8, 12,

12, 14]

[9 ,14, 19,

23, 28]

Low Risk [12, 9, 5,

5, 3]

[38, 33,

28, 24,

19]

Table 2. CKC confusion matrix representing the classification of

the system output compared to the ground truth data (high-risk re-

gion indices of array corresponds to: [5%, 10%, 15%, 20%, 25%]).

Parameter Value

(HRR

5%)

Value

(HRR

10%)

Value

(HRR

15%)

Value

(HRR

20%)

Value

(HRR

25%)

P0 0.67 0.66 0.64 0.57 0.53

PHR 0.06 0.10 0.14 0.16 0.19

PLR 0.56 0.47 0.36 0.31 0.24

Pe 0.62 0.57 0.50 0.47 0.42

CKC 0.13 0.20 0.28 0.19 0.19

Table 3. Table highlighting the probability parameters which are

used to determine the inter-rater reliability coefficient, Cohen’s

Kappa. All high-risk region (HRR) values are displayed (5%,

10%, 15%, 20%, 25%).

ing the correct high-risk detections, the high-risk tackles la-

belled as low-risk and the low-risk tackles labelled as high-

risk, respectively - the values of recall, precision and F1

Score (equation (5)) are shown in Table 1.

F1 =
CHD

CHD + 0.5× (HLL+ LLH)
(5)

Given that the F1 Score is determined with an equal contri-

bution in precision and recall when evaluating the system’s

performance – the higher the score, the better the perfor-

mance. Therefore, it is observed from Table 1 that the high-

risk region of 15% has the highest F1 Score (0.5) compared

to the other high-risk regions. Furthermore, represent the

reliability of the system accurately – the Cohen’s Kappa co-

efficient (CKC) is determined.

Table 2 and 3 represents the CKC for all five high-risk re-

gions using the 64 successfully evaluated tackle. The CKC

matrix (Table 2) compares the classification of the system

output to the ground truth data. Each cell contains an ar-

ray of five numbers, these represent the number classifica-

tions made for the high-risk region of [5%, 10%, 15%, 20%,

25%]. Furthermore, Table 3 represents probability parame-

ters (probability of agreement [P 0], probability of random

agreement [P e], probability of high-risk tackles [P HR]

and probability low-risk tackles [P LR])used to determine

the inter-rater reliability coefficient, Cohen’s Kappa for all

high-risk regions.



Figure 5. Illustration representing various challenges experienced

by the model. Occlusion (a) is observed as the ball-carrier and

tackler share the same skeleton generated by OpenPose. The in-

fluence on video quality on the inferences made is shown in (b) and

(c) - higher resolution indicates an improved key point mapping.

It is observed in both instances, the high-risk region of

15% produces the highest Cohen’s Kappa coefficient indi-

cating the highest level of agreement between the system

output and the ground truth data. Therefore a CKC of 0.28

indicates a fair level of reliability while the other high risk-

regions indicates a non to slight level of reliability.

4.2.1 Challenges

There were many reasons for the system only being able

to evaluate 64 out of the 109 tackles. Most reasons were

closely linked to the shortcomings of YOLO and OpenPose

(inferences). One of the biggest limitations was the occlu-

sion surrounding the ball-carrier or tackler within the tackle

frame. This made it difficult for YOLO and OpenPose to

identify individual players and generate separate sets of key

points (when two players overlap - OpenPose tends to gen-

erate key points for one player across two people as shown

in Figure 5a), respectively. This issue limited the frame at

which the tackle occurs - occlusion will occur if the play-

ers are too close. Furthermore, the problem extends to er-

rors in identifying the tackle frame as the pose estimates

overlap between ball-carrier and tackler before their bound-

ary boxes overlap (suggesting that frames before the tackle

frame should be used). In addition, the task of correctly

identifying the ball and ball-carrier in every frame becomes

challenging. These challenges were addressed by using a

KF as mentioned above.

Video quality stemmed as an additional obstacle for the

YOLO and OpenPose network when generating inferences.

The reason for this is that the network is not familiar with

low quality images (OpenPose), making it much harder for

the network to identify key points. This is seen in Figure

5b and 5c whereby the OpenPose network identifies more

key points in the high resolution image compared to the low

resolution one. This issue can be addressed by re-training

the OpenPose network (from its latest weights) using low

quality images.

5. Future Work

Occlusion is one of the biggest challenges with the pro-

posed approach. This problem is important to address as

rugby tackle footage always contain occlusions. A poten-

tial solution to this issue is to explore alternative multi-

person pose estimation frameworks (with improved detec-

tions when players overlap or come into contact). Further-

more, a new model could be trained which identifies the

pose of players before and during a rugby tackle (a classi-

fier model detecting the tackle frame could also be inves-

tigated). Furthermore, in an attempt to improve the tackler

detection, efforts could focus on determining which player’s

boundary box overlaps the most with tackler in the previous

frame (and back track the location of the tackler using the

same procedure). To improve the quality of the model, a

larger dataset should be used - specifically increasing the

number of high-risk tackles. In addition, efforts could be

focused on not only assisting the referee’s decision but pre-

dict the final ruling (legal or illegal) by using the entire pose

of the tackler and ball-carrier.

6. Conclusion

With the increasing frequency of concussion incidents

in the world of rugby, various protocols are being investi-

gated and implemented to prevent future concussions. Most

protocols focus on improving the orientation of the tackler

when engaging in a tackle. This paper suggests an auto-

matic tackle risk classification approach using YOLO and

OpenPose. This method aims at assisting referees in mak-

ing objective decisions of foul play. The system does this

by estimating the pose of the tackler and ball-carrier, there-

after, evaluating the pose of their head centres. The system

will either indicate a tackle is high-risk or low-risk which

is influenced by the high-risk region. When analysing the

results, the 15% high-risk region was identified as the most

reliable due to finding a midway between high-risk and low-

risk tackle accuracy, has the highest F1 Score (0.50), and the

highest CKC (0.28) – it was used as the final output to the

system.

Many challenges became apparent from the system

dynamics including: presence of occlusion, low quality

videos, multiple outliers, and fine tuning the KF parameters

to maintain its stability. Therefore, further research may

be conducted to address the classification system shortcom-

ings. This paper serves as a proof-of-concept for the imple-

mentation of markerless motion capture techniques within

the field of collision-based sports. An example of this is to

generate a neural network which directly classifies a tackle

(high or low-risk) possibly using a recurrent neural network

[26].
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concussion: how welfare-driven law change may improve

player safety—a rugby union experience, 2020.

[24] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You

only look once: Unified, real-time object detection. In Pro-

ceedings of the IEEE conference on computer vision and pat-

tern recognition, pages 779–788, 2016.

[25] W. Rugby. Television match official (tmo) global trial proto-

col, 2019.

[26] M. Schuster and K. K. Paliwal. Bidirectional recurrent

neural networks. IEEE transactions on Signal Processing,

45(11):2673–2681, 1997.

[27] J. Spitz, J. Wagemans, D. Memmert, A. M. Williams, and

W. F. Helsen. Video assistant referees (var): The impact of

technology on decision making in association football refer-

ees. Journal of Sports Sciences, 39(2):147–153, 2021.

[28] K. A. Stokes, D. Locke, S. Roberts, L. Henderson, R. Tucker,

D. Ryan, and S. Kemp. Does reducing the height of the

tackle through law change in elite men’s rugby union (the

championship, england) reduce the incidence of concussion?

a controlled study in 126 games. British journal of sports

medicine, 55(4):220–225, 2021.

[29] Y. Tanabe, T. Kawasaki, H. Tanaka, K. Murakami,

K. Nobuhara, T. Okuwaki, and K. Kaneko. The kinematics of

1-on-1 rugby tackling: a study using 3-dimensional motion

analysis. Journal of shoulder and elbow surgery, 28(1):149–

157, 2019.

[30] J.-A. Ting, E. Theodorou, and S. Schaal. A kalman filter

for robust outlier detection. In 2007 IEEE/RSJ International

Conference on Intelligent Robots and Systems, pages 1514–

1519. IEEE, 2007.

[31] R. Tucker, M. Raftery, S. Kemp, J. Brown, G. Fuller, B. Hes-

ter, M. Cross, and K. Quarrie. Risk factors for head in-

jury events in professional rugby union: a video analysis of



464 head injury events to inform proposed injury prevention

strategies. British journal of sports medicine, 51(15):1152–

1157, 2017.

[32] W. Wang, N. He, K. Yao, and J. Tong. Improved kalman filter

and its application in initial alignment. Optik, 226:165747,

2021.

[33] S. W. West, L. Starling, S. Kemp, S. Williams, M. Cross,

A. Taylor, J. H. Brooks, and K. A. Stokes. Trends in match

injury risk in professional male rugby union: a 16-season

review of 10 851 match injuries in the english premiership

(2002–2019): the rofessional ugby njury urveillance roject.

British journal of sports medicine, 2020.

[34] S. Williams, G. Trewartha, S. Kemp, and K. Stokes. A meta-

analysis of injuries in senior men’s professional rugby union.

Sports medicine, 43(10):1043–1055, 2013.


