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Abstract

We present techniques for abstracting relevant informa-

tion from scene graph features to improve action recogni-

tion in sports videos. Feature representation with relevant

information can dramatically increase machine learning’s

utility across many tasks. Despite the advantages of in-

corporating objects and relations as building blocks of se-

mantic information, we still encounter too many irrelevant

objects and relations in sports videos, adding uncertainty

to the classifiers. This paper describes four fundamentally

different scene abstraction techniques, each searching for

the relevant information within aggregated features from

pixel-level to object-level. In each method, we formulate

relevancy through co-occurrence statistics, semantic simi-

larity, feature decomposition, and correlation-based map-

ping and evaluate each technique’s efficacy through perfor-

mance gains in action recognition and decay rate of train-

ing loss. We demonstrate that by creating a relevant and

more concise knowledge representation, we improve perfor-

mance (mAP) of action recognition in sports by 26.6% and

achieve faster converging models due to higher representa-

tion power.

1. Introduction

The shortcoming of modern perception systems is cre-

ating an automated solution that can answer questions such

as: Where in the video/image should the classifier pay atten-

tion to? Specifically, which objects, subjects, and relations,

should be considered in the feature representations? Our

approach starts with building scene graphs, as they best de-

scribe the scene by localizing the objects, subjects, and their

relationships within each frame in a graphical structure. We

address one of the main challenges hindering real-world ap-

plications using scene-graphs, the problem of generating

highly cluttered representations through dense graphs with

Figure 1. We present scene graph abstraction techniques that rule

out irrelevant objects and only encode semantically coherent con-

text that are related to the sport actions. For instance, action

”hitting” and object ”bat” are semantically relevant to ”Baseball”

compared with ”car” or ”chair”. Abstracting the relevant infor-

mation in the feature representation increases the probability of

predicting the correct action label. The state-of-the-art video un-

derstanding techniques combine long-term symbolic information

with short-term visual features [16, 34] for a better representation

of the scene. This paper is an extension of their work with the

advantage of abstracted scenes.

lots of irrelevant objects and relations. To thoroughly ex-

amine the power of relevancy in semantic information and

their efficacy in action recognition, we formulate four fun-

damentally different feature abstraction techniques. In the

first technique, we use conditional random fields (CRF) to

increase the significance of objects and relations that sta-

tistically appear together and reduce those that do not de-

pend on each other (conditioned on each action label). In

the second technique, we use canonical correlation analysis

(CCA) from a transfer learning perspective to map features

to an embedding space where the embedded representations

are similar to ground truth action labels. In the third tech-
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nique, we supply a global semantic context by computing

semantic similarity of the action classes to objects and re-

lations and select the most semantically relevant pairs. The

fourth technique uses a dimensionality reduction approach

based on kernel principal component analysis (kPCA) to

select the significant components in feature representation.

The state-of-the-art video understanding method aggregates

the long-term and short-term visual information through an

attention-based mechanism between symbolic-level (like a

scene-graphs) and pixel-level visual information [16]. At

the core of this paper, we aim to influence their neural net-

work’s attention mechanism to give higher weights to the

symbolic information that are of significance and semanti-

cally relevant (e.g., sport equipment, sport arena) given the

hypothesized actions (e.g., throwing, running).In contrast

to previous work, our work examines symbolic represen-

tation’s expressive power through the significance of prin-

cipal components, semantic similarity, inter-dependencies

between objects and relations, and linear mapping of fea-

tures toward sport actions while referencing the short-term

pixel-level information to the long-term symbolic informa-

tion. Toward this goal, our paper’s outline is as follows: in

section 2, we go over the related literature. In section 3, we

describe the formulation for each abstraction technique. In

section 4, we discuss the efficacy of each abstraction tech-

nique by feeding the joint representation of abstracted scene

graphs and the pixel-level visual appearances to a multi-

label action classifier and finally discuss the pros and cons

of each technique in section 5.

Contribution Summary: Our main contribution is in ex-

amining the efficacy of the four feature abstraction tech-

niques, as each emphasizes a unique attribute within the

features:

• CRF-based abstraction, to evaluate significance of ob-

ject and relations co-occurrence statistics

• CCA-based abstraction, to evaluate the effect of linear

projection toward action labels

• Global-based abstraction, to evaluate the overall con-

textual semantic similarity

• PCA-based abstraction, to evaluate the significant of

significant components in the feature representation

2. Related Work

In recent years, the video understanding literature has

demonstrated outstanding results due to parallel advances

that are converging now. These advances have tried to ad-

dress two critical points: how to learn the best representa-

tion for scene understanding and how to make the model

pay attention to the relevant information. In this section, we

go over the evolution of video understanding and put our

work in perspective.

Convolutional neural networks (CNN) have been power-

ful models for image representation. Their strength in video

understanding has been demonstrated numerously through

frame-level to video-level feature extractions [32, 39] with

complex spatio-temporal architectures such as 3D Con-

vNets [30, 31] and effective two stream networks [28, 3]

that joint modeling of appearance and motion in videos.

Long-term feature encoding is a relatively new direction

[19, 21, 29] and it is complementary to the local CNN

features, however, their advantages are not fully exploited

partly due to the limitation that a) most datasets contain hu-

man activities that span only a few seconds [18, 17, 22] and

b) memory constraints. One major difference between these

methods is the feature aggregation technique which learns

the feature representations through sub-sampling (e.g., 3-7

frames per video) [32, 39].

Scene-graph representations are a symbolic level repre-

sentation of the scene that describe the object and their

relations through graphical structures. There have been a

wide range of approaches to generate these graphical rep-

resentations including [36]: CRF based approaches which

model the significance of each object and relations based

on co-occurrence statistics [8, 7], Visual transition embed-

ding based approaches which model the translation vec-

tor between objects and subjects in different embedding

spaces [15, 11] CNN based approaches that exploit the

statistical relations over the RoI derived from CNN fea-

tures [8, 33, 38], Recurrent neural net (RNN) based ap-

proaches which form a message passing paradigm and it-

eratively refine the quality of the scene graphs [35, 6, 37],

however, their performance is relatively degraded because

they don’t consider semantic meaning of objects/relations

and and Graph neural net (GNN) based approaches, which

aims to factorize the graphs into sub-graphs and refine the

scene graph generation through intelligent sub-graph merg-

ing. [20, 23, 5]. The scene representation with graphi-

cal structure has demonstrated a high descriptive power for

many scene understanding tasks. In recent years researchers

have evaluated the utility of these symbolic level representa-

tions in video understanding by aggregating them with the

low-level features extracted through 3D CNNs [16]. Our

work is mainly inspired by this study with the extension

that our scene graph generation tries to eliminate semantic

context that is irrelevant and keep the portion of the features

that are significant and discriminative.

Semantic coherence has been a popular topic in natural

language processing but relatively underutilized in video

understanding. The main drawback is that models built with

word embeddings are vulnerable to small perturbations in

representation and it may radically alter the semantic mean-

ings of objects. To address this challenge, we encode con-

textual information such that the semantic compatibilities

are conditionally refined based on the scene’s global assess-
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Figure 2. The overall pipeline of aggregating the symbolic-level embedding in long-term features to pixel-level embedding in short term

features using semantic coherency. What separates our work from the state of the art [34, 16] is in the abstraction of semantic information

which rules out the irrelevant objects and relations before evaluating a scene for classification.

ment. Our work attempts to close this gap using the word

embedding concept from [12] by linking the visual context

to the abstracted semantic content while aggregating rele-

vant features.

3. Semantic Abstraction

An effective video understanding model should be aware

of semantic dependencies between hypothesized actions

and the associated temporal context, such as objects and

their relations around the time the action is taking place. In

this section, we discuss four fundamentally different tech-

niques for capturing such dependencies between the actions

and the objects/relations associated to each person. We in-

vestigate these dependencies based on: a) co-occurrence

statistics between actions and object relations using condi-

tional random fields (CRF), b) based on a linear projection

of the object/relation features using canonical correlation

analysis (CCA), c) based on principal components analysis

(PCA) of features that are computed over objects and rela-

tions, d) and based on semantic similarity to action labels

(global semantic context).

At a high level, our goal is to provide the model with fea-

tures relevant to the hypothesized actions and to assess the

relevance of these abstracted features by monitoring the per-

formance gain as the model searches for important cues and

eliminates irrelevant context from the feature representation

of the scene. In this paper, we set up our baseline classifica-

tion model similar to [34] as they have already demonstrated

that grounding the objects and relations in a structured fea-

ture representation can improve the performance of the ac-

tion classifier. We now go over the feature bank generation

with scene graphs followed by the problem statement before

describing each abstraction technique.

Scene-graph feature bank generation is the initial

stage of the process, where for each video frame fi,

a graphical representation G = (O,R) of all ob-

jects, O = o1, o2, o3, ..., om, and all relations, R =
r11, r12, ..., r21, r22, ..., is captured between all detected ac-

tors in the scene such that rpq is the relation between the

pth object op and the qth object oq . We select only the

relations for which class of either the subject or the ob-

ject in the subject-relation-object triplet is a person. Fur-

thermore, we obtain the associated confidence probabilities

for the prediction of each objects s1, s2, ... and relations

s11, s12, ..., s21, s22, .... Given the confidences scores of the

objects and relations associated with each person we con-

struct a confidence map Cij = si × sij which captures

the confidence for each combination of object relation for

a given actor in the scene. We then flatten each matrix C

to generate each element of the scene graph feature bank

FSG = [f1, f2, ..., fT ], where T is the total number of time

steps while ft is the flattened C matrix at time t.

Problem Statement

Given an entire video and a set of action labels L, the

objective is to assign the label lt ∈ L to each video frame,

(note that the classification could potentially be performed

on a small duration of the videos as well). Our classifi-

cation framework is similar to [34, 16], which trains an

attention-based neural network architecture that references

the short-term information to the long-term information us-

ing 3D CNN features and the scene graph feature banks

FSG. Given this framework, our goal is to modify the fea-

ture banks to adjust relevant objects ô and relations r̂ such

that,

F ′
SG ⊢ argmax

l

P (lt, ô, r̂|FSG, t) (1)

Where F ′
SG is the abstracted feature with encoded relevant

object/relations. Next, we discuss different techniques used

for the abstraction of the raw feature banks FSG to F ′
SG to

eliminate irrelevant objects and relations before feeding the

features to the action classifier. We then discuss the efficacy

of each technique on the performance of action recognition.

3



3.1. CRF­based Abstraction

We now formulate a conditional random field (CRF)

on top of the feature bank representation FSG with ob-

ject set O, where {oi ∈ O}
N

i=1 and relation set R, where

{rj ∈ R}
M

j=1. A typical CRF formulation involves con-

structing a graphical model G = (O,R), where O is a set of

N vertices while R is a set of
(

N
2

)

relationship edges. For

simplicity, only the unary and the second-order interactions

are considered. The conditional probability distribution of

label l given the input feature FSG can then be written as

P (l, ô, r̂|FSG, vt) =

exp{
∑N

i=1 Ψu(oi,θ) +
∑N

i=1

∑M

j=1 Ψp(rij ,ω)}

Z(o, r)

(2)

where, θ = [θi, ..., θN ] , and ω =





ω
00

...

ω
NM





Ψu(·) measures the unary cost of selecting a particular ob-

ject and Ψp(·) measures the pairwise cost of selecting par-

ticular relation conditioned on the action labels. θi denotes

the weight associated with the ith object and ωij denotes

the weight associated with ith object and jth relation. The

edge parameters θ and ω are obtained from co-occurrence

statistics while predicting the labels. Thus, the mutual in-

formation is estimated implicitly through most common ob-

jects and relations for each action label. Given each instance

of the video segment and the corresponding feature bank

FSG, the unary potentials Ψu(·) capture the discriminative

power of each node (objects) and pairwise potentials Ψp(·)
capture the discriminative power of each edges (relations).

Each edge between i and j is characterized by M2 connec-

tions, each representing the relevance to particular object-

relation combination. For instance, the likelihood of the

label l given oi = 0 and rij = 1 is captured by the weight

θ0 and ω01. Consequently, in order to map the feature banks

to action labels in a given frame, N +
(

M
2

)

×N2 potentials

are aggregated over the entire objects and relations to make

a prediction. Sum of all potentials form an un-normalized

distribution, and the normalizing partition function Z(·) is

used to form a probability distribution over the sum.

Unary and Pairwise Potentials: In order to capture the

relevance of each object in the scene we compute the prob-

ability of each objects and relation pairs given the labels.

With scene-graph model, we directly use the confidences of

predicted labels si as a proxy measure to assess the rele-

vance of each object given the labels, hence the unary po-

tentials are defined such that:

Ψu(oi,θ) = − log {θifi(oi)} (3)

where the node feature functions are defined as fi(oi) =
Pn(ô, r̂|FSG, vt) = soi . Pn(·) is the confidence measure

associated with the object oi and θi reflects the significance

of each object which is learned based on co-occurrence

statistics for a given dataset. Referring back to the condi-

tional likelihood model (Eq. 2), to make the prediction, each

pairwise potential Ψp(·) is summed over the entire graph G

and the likelihood of a label given each possible edge is for-

mulated as a negative log of logistic regression classifier.

Therefore the edge feature functions are defined as fij(·)
as the probability of each specific relation given the labels.

i.e.,

Ψp(rij ,ω) =

− log {
1

1 + exp {β
rij
ij + ωij(rij)fe

ij(rij)}
} (4)

fe
ij(rij) = − logP2(l | rij)

P2(·) are the co-occurrence statistics of a given the relation-

ship pairs for a particular label while β is the bias. Once the

parameters are estimated for each label we use mAP infer-

ence for each test sample and pick the label in which its

parameters returns the highest conditional likelihood, thus

we rewrite Eq. 1 such that :

l̂ = argmax
l

exp{

N
∑

i=1

Ψu(oi,θ) +

N
∑

i=1

M
∑

j=1

Ψp(rij ,ω)}

Inference/parameter estimation: The parameter estima-

tion technique for such CRF model depends highly on the

complexity of the structure. The goal here is to estimate a

set of weights (θ,ω) that maximizes the accuracy of our

prediction given the labels. If the number of parameters

are below a certain threshold we use the stochastic gradient

ascent method to maximize P (l, ô, r̂|FSG, vt,θ,ω). In this

case the weights are updated using standard gradient ascent.

For more complex structures, CRF distribution is approxi-

mated with mean field approximation where iterative mes-

sage passing is performed for approximate inference.

3.2. CCA­based Abstraction

The aforementioned Cij matrices are two-dimensional

confidence maps of objects and relations interacting with

each person in the scene. These confidence maps lay on a

linear manifold, in the sense that the linear (or convex) com-

bination of two confidence maps could reasonably belong to

the set of confidence maps obtained from a similar dataset.

Motivated by this, our goal is to find a linear mapping from

the observed semantic content (represented as Cij) to the

multi-hot vector obtained from ground truth action labels.

After flattening the confidence maps to FSG, the relative in-

formation is embedded into two vectors, namely h and v,
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Figure 3. Feature bank abstraction process for a video from SVW dataset. The semantic label for this clip depicts ”weight lifting.” First,

the scene graph representation is obtained which contains all objects and relations. Next, we construct a raw feature bank matrix where

the first axis holds all objects that the actor is interacting with and second axis holds the actor’s relation when interacting with the these

objects. The raw feature banks are then fed to four independent abstraction process generating a unique representation containing different

attributes. These features are then used to augment the 3D CNN features as input to the classifier.

(for simplicity, in this abstraction technique the FSG vectors

are denoted as h and the multi-hot vectors are denoted as v).

Let N be the total number of features used for training such

that ht ∈ R
(M∗N)×1 and vt ∈ R

|L|, where M ∗ N is the

length of the first dimension of the FSG and |L| is the size of

action labels used to create the multi-hot vectors. We want

to find the relationship between the observed scene graph

representation and the multi-hot vectors from ground truth

labels by finding a lower-dimensional subspace in which the

v and h are most correlated. In other words, the projec-

tion of uTht and the corresponding multi-hot vectors vT
t w

into the shared subspace are highly correlated. For this

purpose, we use Canonical Correlation Analysis (CCA) for

such mapping. CCA seeks a shared embedding for h and

v such that the embedded representations for the same in-

stances lie close to each other and subsequently maximizes

the following objective function:

CCAcomp =

argmax
u,w

∑N

n=1(u
Tht)(v

T
t w)

√

∑N

n=1 u
Thth

T
t u

√

∑N

n=1 w
Tvtv

T
t w

= argmax
u,w

uTChvw
√

uTChhu
√

wTCvvw

where u and w are the CCA components which project the

data onto the shared embedding and Chh, Cvv, Chv are the

variance matrices.

3.3. Global Context based Abstraction

While the contextual information of the scene has been

modeled implicitly through the bottom-up local operators

of CNNs, the explicit aggregation of relevant semantics is

not well captured. The utility of semantic coherence has

been evaluated in many tasks before [12][24]. Similarly,

we use the notion of semantic similarity but to abstract the

feature banks FSG such that objects and relations that are

not semantically relevant get eliminated and a smaller fea-

ture bank F ′
SG ∈ R

k×L is obtained with top k significant

object-relation pairs.

We use [24] to encode sentences senij and senl to obtain

sentence embeddings eij and el. Here, senij is the sen-

tence representing a textual description of object-relation

pair, 〈oi, rij〉, with object oi and relation rij while senl is

the textual description of the action label l. For instance, if

object oi is a “television” and relation rij is “watching a’,

then senij is “watching a television”. For actions, senl is

the textual description of the action label like “Sitting on a

table” or “Sitting in a chair”. For each action l, we sort all

object-relation pairs using, as a key, the cosine similarity of

the action sentence senl with each object-relation sentence

senij . We take the top k object-relation pairs for each ac-

tion label, l to obtain kL object-relation pairs,











〈o, r〉0,0 〈o, r〉0,1 . . . 〈o, r〉0,l
〈o, r〉1,0 〈o, r〉1,1 . . . 〈o, r〉1,l

...
...

. . .

〈o, r〉k,0 〈o, r〉k,1 . . . 〈o, r〉k,l











that are used for global semantic context based abstraction.

For every frame, we prune FSG by discarding all object-

relation pairs that are not among the aforementioned kL

global pairs to obtain abstracted F ′
SG with global semantic

context.

3.4. Kernel­PCA based Abstraction

A good knowledge representation can lead to a faster and

more accurate inference model [2]. Motivated by these, we

consider experimenting with PCA through dimensionality

reduction. More specifically, we apply kernel PCA (kPCA)

[13] which is a nonlinear extension of PCA that has the ca-

pability to exploit redundancies through higher order statis-

tics, for a relevant object/relation abstraction. The princi-

pal components of the PCA are computed with the eigen-

decomposition of the covariance matrix Γ =
1

n
FT
SGFSG,
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Figure 4. Sampled tSNE plots from each feature bank representations: from left to right, a) raw feature banks, b) CCA-based features, c)

CRF-based features, d) PCA-based features and e) global-context based features. Notice that the separability between clusters are more

distinct in abstracted representations compared with the basic feature representation.

which decomposes the covariance matrix to Γ = QΛQT

as Q depicts the direction of maximum variance. Such

decomposition for the kernel-base version happens in the

feature space (rather than input space [10]), instead, we

have Γ̂ =
1

n
ΦTΦq = λq which leads to a decomposi-

tion of
1

n
ΦTΦ = QΣQT . With the span of {ΦT } and

{Q} being equal, each vector q can be written in terms of

n-dimensional vector p as q = ΦTp. Which then by as-

suming Kp = λp, we have the decomposition of K = PT .

Depending on the complexity of the feature banks and their

dimension, there are different alternatives to estimate the

eigenpairs (both exact and approximation techniques). In

this work we use an approximation method that works based

on iterative improvements toward an exact solution.

4. Experiments

In this section, we evaluate the efficacy of each abstrac-

tion technique in the action recognition framework. We

train and test our models on four Nvidia Quadro RTX 8000

GPUS. We use two datasets to evaluate our methods: Cha-

rades and Sports Videos in the Wild (SVW). SVW, as com-

pared with Charades, does not have as many objects and

relations present in the scene. Therefore, we first evaluated

the efficacy of our methods in Charades and then picked the

best feature representation (SP ) and abstraction technique

(PCA-based) to evaluate action recognition performance.

4.1. Semantically Weighted Feature Banks

For each video segment we first localize all persons, ob-

jects and relations using [9]. We then compute the con-

fidence map of all objects and relations for every frame

(sampling takes takes place during training and testing of

the classifier). Next we enhance the representation power

of FSG with four different representations. The first is the

original scene graph feature bank C. In Cp, we multiply

the scene graph matrix C by the detection confidence of the

actors. In the third representation, S, we scale each element

of C by the semantic distance between each object-relation

pair computed using the ViCO word embeddings [12]. In

Sp, we scale S by the confidence of each actor. In our ex-

Feature Bank Variations

C 71.9

Cp 72.2

S 71.8

Sp 72.2

Evaluation on Charades Dataset

PCA 72.2

CCA 72.2

Global-context 72.0

CRF 71.8

STO [34] 71.7

Table 1. Performance on different abstractions. Left table shows

the effect of using different scene graph matrices (comparisons are

shown for the best performing abstraction technique). C is from

the original scene graph object-relation matrices, Cp is C scaled

with detection confidence of actors, S is adjusted C based on se-

mantic distance between each object-relations, and Sp is S scaled

with confidence of actor detection. We compare the performance

(mAP) across top 30 action labels using Sp. See 4.1 for the defi-

nitions of the Sp matrix.

periments we evaluated all four scene graph matrix types

C,Cp, S, Sp (Table ) and used the most discriminate repre-

sentation to evaluate our models.

CRF setup: We formulate a conditional random field such

that the unary potentials are represented with the most com-

mon objects, and the pairwise potentials are represented

with the most common relationship pairs conditioned on the

action labels. The feature function of unary potentials uses

the confidence of object detection directly, and the feature

function of pairwise potentials uses both object and rela-

tionship confidences to produce discriminative features. In

situations where the data structure is too large and highly

sparse, we can alternatively use the limited memory quasi-

Newton technique for bound-constrained optimization to

better estimate unary and pairwise weights.

Deep-CCA setup: We first convert the ground-truth labels

into multi-hot vectors, and apply a non-linear extension of

CCA [1] which transforms the feature banks and multi-hot

vectors to a new embedding space where their correlations

are maximized. Because the multi-hot vectors already have

the most discriminative form with respect to the ground-

truth labels, our procedure maps the features banks to be

more discriminative.

PCA setup: For this technique, the goal is to eliminate the

least significant components of the feature banks. There-

fore, we apply kernel PCA to FSG, which has a size of

7701, and select the first 2048 PCA components to represent
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the scene. Note that unlike CRF or Global-context based

techniques, the explicit notions of object and relations are

lost in this abstraction (as shown in Fig. 3), but by eliminat-

ing the least significant components of the feature bank we

aim to eliminate noise in our feature banks.

Global-context setup: We compute the semantic similarity

between each action and each object-relation pair in FSG

as described in 3.3. The globally abstracted feature bank

F ′
SG is then obtained by using the top k values in the se-

mantic similarity matrix. The abstracted feature from this

method consists of the top k similar object-relation pairs

to each action class. The globally abstracted feature bank

F ′
SG is then obtained by using only the top k similar object-

relation pairs to each action class. In our experiments, we

empirically found the best k to be equal to 13.

4.2. Action Recognition with Abstracted Features

We split each video into clips and pass each clip through

I3D [4] with a ResNet101 backbone [14] to compute a

short-term feature of dimension 2048. Instead of computing

a long-term feature bank (LFB), we used our abstracted fea-

tures banks mentioned above. For each clip, we generate all

neighboring F ′
SG in a window of size 2d+1 centered at the

current clip. We then use the same Non-Local Feature Bank

Operator (FBO-NL) as [34] to aggregate our abstracted fea-

tures F ′
SG with the short-term features before passing them

through the classifier (as illustrated in Fig.2).

SVW: The SVW (Sport Videos in the Wild) dataset [25]

consists of 4,200 videos captured by a smartphone. There

are 30 sport categories and 44 different actions. Each video

has a single sport label and 40% of the video is labeled in

time and space with a single action. We split the data into

75% train, 25% validation set, and sample the SGFB ev-

ery 10 frames. Our mAP across 30 sport actions is 88.1%

which was a significant improvement compared to reported

performance of 61.5% in [26].

Charades Dataset[27]: Charades dataset consists of 9,848

videos, which are on average 30 seconds. There are 157

action classes and each video can be labeled with multiple

actions. We use 7811 videos for training and 1814 for test-

ing and the remainder are pruned. We extract 32 frame clips

from each training/testing video with a stride of four frames.

We use a window size of d = 10 for our feature bank. We

use the same 3D CNN backbone, hyperparameters, and op-

timizer as previous work [34, 16] for a fair comparison.

4.3. Comparing Abstractions Techniques

We noticed that the classification performance of action

labels depends on different abstraction technique. Some ac-

tions, specially in sports, involve specific equipment. Our

abstraction techniques show better performance for such

actions. In CRF and global-context based technique we

explicitly encode relevant objects/relations, compared with

Figure 5. Top: Action recognition performance on Charades.

The performance variation between different abstraction is due

to whether actions involve relative equipment and how common

those equipment are between actions. Bottom: Performance of

best model (PCA) for action recognition on SVW

CCA based techniques where the relevancy is implicit in the

linear mapping. Using CRF, Global and CCA based method

we are able to explicitly remove objects and relations that

are not related to the actions. This makes it suitable for

datasets where people are interacting with equipment. In

PCA based technique we abstract the features using the

most significant component of the feature. In comparison

to other techniques, the PCA technique is advantages when

there aren’t many object and relations present in the scene.

5. Conclusion

We examined four fundamentally different feature ab-

straction techniques to improve action recognition for

sports. We were able to significantly improve the action

recognition mAP on SVW by 26.6% through automatic ab-

straction of relevant information in the scene. In summary,

each abstraction technique is based on a unique criterion

and has different effects on action recognition performance.

With the global-context and the CRF technique we explic-

itly exploit the object relations whereas with PCA and CCA

technique we implicitly obtain significant components or

correlated mapped features. Through our experiments, we

were able to express the feature representations much more

efficiently, consequently leading to more accurate and faster

converging classification models.
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