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Abstract

Puck localization is an important problem in ice hockey

video analytics useful for analyzing the game, determining

play location, and assessing puck possession. The problem

is challenging due to the small size of the puck, excessive

motion blur due to high puck velocity and occlusions due to

players and boards. In this paper, we introduce and imple-

ment a network for puck localization in broadcast hockey

video. The network leverages expert NHL play-by-play

annotations and uses temporal context to locate the puck.

Player locations are incorporated into the network through

an attention mechanism by encoding player positions with

a Gaussian-based spatial heatmap drawn at player posi-

tions. Since event occurrence on the rink and puck location

are related, we also perform event recognition by augment-

ing the puck localization network with an event recognition

head and training the network through multi-task learning.

Experimental results demonstrate that the network is able

to localize the puck with an AUC of 73.1% on the test set.

The puck location can be inferred in 720p broadcast videos

at 5 frames per second. It is also demonstrated that multi-

task learning with puck location improves event recognition

accuracy.

1. Introduction

Ball tracking in sports is of immense importance to

coaches, analysts, athletes and fans. The location of the

ball is directly related with the location of the play and can

also be used in tasks such as player and team possession

analysis. Hence, a computer vision based ball track-

ing/localization system can be of high utility. Although

there has been significant effort for soccer ball tracking

[1, 7, 22, 24], hockey puck tracking is more challenging

due to a puck’s small size, velocity, and regular occlusion

due to players and opaque boards.

Many authors either only track the ball in screen coor-

dinates [9, 15, 26] or track ball on the field by treating it

Figure 1: Subset of 1500 puck locations in the dataset. The

puck locations on the ice rink are highly correlated with the

event label. Faceoffs(red) are located at the faceoff circles,

shots(blue) are located in the offensive zones and dump

in/outs (yellow) are presents in the neutral zone.

as a two-stage process: (1) tracking the ball in the screen

coordinates (2) registering the screen coordinates to the

field coordinates using automated homography [8, 18]

after performing tracking. A big issue in ball tracking is

the requirement of a large amount of frame-by-frame ball

annotations for training which can be very difficult and

time consuming to obtain [12].

In this paper, we introduce a successful network for

localizing hockey puck on the ice rink. The model directly

estimates the puck location on the ice rink (instead of

the afore-mentioned two-stage approach). Rather than

estimating puck location from static images, the model

estimates the puck location from video using the temporal

context and leverages player location information with

heatmaps using an attention mechanism (Fig. 2). Instead

of annotating data on a frame-by-frame basis, we utilize

the existing NHL data available on a play-by-play basis

annotated by expert annotators. Experimental results

demonstrate that the network is able to locate the puck with

an AUC of 73.1% on the test set. The network is able to

localize the puck during player and board occlusions. At

test-time, the network is able to perform inference using a

sliding window approach in previously unseen untrimmed

broadcast hockey video at 5 frame per second (fps).
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Figure 2: The overall network architecture. Green represents model layers while pink represents intermediate features. The

network consists of four components: (1) Video Branch, (2) Player Branch, (3) Attention, and (4) Output. The Video Branch

extracts spatio-temporal features from raw hockey video. The Player Branch extracts play location information from player

Gaussian heatmaps. The Attention component fuses the player location and spatio-temporal video information. The Output

component produces the puck location output from the features obtained from the attention component.

Player and puck location information is related with

event occurring on the rink (Fig. 1). Other research

leverages player and ball trajectories for event recognition

using a separate tracking/localization system [11, 17]. We

attach an event recognition head to the puck localization

model to leverage the puck location information for event

recognition and train the whole network using multi-task

learning. Experimental results demonstrate that event

recognition accuracy can be improved using puck location

information as an additional signal.

2. Background

2.1. Ball tracking using traditional computer vision

In soccer, a common approach to the ball tracking

problem is a two-stage approach [7, 24]: (1) ball tracking

in screen coordinates and (2) sports field registration

via homography. Yamada et al. [24] perform camera

calibration by matching straight and curved lines in the

soccer field coordinates to the model. Candidates for the

ball are identified by looking for white patches and tracking

is performed with the help of a 3D motion model. Ishii

et al. [7] use a two synchronized camera system to track

the soccer ball in 3D coordinates with ball detection done

through template matching and tracking is done with the

help of a 3D Kalman filter. Ariki et al. [1] use a combi-

nation of global and local search for soccer ball tracking,

with the global search consisting of template matching

and local approach consisting of a particle filter. Yu et al.

[25] propose a trajectory based algorithm for ball tracking

in tennis where instead of determining whether an object

candidate is the ball, trajectory candidates are classified

into ball trajectories. Wang et al. [22] propose a unique

conditional random field (CRF) based algorithm to exploit

the contextual relationship between the players and ball for

ball tracking. Yakut et al. [23] used background subtraction

to track hockey puck in zoomed in broadcast videos for

short time intervals. The puck tracking performance

deteriorated with high motion blur, fast camera motion and

occlusions.

2.2. Ball tracking using deep learning

Recently, deep neural networks (DNNs) have found ap-

plication in sports ball tracking. Zhang et al. [26] track

golf ball in high resolution, slow-motion videos using a

patch based object detector and discrete Kalman filter. Ko-

morowski et al. [9] use a fully convolutional network uti-

lizing multiscale features to predict soccer ball confidence

maps. Reno et al. [15] use a convolutional neural network

(CNN) with image patches as input to detect the presence

of tennis balls. Our work is related to Voeikov et al. [21]

where they introduce a multi-task approach for tracking a

table-tennis ball using a cascade of detectors using frame-

level ball location annotations.

Puck tracking in hockey is relatively unexplored due to

the high level of difficulty involved. Pidaparthy et al. [12]

propose using a CNN to regress the puck’s pixel coordinates

from single high-resolution frames collected via a static

camera for the purpose of automated hockey videography.

The method involved an extensive annotation pipeline for

model training. Instead of inferring the ball location from

images and frame level annotations, we use a CNN to pre-
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dict the puck location on the ice rink directly from short

videos with approximate annotations without using any ex-

ternal homography model.

2.3. Event recognition in sports

In the literature, video understanding in sports is often

framed as event spotting, aimed at associating events with

anchored time stamps [5, 10], player level action recog-

nition [4, 20] and event recognition which involves di-

rectly classifying a video into one of the known categories.

[13, 16]. Event recognition is an important task in vision-

based sports video analytics. Tora et al. [16] recognize

hockey event from video by gathering player level contex-

tual interaction with the help of an LSTM. Others make use

of pre-computed player and ball trajectories for recognizing

events [11, 17]. Mehrsa et al. [11] use player trajectories

obtained from a player tracking system in order to utilize

them for event recognition as well as team-classification in

ice hockey. Sanford et al. [17] use player and ball trajecto-

ries obtained from a tracking system for detecting events in

soccer. Instead of using player trajectories, we use puck lo-

cation information to recognize hockey events using multi-

task learning.

3. Methodology

3.1. Dataset

The dataset consists 8,987 broadcast NHL videos of two

second duration with a resolution of 1280 × 720 pixels and

a framerate of 30 fps with the approximate puck location

on the ice rink annotated. The annotations are rough and

approximate such that the puck location corresponds to the

whole two second video clip rather than a particular frame.

The videos are split into 80% samples for training and 10%

samples each for validation and testing. Fig 1 shows the

distribution of a subset of puck location data. The videos

are also annotated with an event label which can be either

Faceoff, Advance (dump in/out), Play ( player moving the

puck with an intended recipient e.g., pass, stickhandle ) or

Shot. The distribution of event labels is shown in Fig. 3.

3.2. Puck localization

The overall network architecture consists of four

components: Video branch, Player branch, Attention and

Output. The architecture is illustrated in Fig. 2. The next

four subsections explain the components in detail.

3.2.1 Video branch

The purpose of the video branch is to obtain rele-

vant spatio-temporal information to estimate puck

location. The video branch takes as input 16 frames

Table 1: Network architecture of player location backbone.

k,s and p denote kernel dimension, stride and padding re-

spectively. Chi, Cho and b denote the number of chan-

nels going into and out of a block and batch size re-

spectively.Additionally each layer contained a residual-skip

connection with a 1× 1 convolution.

Input: Player heatmap b× 256× 256

Layer 1

Conv2D

Chi = 1, Cho = 2

(k = 3× 3, s = 2, p = 1)

Batch Norm 2D

ReLU

Layer 2

Conv2D

Chi = 2, Cho = 4

(k = 2× 2, s = 2, p = 0)

Batch Norm 2D

ReLU

Layer 3

Conv2D

Chi = 4, Cho = 8

(k = 2× 2, s = 2, p = 0)

Batch Norm 2D

ReLU

Output b× 32× 32× 8

Table 2: Network architecture of Regblocks 1 and 2 for out-

put pw ∈ R200. k,s and p denote kernel dimension, stride

and padding respectively. Chi, Cho and b denote the num-

ber of channels going into and out of a block and batch size

respectively. Additionally each layer contained a residual-

skip connection with a 1× 1× 1 convolution.

Input: F0 b× 4× 32× 32× 256

Reg Block 1

Conv3D

Chi = 256, Cho = 200

(k = 2× 2× 2, s = 2× 2× 2, p = 0)

Batch Norm 3D

ReLU

Reg Block 2

Conv3D

Chi = 200, Cho = 200

(k = 2× 2× 2, s = 2× 2× 2, p = 0)

Batch Norm 3D

ReLU

Global average pooling

Sigmoid activation

Output b× 200

{fi ∈ R256×256×3, i ∈ {1..16}} sampled from a short

video clip V of two second duration. The frames are

passed through a backbone network consisting of four

layers of R(2+1)D network [19] to obtain features

Fv ∈ R4×32×32×256 to be used for further processing. The

R(2+1)D network consists of (2+1)D blocks which splits

spatio-temporal convolutions into spatial 2D convolutions
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Figure 3: Distribution of event labels in the dataset. The

dataset is imbalanced with Play event having the most oc-

currence.

followed by a temporal 1D convolution.

3.2.2 Player branch

The location of puck on the ice rink is correlated with

the location of the players since the puck is expected to

be be present where the player ”density” is high. We

make the assumption that the location of players remains

approximately the same in a short two second video clip.

In order to encode the spatial player location, we take the

middle frame fm of the video V and pass it through a

FasterRCNN [14] network to detect players. After player

detection, we draw a Gaussian with a standard deviation

of σp at the centre of the player bounding boxes to obtain

the player location heatmap H . An advantage of using this

representation is that the player location variability in the

video clip can be expressed through the Gaussian variance.

The player location heatmap H is passed through a player

location backbone network to output player location

features Fp ∈ R32×32×8 . The exact configuration of the

player location backbone is shown in Table 1. The player

location features Fp are passed to the attention block for

further processing.

3.2.3 Attention

The purpose of attention is to make the network incorpo-

rate player locations by considering the relationship be-

tween video features Fv and player location features Fp.

The player location features Fp and video features Fv are

concatenated along the the channel axis by repeating the

player location features along the temporal axis. The con-

catenated features Fcat ∈ R4×32×32×264 are then passed

through a variation of the squeeze and excitation [2, 6] net-

work consisting of a 3 × 3 convolution, non-linear excita-

tion and 1 × 1 convolution. The 3 × 3 squeeze operation

learns the spatial relationships between player locations on

the rink and video features. The squeeze operation outputs

features F ′

cat ∈ R4×32×32×132. The squeeze operation is

followed by non linear activation and 1 × 1 convolution to

obtain features Fa ∈ R4×32×32×256. The 1×1 convolution

learns the channel wise relationships between the feature

maps in F ′

cat. Finally, the output of the attention block is

the hadamard product of the attention features Fa and the

video features Fv followed by a skip connection.

Fo = Fa ⊗ Fv + Fv (1)

3.2.4 Output

The features Fo obtained from the attention component

are finally passed through two RegBlocks to output the

probability of puck location on the ice rink. Global average

pooling is done at the end of the two RegBlocks to squash

the intermediate output to one dimensional vectors. This is

done independently for rink width and height dimensions

through two separate branches. The overall network out-

puts two vectors, pw ∈ R200 and ph ∈ R85, in accordance

with the dimension of the NHL rink. The exact details of

RegBlocks 1 and 2 are shown in Table 2. Regblocks 3 and

4 have a similar architecture, the only difference is that

instead of a R200 vector pw, a R85 vector ph is output by

changing the output channels to 85.

3.2.5 Training details

We use the cross entropy loss to train the network. In or-

der to create the ground truth, we use a one dimensional

Gaussian with mean at the ground truth puck location and

a standard deviation σ for both directions. The Gaussian

variance encodes the variability in ball location in the short

video clip (Fig. 5) . The total loss Lpuck is the sum of the

loss in horizontal axis Lw and vertical axis Lh, which is

given by:

Lpuck = Lw + Lh (2)

Lpuck = −
1

200

200∑

i=1

wgt log pw −
1

85

85∑

j=1

hgt log ph (3)

Where wgt ∈ R200 and hgt ∈ R85 denote the ground truth

probabilities and pw ∈ R200 and ph ∈ R85 denote the pre-

dicted probabilities.

For data augmentation, each frame is sampled from a uni-

form distribution U(0, 60) so that the network sees different

frames of the same video when the video sampled different

times. The data augmentation technique is used is all exper-

iments unless stated otherwise. We use the Adam optimizer

with an initial learning rate of .0001 such that the learning

rate is reduced by a factor of 1

5
at iteration number 5000.

The batch size is 15.
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Figure 4: (a) Accuracy (φ) vs threshold (t) curve. (b) The

best performing model gets an overall AUC of 73.1% on

test set.

3.3. Multitask event recognition

The event occurring on the rink in hockey is highly cor-

related with the puck location. For example, faceoff occurs

on the faceoff circles, shots are expected to occur in the of-

fensive zones etc. In order to leverage the shared informa-

tion between puck location and event recognition, we learn

the event and puck location in hockey video clip using a

single network through multi-task learning. This is done by

appending a third event recognition head at the end of fea-

tures Fo representing the probability of the predicted event

pe ∈ R4. Let Chi, Cho and k denote the number of chan-

nels going into and out of a kernel and kernel size respec-

tively. The event recognition head consists of a 3D convolu-

tion layer with Chi = 256, Cho = 256 with k = 2× 3× 3
and stride = 2 followed by 3D batch normalization , fol-

lowed by another 3D convolution Chi = 256, Cho = 512
with k = 2 × 3 × 3 and stride = 2, adaptive pooling and

fully connected layer. The total loss is the linear combina-

tion of equation 2 and the event loss Le which is a cross

entropy loss between the ground truth and predicted event

probability. Following Cipolla et al. [3], the overall loss for

the muti-task network is given by:

Lmulti =
1

σ2

1

Lw+
1

σ2

2

Lh+
1

σ2

3

Le+log(σ1)+log(σ2)+log(σ3)

(4)

The rest of the training details and data augmentation are

the same as in section 3.2.5.

4. Results

4.1. Puck localization

4.1.1 Accuracy metric

A test video is considered to be correctly predicted at a tol-

erance t feet if the distance between the ground truth puck

Figure 5: Construction of ground truth for a training sample

with puck located at w = 44 ft and h = 5 ft. (a) Ground

truth distribution vector wgt ∈ R200 (b) Ground truth dis-

tribution vector hgt ∈ R85

location z and predicted puck location zp is less than t feet.

That is ||z−zp||2 < t. Let φ(t) denote the percentage of ex-

amples in the test set with correctly predicted position puck

position at a tolerance of t. We define the accuracy metric

as the area under the curve (AUC) φ(t) at tolerance of t = 5
feet to t = 50 feet.

4.1.2 Trimmed video clips

The network attains an AUC of 73.1% on the test dataset il-

lustrated in Fig. 4 (b). The AUC in the horizontal direction

is 81.4% and AUC in vertical direction is 87.8%. From Fig.

4 (a), at a low tolerance of t = 12 ft, the accuracy in ver-

tical(Y) direction is 76% and the accuracy in horizontal(X)

direction is 63%. At a tolerance of t = 20 ft, the accuracy

in both directions is greater than 80% .

Fig. 6 show the zone wise accuracy. A test example is

classified correctly if the predicted and ground truth puck

location lies in the same zone. From Fig. 6 (a), the network

gets an accuracy of ∼ 80% percent in the upper and lower

halves of the offensive and defensive zones. From Fig. 6

(b), after further splitting the ice rink in nine zones, the

network achieves an accuracy of more than 70% in five

zones. The network also has failure cases. From Fig. 6 (b),

it can be seen that accuracy is low (less than 60% ) in the

bottom halves of the defensive and offensive zones. This is

due to the puck being occluded by the rink boards.

4.1.3 Untrimmed broadcast video

We also test the network on untrimmed broadcast videos

using a sliding window of length l and stride s. The

window length l is the time duration covered by the sliding

window and stride s is the time difference between two

consecutive application of the sliding window. Due to the

difficulty of annotating puck location frame-by-frame in
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Figure 6: Zone-wise accuracy. The figure represents the

hockey rink with the text in each zone represents the per-

centage of test examples predicted correctly in that zone.

The position of the camera is at the bottom. In (b), the ac-

curacy is low in the lower halves of the defensive and offen-

sive zones since the puck gets occluded by the rink board.

720p videos, we do not possess the frame-by-frame ground

truth puck location. Therefore, we perform a qualitative

analysis in this section. The videos used for testing are

previously unseen video not present in the dataset used for

training and testing the network.

To determine the optimal values of stride s validation

is performed on a 10 second clip. Some frames from the

validation 10 second clip are shown in Fig. 7. Whenever

visible, the location of the puck is highlighted using a red

circle. Fig 8 shows the trajectories obtained. The network is

able to approximately localize the puck in untrimmed video

within acceptable visual errors, even though the network is

trained on trimmed video clips where puck location is an-

notated approximately. The puck is not visible during many

frames of the video, but the network is still able to guess

the puck location. This is because the network takes into

account the temporal context and player location. Since the

network is originally trained on 2 second clips, the window

length l is fixed to 2s. Fig 8 , shows that as the stride s is

decreased, the puck location estimates become noisy. Since

between two passes, the puck motion is linear, we do not de-

crease stride below 0.5s as it leads to very noisy estimates

(Fig. 9). The optimal stride s = 1s gives the most accu-

rate result. A lower stride results in noisy results and higher

strides produces very simple predictions.

The network is tested on another 10 second video with

l = 2s and s = 1s shown in Fig 10. The predicted puck

trajectory is shown in Fig 10. The puck is occluded by the

rink board during a part of the video (shown in images 5

and 6). The network is able to localize the puck even when

it is not visible due to board occlusions.The inference time

of the network on a single GTX 1080Ti GPU with 12GB

memory is 5 fps.

Table 3: Comparison of AUC with different values of σ

with a three layer backbone network. Network with σ = 30
shows the best performance

σ AUC AUC(X) AUC(Y)

20 62.5 71.3 85.07

25 68.5 77.9 85.6

30 69.0 78.5 85.5

35 68.9 78.8 85.4

Table 4: Comparison of AUC with different number of lay-

ers of the backbone R(2+1)D network. A four layer back-

bone shows the best performance.

Layers AUC AUC(X) AUC(Y)

2 56.3 73.2 74.1

3 69.0 78.5 85.5

4 72.5 81.3 87.3

5 72.4 81.0 87.3

4.2. Ablation studies

We perform an ablation study on the number of layers

in the backbone network, puck ground truth standard devia-

tion, presence/absence of player branch consisting of player

locations and data augmentation .

4.2.1 Puck ground truth standard deviation

The best value of standard deviation σ of puck location

ground truth 1D Gaussian is determined by varying σ from

20 to 35 in multiples of five. From Table 3, the number of

layers in the backbone is fixed to three while player loca-

tion based attention is not used. Maximum AUC of 69%
is attained with σ = 30 feet. A lower value of σ makes

the ground truth Gaussian more rigid/peaked which makes

learning difficult. A value of sigma greater than 30 low-

ers accuracy since a higher σ makes the ground truth more

spread out which reduces accuracy on lower tolerance val-

ues.

4.2.2 Layers in backbone

We determine the optimal number of layers in the R(2+1)D

backbone network by extracting the video branch features

from different layers without using the player location

based attention. The puck ground truth standard deviation

is set to the optimal value of 30. From Table 4, the

maximum AUC of 72.5% is achieved by using 4 layers

of R(2+1)D network. Further increasing the number of

backbone layers to 5 causes a decrease of 0.1 in AUC due

to overfitting.
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Figure 7: Some frames from the 10 second validation video clip. Whenever visible, the location of the puck is highlighted

using the red circle. The initial portion of the clip is challenging since the puck is not visible in the initial part of the clip.

Figure 8: Puck trajectory on the ice rink for the validation

video. The trajectory becomes noisy with s = 0.5s and

lower.

Figure 9: Puck trajectory for the validation video with a

very low stride of 0.125 seconds. The trajectory is ex-

tremely noisy and hence is not a good estimate.

4.2.3 Player location based attention

We add the player branch and the attention mechanism to

the network with 4 backbone layers and σ = 30. Three val-

ues of player location standard deviation σp = {15, 20, 25}
are tested. From Table 5, adding the player location based

attention mechanism brought an improvement in the overall

AUC by 0.6% with σp = 15. Further increasing σp causes

the player location heatmap to become more spread out ob-

fuscating player location information.

Table 5: Comparison of AUC values with/without player

branch. The player branch with σp = 15 shows the best

performance.

Player detection σp AUC AUC(X) AUC(Y)

No - 72.5 81.3 87.3

Yes 15 73.1 81.4 87.8

Yes 20 72.8 81.5 87.3

Yes 25 72.2 80.4 87.9

Table 6: Comparison of AUC values with uniform and ran-

dom sampling

Sampling method AUC AUC(X) AUC(Y)

Constant interval 70.3 79.4 86.4

Random 73.1 81.4 87.8

4.2.4 Data augmentation

We compare the data augmentation technique done using

randomly sampling frames from a uniform distribution (ex-

plained in Section 3.2.5) to sampling frames at a constant

interval. From Table 6, removing random sampling de-

creases the overall AUC by 3.2% which demonstrates the

advantage of the data augmentation technique used.

4.3. Multitask event recognition

The network performing only event recognition task

with zero weights assigned to the puck location loss is

treated as a comparison baseline. We compare the macro

averaged precision, recall and F1 score values correspond-

ing to the four events for the multi-task learning setting and

the baseline.

From Table 7, the multi-task setting performs better

compared to the baseline where puck location is not used

as an additional signal which demonstrates that learning the

two tasks together is beneficial for event recognition. This

is because multi-task learning with puck location provides
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Figure 10: Some frames from the test 10 second clip. Whenever visible, the location of the puck is highlighted using the red

circle

(a) (b)

Figure 11: The predicted puck trajectory for the test video with window length two seconds (l = 2s) and stride one second

(s = 1s) . The network is able to localize the puck even when it is not visible due to board occlusions.

Table 7: Precision, Recall and F1 score values for the net-

work corresponding to the multi-task and baseline settings.

The multi-task setting shows better performance.

Precision Recall F1 score

Muti task

Play 81.8 87.2 84.4

Shot 56.4 60.6 58.4

Advance 63.2 31.3 41.9

Faceoff 76.3 90.0 82.6

Macro Avg. 69.4 67.3 66.8

Baseline

Play 81.0 88.6 84.6

Shot 63.5 56.0 59.5

Advance 55.4 31.3 40.0

Faceoff 75.9 82.0 78.8

Macro Avg. 69.0 64.5 65.8

contextual location information which greatly improves F1

score of events such as Faceoff (82.6 multi-task vs 78.8
baseline) which always occur in specific rink locations. The

Advance event has the lowest F1 score value of 41.9. This

is because it often gets confused with Play and Shot events.

5. Conclusion

A model has been designed and developed to localize

puck and recognize events in broadcast hockey video. The

model makes use of temporal information and player lo-

cations to localize puck. We append an event recognition

head to the puck localization model and train the whole

network using multi-task learning. We also perform abla-

tion studies on the model parameters and data augmentation

used. We attain an AUC of 73.1% on the test set and qual-

itatively localize the puck in untrimmed broadcast videos.

We also report an ice rink region based average accuracy

of 80.2% with the ice rink split into five zones and 67.3%
with the rink split into nine regions. Experimental results

also demonstrates that the puck location signal aids event

recognition with the multi-task learning setting improving

the macro-average event recognition F1-score by one per-

cent. Future work will focus on using high resolution im-

ages/videos and frame-wise puck location annotations to

improve performance.
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