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Abstract

This paper presents a method for automatic sign lan-
guage recognition that was utilized in the CVPR 2021
ChaLearn Challenge (RGB track). Our method is composed
of several approaches combined in an ensemble scheme
to perform isolated sign-gesture recognition. We combine
modalities of video sample frames processed by a 3D Con-
vNet (I3D), with body-pose information in the form of joint
locations processed by a Transformer, hand region images
transformed into a semantic space, and linguistically de-
fined locations of hands. Although the individual models
perform sub-par (60% to 93% accuracy on validation data),
the weighted ensemble results in 95.46% accuracy.

1. Introduction

Sign languages (SLs) are very complex visual languages.
Cues of SLs are a combination of multi-modality and multi-
semantic functions [31]. This makes SL recognition a
very complex task. The main problem is to effectively
extract representative cues, which in visual languages (ie
SLs), must be extracted directly from pixels of the images.
This is even more challenging for SL recognition in the
wild [33, 34].

The undeniable success of Hidden Markov Models
(HMMs) in automatic speech recognition has been the ini-
tial motivation for its use for SL recognition [37]. Fol-
lowing successful architectures for continuous SL recog-
nition combine spatial models (2D CNN) with temporal
models (LSTM or HMM) [23, 40]. Recently, 3D Convo-
lIutional Neural Networks (CNNs) and self-attention archi-

tectures have been used [28, 43]. Nowadays, Transform-
ers reach state-of-the-art results in the areas of natural lan-
guage processing (NLP) [15]. In addition, during the last
year, Transformers established new state-of-the-art results
in many tasks in the visual domain [2, &, 16].

The main motivation for our approach was to use the
state-of-the-art models for gesture/action recognition and
augment it with other approaches based on different modal-
ities. We wanted to analyze the performance of an en-
semble scheme when different models utilizing different
data modalities are used. Previous experiments suggest
that the extraction of multi-modal and multi-semantic fea-
tures (such as keypoints [14]) have a particular impact on
class discrimination. As the state-of-the-art model for ges-
ture/action recognition we use I3D [10] and finetune it from
Kinetics400 dataset [21] to several data representations of
AUTSL dataset [34].

To incorporate the motion of hands we detect the body
joints using OpenPose [7] and predict the sign class using
a Transformer model inspired by the Vision Transformer
(ViT) [16]. The information about the pose of the hands is
added by our Visual Language Embedding (VLE) model. In
this work, we present a proof-of-concept method that trans-
forms images of hands into a semantic space, where similar
poses lie close to each other.

We use concepts from other vision tasks, that show that
deep neural networks trained for the classification of images
fulfill the requirement of embedded space in the penultimate
layer. We finetune a MobileNet [ | 8] architecture pre-trained
on ImageNet [30] to classify our mined dataset of hand im-
ages. To add information about the location of hands, we
developed an algorithm for computing linguistically defined



locations of hands. We compute the location vectors from
OpenPose detections [7] and together with VLE input them
into a Transformer to classify the sign. Lastly, we compute
weights of these different models using Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) optimization al-
gorithm [3]. As a result of this pipeline, we provide an
initial overview of how this modalities’ conjunction con-
tributes to SL recognition within the extensive isolated sign
AUTSL dataset.
Our contributions are summarized as follows:

1. We have proposed a system for sign language recogni-
tion reaching competitive results.

2. We have shown the effectiveness of mutual support of
different data modalities.

3. We have proposed a novel visual feature embedding
for sign language recognition - VLE.

Through the paper, we provide several supportive im-
ages. Generally, red cylinders depict “outside” data pro-
vided by the organizers; green cylinders are data produced
by us during this challenge; purple rounded rectangles
are 3rd party methods; blue rectangles are our own mod-
els/methods.

2. Related Work

We can distinguish three tasks in sign language recog-
nition: classification of isolated signs [I4], continuous
SL recognition [1, 12, 23, 38, 43], and SL translation [5,

]. Although a combined solution, such as recognition
and translation, can improve the performance across both
tasks [0].

Recently, the STMC network was introduced to model
spatial and temporal cues in the task of continuous SL
recognition. The approach learns spatial representation and
explicitly decomposes visual features of different cues to
make self-contained pose estimation [43]. Although there
are common problems in sequence learning, isolated sign
recognition is, due to its natural limitation, closer to the
classification tasks in the video domain.

Deep learning methods prevail in this area. Especially,
2D convolutional neural networks (2D-CNN) and 3D con-
volutional neural networks (3D-CNN) are very success-
ful [1, 20, 25, 29, 35]. Additionally, 2D-CNN with temporal
convolutional layers [12] and 3D-CNN [26, 38] are adopted
to learn dynamic features in SLs.

These appearance-based methods directly create hier-
archical representations of spatial-temporal data just like
standard convolutional networks, but with spatial-temporal
filters. The multi-modality fusion of RGB and optical
flow [13] is considered, for example, in [9] the authors
trained one I3D network on RGB inputs, and the other one
on optical-flow inputs.

Recently, the integration of the attention mechanism
shows very good results. Transformers, such as attention-
based encoder-decoder models, were originally designed
for machine translation [36] and subsequently for SLs [19].
These transformers need a huge amount of training data,
however, same as in the areas of NLP [15], they recently
achieve state-of-the-art results also in many image process-
ing tasks [8, 16].

The classification task in the image/video domains dif-
fers from the task of continuous speech recognition or ma-
chine translation in a restriction to the self-attention mech-
anism. There is no need to learn sequence-to-sequence
such as the correspondence between images/frames and
sign glosses. Therefore, for the classification in the im-
age/video domain, the original architecture is reduced just
to the encoder part that processes the blocks of images or
frames as one sequence. This spatial or spatial-temporal se-
quence is extended by the classification token at the input
of the Transformer. The original Vision Transformer archi-
tecture was recently further adapted to model long-range
sequences in the video domain [2]. These approaches make
video classification exclusively on self-attention over space
and time. Unfortunately, the authors did not provide codes
and pre-trained models yet.

The problem arises in a reduction of image information
in general. For Transformer input, 2D RGB pixel data need
to be converted into a suitable 1D suitable embedding [27].
This reduction becomes even more significant in the video
domain [14]. There exist two main groups of approaches
that overcome this problem. The approaches from the first
group utilize CNN backbone to extract embedding from im-
age sub-block [39]. The second group of approaches em-
ploys hand-crafted features. Hand-crafted features have a
long tradition in SL recognition and plenty of them were
previously designed especially for SLs [4, 11, 41]. In more
recent works, the outputs from the human body pose detec-
tor (OpenPose) were also used [24, 42].

3. Datasets

AUTSL dataset contains 32302 videos from 43 different
speakers in total. On each video, one person is signing one
of 226 signs, usually starting and ending in a neutral pose.
The organizers of the completion divided the dataset into
three subsets - train, development, and test. The train set
contains 28142 videos from 31 signers, the development set
contains 4418 videos from 6 signers and the test set con-
tains 3742 videos also from 6 signers. Signs’ classes in
the train set have approximately uniform distribution with
a minimum of 90 videos and a maximum of 127 videos per
sign.

Considering the diversity within the classes and the fact,
each video contains also a relatively big amount of back-
ground, we employed the following preprocessing pipeline.
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Figure 1. The processing of samples by OpenPose. The poses are
then used to crop the video recordings so that we remove unimpor-
tant parts of the image. The crop is per-video constant. Optionally,
we apply a mask, so that only regions with body-parts are visible.
These videos are used to train the different I3D models.

The first step of processing is running OpenPose on all the
video samples. We detect all bodies in the video and choose
the largest one for further processing. We use the model
BODY_25 (default model) to detect 8 body joints (face,
neck, left/right shoulder, left/right elbow, and left/right
wrist) and 21 joints per hand, meaning in total 50 body joint
locations per frame. We also store the confidence of the de-
tected joints.

Next, we prepare data for training the I3D models
(Fig. 1). We crop the RGB video frames on a per-video ba-
sis. We use the body joints detected by OpenPose. Firstly
we get a scale of the body in the sample according to Eu-
clidean distance of the shoulder body joints in the first
frame. Next, we crop all remaining frames of the sample
relative to the scale (four times), centered in the x-axis on
the neck joint and y-axis is below the neck joint by 30% of
the shoulder distance. Finally, the crops are resized to the
size of 256 x 256.

Furthermore, we prepare a masked version of these
cropped videos. We start by preparing a binary mask by
rendering the detected hand skeleton and face region. We
repeat a 3 x 3 dilatation on the per-pixel hand skeleton bi-
nary mask, for metacarpal bones by a factor of 4, for ream-
ing hand bones by a factor of 2, and for neck/hand bone by
a factor of 20. These masks are then used on the original
videos to produce the masked versions in which only the
important body parts are visible.

We also represent the videos in terms of key-frames. We
detect a constant number of frames per video, where there
is minimal motion. In our experiments, we have chosen
16 key-frames per video. To obtain the key-frames we first
compute the velocity vectors of the detected joints of the
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Figure 2. Extraction of hand images (crops) from samples. We ex-
tract square regions enclosing all hand joints (with a 10% border)
and resize them to 70 x 70 pixels.

whole body as a simple difference in the x and y axis. Next,
we compute the magnitude of these vectors and sum up all
the joint velocities. The key-frames are then the N = 16
minimal locations in the velocity signal. To suppress the
detection of nearby key-frames we use a non-minimum sup-
pression with a window of £3 frames.

4. Methods

In this section, we describe our pipeline and its individ-
ual parts in detail. Firstly, we describe our novel Visual
Language Embedding, then the location vectors also used
for the training, and lastly the recognition models.

4.1. Visual Language Embedding

In this work, we propose a novel visual feature em-
bedding - VLE. VLEs are used as the input for the VLE-
Transformer. The premise of the system is to train a deep
neural network that will transform an input image into an
embedded vector space. This space should have a property
that similar hand poses are close to each other. To train
such a model we first needed to obtain images of hands in
the same pose. The input hand images are obtained using
the algorithm depicted in Fig. 2.

We use two consecutive algorithms. The first one finds
representative hand poses for each sign. We consider only
the dominant hand. We set a parameter of how many rep-
resentative hand poses per video sample we want to detect
at most (we set it experimentally to 5). We sort the de-
tected OpenPose hand joints by the mean confidence. We
consider only hand-poses with a minimum confidence of
0.6. We observed that hands with lower confidence are
blurred and not suitable to be representatives. We apply
a non-maximum suppression of £5 frames to suppress the
detection of the same hand-pose from the same video sam-
ple. For each other video sample, we find all hand-poses
that have a distance smaller than 0.42. The threshold was
set empirically, by observing what maximal distance is be-



tween similar hand-poses. The distance measure is defined
as:

21

Jj=1

where p! and p? are the two hand-poses represented as a
set of 21 2D vectors provided by OpenPose. The matrix A
is a similarity transform (i.e. restricted to scale, rotation and
translation). In practice, we estimate the matrix A using a
least-squares method. The result is in the metric of pixels.
Since p' and p? can stem from images of different resolu-
tions a normalization needs to be performed. In this step of
the solution, we normalize images to the length of the shoul-
der of the signer with hand p2. This normalization is not
perfect and hence the function is not symmetric and thus is
not a real distance. But for the purpose of our solution, it is
sufficient. This algorithm produces the detection of per-sign
representative hand-poses. Next, we want to cluster these
representatives, because one sign can be composed of more
representative hand-poses. During experimentation with the
clustering we modified the distance measure (Eq. 1) so that
the similarity transform is found only on palm joints:
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where k represents the palm joints (MCPs, CMC, and
wrist). And the distance is weighted:

21
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where w; is weighting different finger joints. Precisely,
fingertips have the weight of 3.0, DIPs have the weight of
2.0, PIPs have weights of 1.5. The rest of the weights are
1.0. Finally, they are normalized to a sum of 1. The idea be-
hind these modified formulas is that we want to emphasize
the important parts of the hands. Equation 2 finds the ori-
entation, translation, and scale of the hand whilst ignoring
the configuration of fingers. Equation 3 reflects the fact that
changes of locations of different joints affect the perceived
hand-pose differently. We employ an agglomerative cluster-
ing with the distance function from Eq. 3. The actual values
of the weights in Equation 3 are set based on observation
of the results of the clustering. The clustering is stopped
when we would merge samples that have a distance of 1.0
or more. The threshold was set experimentally.

In the second algorithm, we want to join the clusters
from different signs to obtain the definite hand-pose clus-
ters. We find representative hand-poses for each per-sign
cluster. Those are the hand-poses that have a minimal sum
of distances to all the other hand-poses from the same sub-
cluster. This algorithm leaves us with 52 final hand-pose
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Figure 3. Hand pose clustering. The clustering is based on the
computation of weighted pose distance. First, we find per-sign
clusters and then we cluster these across all the signs.
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Figure 4. We train the VLE model from the hand crops. Each
crop has an assigned cluster (class) from the prior processing. The
VLE is a MobileNet pre-trained on ImageNet and fine-tuned on
our hand pose clusters.

clusters. When observing the data, we found some errors
that were a result of the imperfections in the distance mea-
sure. The main problem is that we are limited to 2D dis-
tance computation and perspective plays a significant role.
Hence, we corrected the errors manually and ended up with
39 hand clusters. Unfortunately, the clusters were heavily
imbalanced.

The last stage was the training of the deep neural net-
work. We performed experiments with ResNet-18 [17],
MobileNet and a custom model. We tested randomly ini-
tialized models and models pre-trained on ImageNet. The
algorithms are depicted in Figures 3, 4 and 5.

4.2. Location Vectors

We wanted to incorporate knowledge from the field of
sign language linguistics [31], namely the location of the
performed sign. We define 15 locations: Neutral space (fall-
back), Above the head, Upper part of the face, Eyes, Nose,
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Figure 5. To obtain the VLE representation of test data, we have
to obtain the hand crops from test video samples using the pro-
cess depicted in Fig. 2. Then the model produces VLEs that are a
semantic representation of the hand images.
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Figure 6. The VLE-transformer takes as input a concatenation of
the VLEs and Location Vectors. It has a form of Vision Trans-
former.

Mouth, Lower part of the face (chin), Cheeks, Ears, Neck,
Shoulders, Chest, Waist, Arm, Wrist (of the other hand).
The regions are depicted in Fig. 8. To obtain the body re-
gions we utilize the OpenPose joints locations. For each
region, we compute an enclosing box with pre-defined rel-
ative sizes around the relevant joints. For the face regions,
we use the dlib [22] face landmark detector and generate
the boxes in a similar manner. The algorithm computes
the location of both hands for every frame. First, it detects
whether the hand is in a “’pointing” gesture by computing
the extension of the index finger and bending of the other
fingers. The extension and bending are computed as nor-
malized distances of TIP and MCP of the relevant fingers
and compared to a threshold.

This approach ignores the effect of perspective trans-
form, which can lead to some misclassifications. If the
pointing gesture is recognized, the fingertip of the index fin-
ger is used for relative location computation. If not, then
both the index fingertip and mean joint location computed
from all hand joints are considered. The hand location(s)
is then compared to the defined regions. If the hand lies
inside a region, the closeness to the center of the region is
computed. A normalized vector representing the relative
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Figure 7. The location vectors represent the location of individ-
ual hands in individual frames relative to other body-parts. We
selected 15 locations depicted in Fig. 8. Since many locations rep-
resent facial landmarks, we compute them using the dlib library.

Figure 8. Regions representing different body-locations, from
which the location vectors are computed.

closeness to each region is constructed for each hand and
concatenated into a 30-dimensional vector (see Fig. 7).

4.3. Body-Pose parametrization

Body-Pose parametrization is based on selected 2D key-
points provided by OpenPose. These skeleton data are fur-
ther pre-processed per frame for each video sample. The
whole dataset is normalized to have a uniform distance of
the shoulders of signing persons. This distance is calcu-
lated from the first frame of each sample. Furthermore, the
skeleton data are centered according to the position of the
neck. The final pre-processing step corrects hand poses for



low confidence images. These hand poses are replaced with
poses from surrounding frames.

4.4. Recognition Models

Our main recognition model is based on I3D archi-
tecture, which provides state-of-the-art results for ges-
ture/action recognition tasks, and therefore it is a very
strong baseline. To be more specific, we decided to utilize
ResNet50-13D, which has a very similar architecture as the
classical ResNet50, nevertheless, all 2D convolutions are
replaced with 3D convolutions. The inputs into this model
are RGB video frames.

Other than I3D models, we also used Transformer mod-
els. To be more specific, we utilized ViT architecture. The
difference from the original architecture lies in the embed-
ding layer that prepares the input data. We utilized feed-
forward multi-layer perceptron, which transforms the input
vectors of the given parametrization into the transformer in-
put dimension. In our experiments, we used two different
parametrizations (data modalities) as an input into the mod-
els: Body-Pose, and a combination of VLE and Location
vectors.

5. Experiments

In this section, we present experimental settings for the
training of classification models, an optimization approach
for obtaining the final model ensemble, an ablation study of
the individual model’s importance, and finally the results on
the development and the test set.

5.1. I3D Training

In our final ensemble, we utilize 13 ResNet50-13D
models in total.  Their implementation is based on
https://github.com/IBM/action-recognition-pytorch. ~ Dur-
ing the experiment, we also tested I3D-ResNet-101 archi-
tecture, however, it provides inferior results. Before the
training, each RGB video was cropped (with optional mask-
ing) based on detected poses, see Fig. 1. Furthermore, 16
frames with a size of 256 x 256 pixels were selected per
video. The selection of these frames is based on two differ-
ent methods. The first method is a pseudo-random choice
from the original repository (denoted as random). The sec-
ond method is based on our key-frames (denoted as key-
frames), see Section 3. All I3D models can be divided into
three groups.

The first group of four models was trained before the
start of the competition test phase. The validation set for
these models was signers number 40, 41, and 42. The rest
of the signers were in the training set. The models in the first
groups were trained during 50 epochs using SGD optimizer
with starting learning rate [r = 0.01 and cosine learning
schedule. These models were fine-tuned using the whole

training set after the start of the competition test phase dur-
ing 20 additional epochs using SGD with starting learning
rate [r = 0.001 and cosine learning rate schedule.

The second group of four models (denoted as new) was
trained after the start of the competition test phase. The val-
idation set for these models was competition development
data. The models were trained during 80 epochs using SGD
optimizer with starting learning rate [ = 0.01 and cosine
learning schedule.

The third group of five models (denoted as Cros) was
trained under a 5-fold cross-validation protocol using a
competition training set only. Each fold was selected man-
ually with respect to different signers. The models were
trained during 50 epochs using SGD optimizer with starting
learning rate [r = 0.01 and cosine learning schedule again.

All the I3D models were pretrained on the Kinectics400
dataset. Data were normalized to the ImageNet mean and
standard deviation. We used batch size bs = 10 for all the
experiments. Moreover, group center crop is used during
the training. A comparison of the models can be found in
Table 1. The models with the highest validation recognition
rate were selected for the final evaluation.

5.2. Pose-transformer Training

We used Body-Pose as an input parametrization for the
Pose-transformer, see Section 4.3. The pre-processing step
corrects hand poses with confidence < 0.3. During the
training of the model, we utilized the following augmen-
tations:

* a random drop of the first 10-15 frames from the be-
ginning and the end of the video;

¢ arandom selection of even/odd frames;

e a random horizontal flip of the data (simulation of
left/right handed signing);

¢ Gaussian noise addition to wrist locations and hand-
pose scale.

In our final ensemble we used one model based on the
body-pose parametrization with the following parameters:
max length of the sequence: 120, size of the input vec-
tor: 84, N-stages: 2, transformer size: 1024, size of feed-
forward layer: 2048, number of heads: 2.

The Pose-transformer model was trained for 100 epochs
using SGD optimizer with starting learning rate ir = 0.1
and learning rate exponential shift ex = 0.95. The model
with the highest validation recognition rate was selected for
the final evaluation, see Table 1.

5.3. VLE-transformer Training

Firstly, we train a deep neural network that transforms
an input image into a semantic vector space, see Sec-
tion 4.1. We performed experiments with three different



Table 1. Details of the models. The recognition rate is calculated on the competition development set. Weights are found via the CMA-ES

optimization algorithm.

Model Data Frames Slc. | Rec. Rate Weight
I3D-Crop, I3D-Crop_new random 0.923,0.929 | 0.04762968, 0.13529561
I3D-Key, I3D-Key_new crops key-frames | 0.909, 0.915 | 0.05915348, 0.04292918
I3D-Mask, I3D-Mask_new random 0.918,0.919 | -0.02789492, 0.07635797
I3D-Key mask, I3D-Key mask new | ™2ked key-frames | 0.906, 0.904 | 0.12705846, 0.03582622
I3D-Cros-1 0.903 0.05322100
13D-Cros-2 0.912 0.12860186
I3D-Cros-3 crops random 0.910 0.02714533
I3D-Cros-4 0.900 -0.05312429
I3D-Cros-5 0.895 -0.04703171
Pose-transformer Body-Pose whole video | 0.866 0.17253467
VLE-transformer-1 0.603 0.08502941
VLE-transformer-2 VLE-Locations | key-frames | 0.605 0.11312029
VLE-transformer-3 0.652 0.02414777

models, both, randomly initialized and pre-trained on Ima-
geNet. From these experiments, we selected the best per-
forming MobileNet pre-trained on ImageNet to serve as the
VLE extractor. We used SGD for optimization with a learn-
ing rate of 0.001 and momentum of 0.9. We augment the
training data using color jitter, horizontal flip (to accommo-
date for the right hand), per-pixel Gaussian noise, grid dis-
tortion, motion blur, random brightness, and contrast trans-
form, RGB shift, rotation of max +10 degrees, random crop
and resize. Categorical cross-entropy was used as the opti-
mization criterion. After 40 iterations of finetuning we ob-
tain a 95% training accuracy and 65% validation accuracy.
The validation data were from two left-out signers. This
shows the high sensitivity to the hand shape, and perspec-
tive transformations of the hands (since signers perform the
signs with different hand orientations). As result, the VLE
is the 1280 dimensional vector produced by the penultimate
layer of MobileNet.

Secondly, we define VLE-Location parametrization as
an input into the VLE-transformer. VLE and Location Vec-
tors, Section 4.2, are concatenated into a single vector. Only
key-frames are selected from the whole sequence, which
forms the input sequence for the embedding layer. We train
the VLE-transformer model without using any additional
augmentations during this training phase.

In our final ensemble we used three models based
on the VLE-Locations parametrization (VLE-transformer)
with the following parameters:

1. max length of the sequence: 120, size of the input vec-
tor: 2590, N-stages: 6, transformer size: 1024, size of
feed-forward layer: 2048, number of heads: 2;

2. max length of the sequence: 120, size of the input vec-
tor: 2590, N-stages: 2, transformer size: 512, size of
feed-forward layer: 2048, number of heads: 2;

3. identical as 2) but with additional learn-able positional
encoding.

The VLE-transformer models did follow the same train-
ing protocol as the Pose-transformer model.

5.4. Final Ensemble

The final ensemble is composed of 13 I3D models, one
Pose transformer model, and three VLE transformer mod-
els. We tackle the problem of model weights optimization
as a black-box optimization problem. Therefore, we uti-
lized CMA-ES (Covariance Matrix Adaptation Evolution
Strategy) optimization algorithm to compute the weights of
these models. CMA-ES is a stochastic optimizer for robust
non-linear, non-convex, derivative- and function-value-free
numerical optimization. The inputs into the algorithm are
predicted soft-max values for the development set, whereas
the algorithm should maximize the development set recog-
nition rate. As a starting optimization point, we used an
equally weighted ensemble.

6. Results and Discussion

The final weight for each model can be found in Table 1.
It can be seen that, in this ensemble point, models from
all three categories (I3Ds, Pose-transformer, and VLEs) re-
ceive relatively high weights (e.g. 0.135, 0.173, and 0.113).
Thus, the models of all three categories are important for
the final score. Rather surprisingly the highest weight re-
ceives the Pose-transformer model (0.173) which is not the
best single prediction model (86.6% accuracy vs 92.9% ac-
curacy of the best single model I3D-Crop_new model). But
it is the only model working with the whole video clip. The
effect of adding models of all particular categories is in Ta-
ble 2. The listed recognition rate results are for the compe-
tition development data.



Table 2. Recognition rates of the different model ensembles.
Higher is better. The equal ensemble is the ensemble with the
same weights for each model, whereas the optimized ensemble is
ensemble with weights obtained via the CMA-ES optimization.

Models Equal ens. | Optimized ens.
all I3D models 0.9414 0.9475
+ Pose-transformer 0.9441 0.9518
+ all VLE models 0.9466 0.9556

. Dev. Data Test Data
Final Ensemble 0.9556 0.9546

6.1. Final Results

The final results for the AUTSL datasets (develop-
ment+test) can be found in Table 2. Given the nature of
the competition, our method is based on combining many
models that perform well on the development data. The
work needs to be polished and when the testing phase will
be open for experimenting we can perform additional abla-
tion studies. We plan to focus on individual components of
the system and also the possibility of training them depen-
dently on each other.

6.2. Other Experiments

In this section, we describe our most relevant failed ex-
periments, because we believe that reporting approaches,
which did not lead to the goal successfully can also be very
beneficial for the scientific community.

6.2.1 CNN+LSTM

Inspired by a baseline method [34], we tested the conjunc-
tion of convolutional neural network (CNN) with LSTM.
CNN’s task is to extract spatial features from each frame,
whereas these features are sent as inputs into the LSTM
part. In the baseline method, the authors employed the
VGG model [32]. In our first experiment, we decided to
test ResNet-50 instead, which is arguably better architec-
ture for visual classification tasks overall. Unfortunately,
this change stems into a minor improvement only. More-
over, the training of the model was unstable. Motivated by
the recent success of vision transformers, we experimented
also with ViT in place of CNN. Nevertheless, this change
also did not lead to any significant improvements.

6.2.2 Confusion Matrix

When we observed the results of our individual models, we
noticed that some classes are frequently interchanged. We
computed the confusion matrix for each of the models. We
then changed the inputs into the ensemble in the following
way. For each sample and model, we detected the top-1
decision. We computed a confidence threshold as half of

the top-1 confidence. All classes above this threshold con-
tribute to the decision (with a confidence value of one) and
all classes below this threshold are set to zero. Next, we take
the confusion vector from the confusion matrix of the top-1
decision, set the diagonal value to zero (it’s the confusion
value for the top-1 decision, i.e. the correct classification),
and add the other confusion values multiplied by 5.25 to the
final ensemble input. Effectively this means that if model
A often confuses classes I and IT when model A recognizes
class I it automatically adds a prediction of II with confi-
dence 5.25 times the confusion between classes I and II.
We called these modified inputs hard-soft-max. Although
we were able to produce superior accuracy on the develop-
ment set (slightly above 97%), the test set resulted in lower
accuracy of 93.56%. This shows, that this approach leads to
overfitting on the validation set.

7. Conclusion

Automatic sign language recognition is still a challeng-
ing problem even for modern approaches. In this work, we
propose the method based on the state-of-the-art algorithm
for action recognition I3D and augment its decision, which
is based on the RGB modality only, with two Vision Trans-
formers with their inputs from two different modalities -
Body-Pose parametrization, and our novel Visual Language
Embedding with Location Vectors. Despite the fact, that
these two additional models did not provide competitive re-
sults on their own, their conjunction with the main model
significantly improves the final results.

In future work, we would like to firstly polish our final
ensemble. In the second step, we believe that incorporating
an additional model working with the optical flow (i.e. with
additional data modality) can further improve our results.
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