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Abstract

This paper presents a method for automatic sign lan-

guage recognition that was utilized in the CVPR 2021

ChaLearn Challenge (RGB track). Our method is composed

of several approaches combined in an ensemble scheme

to perform isolated sign-gesture recognition. We combine

modalities of video sample frames processed by a 3D Con-

vNet (I3D), with body-pose information in the form of joint

locations processed by a Transformer, hand region images

transformed into a semantic space, and linguistically de-

fined locations of hands. Although the individual models

perform sub-par (60% to 93% accuracy on validation data),

the weighted ensemble results in 95.46% accuracy.

1. Introduction

Sign languages (SLs) are very complex visual languages.

Cues of SLs are a combination of multi-modality and multi-

semantic functions [31]. This makes SL recognition a

very complex task. The main problem is to effectively

extract representative cues, which in visual languages (ie

SLs), must be extracted directly from pixels of the images.

This is even more challenging for SL recognition in the

wild [33, 34].

The undeniable success of Hidden Markov Models

(HMMs) in automatic speech recognition has been the ini-

tial motivation for its use for SL recognition [37]. Fol-

lowing successful architectures for continuous SL recog-

nition combine spatial models (2D CNN) with temporal

models (LSTM or HMM) [23, 40]. Recently, 3D Convo-

lutional Neural Networks (CNNs) and self-attention archi-

tectures have been used [28, 43]. Nowadays, Transform-

ers reach state-of-the-art results in the areas of natural lan-

guage processing (NLP) [15]. In addition, during the last

year, Transformers established new state-of-the-art results

in many tasks in the visual domain [2, 8, 16].

The main motivation for our approach was to use the

state-of-the-art models for gesture/action recognition and

augment it with other approaches based on different modal-

ities. We wanted to analyze the performance of an en-

semble scheme when different models utilizing different

data modalities are used. Previous experiments suggest

that the extraction of multi-modal and multi-semantic fea-

tures (such as keypoints [14]) have a particular impact on

class discrimination. As the state-of-the-art model for ges-

ture/action recognition we use I3D [10] and finetune it from

Kinetics400 dataset [21] to several data representations of

AUTSL dataset [34].

To incorporate the motion of hands we detect the body

joints using OpenPose [7] and predict the sign class using

a Transformer model inspired by the Vision Transformer

(ViT) [16]. The information about the pose of the hands is

added by our Visual Language Embedding (VLE) model. In

this work, we present a proof-of-concept method that trans-

forms images of hands into a semantic space, where similar

poses lie close to each other.

We use concepts from other vision tasks, that show that

deep neural networks trained for the classification of images

fulfill the requirement of embedded space in the penultimate

layer. We finetune a MobileNet [18] architecture pre-trained

on ImageNet [30] to classify our mined dataset of hand im-

ages. To add information about the location of hands, we

developed an algorithm for computing linguistically defined



locations of hands. We compute the location vectors from

OpenPose detections [7] and together with VLE input them

into a Transformer to classify the sign. Lastly, we compute

weights of these different models using Covariance Matrix

Adaptation Evolution Strategy (CMA-ES) optimization al-

gorithm [3]. As a result of this pipeline, we provide an

initial overview of how this modalities’ conjunction con-

tributes to SL recognition within the extensive isolated sign

AUTSL dataset.

Our contributions are summarized as follows:

1. We have proposed a system for sign language recogni-

tion reaching competitive results.

2. We have shown the effectiveness of mutual support of

different data modalities.

3. We have proposed a novel visual feature embedding

for sign language recognition - VLE.

Through the paper, we provide several supportive im-

ages. Generally, red cylinders depict ”outside” data pro-

vided by the organizers; green cylinders are data produced

by us during this challenge; purple rounded rectangles

are 3rd party methods; blue rectangles are our own mod-

els/methods.

2. Related Work

We can distinguish three tasks in sign language recog-

nition: classification of isolated signs [14], continuous

SL recognition [1, 12, 23, 38, 43], and SL translation [5,

42]. Although a combined solution, such as recognition

and translation, can improve the performance across both

tasks [6].

Recently, the STMC network was introduced to model

spatial and temporal cues in the task of continuous SL

recognition. The approach learns spatial representation and

explicitly decomposes visual features of different cues to

make self-contained pose estimation [43]. Although there

are common problems in sequence learning, isolated sign

recognition is, due to its natural limitation, closer to the

classification tasks in the video domain.

Deep learning methods prevail in this area. Especially,

2D convolutional neural networks (2D-CNN) and 3D con-

volutional neural networks (3D-CNN) are very success-

ful [1, 20, 25, 29, 35]. Additionally, 2D-CNN with temporal

convolutional layers [12] and 3D-CNN [26, 38] are adopted

to learn dynamic features in SLs.

These appearance-based methods directly create hier-

archical representations of spatial-temporal data just like

standard convolutional networks, but with spatial-temporal

filters. The multi-modality fusion of RGB and optical

flow [13] is considered, for example, in [9] the authors

trained one I3D network on RGB inputs, and the other one

on optical-flow inputs.

Recently, the integration of the attention mechanism

shows very good results. Transformers, such as attention-

based encoder-decoder models, were originally designed

for machine translation [36] and subsequently for SLs [19].

These transformers need a huge amount of training data,

however, same as in the areas of NLP [15], they recently

achieve state-of-the-art results also in many image process-

ing tasks [8, 16].

The classification task in the image/video domains dif-

fers from the task of continuous speech recognition or ma-

chine translation in a restriction to the self-attention mech-

anism. There is no need to learn sequence-to-sequence

such as the correspondence between images/frames and

sign glosses. Therefore, for the classification in the im-

age/video domain, the original architecture is reduced just

to the encoder part that processes the blocks of images or

frames as one sequence. This spatial or spatial-temporal se-

quence is extended by the classification token at the input

of the Transformer. The original Vision Transformer archi-

tecture was recently further adapted to model long-range

sequences in the video domain [2]. These approaches make

video classification exclusively on self-attention over space

and time. Unfortunately, the authors did not provide codes

and pre-trained models yet.

The problem arises in a reduction of image information

in general. For Transformer input, 2D RGB pixel data need

to be converted into a suitable 1D suitable embedding [27].

This reduction becomes even more significant in the video

domain [14]. There exist two main groups of approaches

that overcome this problem. The approaches from the first

group utilize CNN backbone to extract embedding from im-

age sub-block [39]. The second group of approaches em-

ploys hand-crafted features. Hand-crafted features have a

long tradition in SL recognition and plenty of them were

previously designed especially for SLs [4, 11, 41]. In more

recent works, the outputs from the human body pose detec-

tor (OpenPose) were also used [24, 42].

3. Datasets

AUTSL dataset contains 32302 videos from 43 different

speakers in total. On each video, one person is signing one

of 226 signs, usually starting and ending in a neutral pose.

The organizers of the completion divided the dataset into

three subsets - train, development, and test. The train set

contains 28142 videos from 31 signers, the development set

contains 4418 videos from 6 signers and the test set con-

tains 3742 videos also from 6 signers. Signs’ classes in

the train set have approximately uniform distribution with

a minimum of 90 videos and a maximum of 127 videos per

sign.

Considering the diversity within the classes and the fact,

each video contains also a relatively big amount of back-

ground, we employed the following preprocessing pipeline.
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Figure 1. The processing of samples by OpenPose. The poses are

then used to crop the video recordings so that we remove unimpor-

tant parts of the image. The crop is per-video constant. Optionally,

we apply a mask, so that only regions with body-parts are visible.

These videos are used to train the different I3D models.

The first step of processing is running OpenPose on all the

video samples. We detect all bodies in the video and choose

the largest one for further processing. We use the model

BODY 25 (default model) to detect 8 body joints (face,

neck, left/right shoulder, left/right elbow, and left/right

wrist) and 21 joints per hand, meaning in total 50 body joint

locations per frame. We also store the confidence of the de-

tected joints.

Next, we prepare data for training the I3D models

(Fig. 1). We crop the RGB video frames on a per-video ba-

sis. We use the body joints detected by OpenPose. Firstly

we get a scale of the body in the sample according to Eu-

clidean distance of the shoulder body joints in the first

frame. Next, we crop all remaining frames of the sample

relative to the scale (four times), centered in the x-axis on

the neck joint and y-axis is below the neck joint by 30% of

the shoulder distance. Finally, the crops are resized to the

size of 256× 256.

Furthermore, we prepare a masked version of these

cropped videos. We start by preparing a binary mask by

rendering the detected hand skeleton and face region. We

repeat a 3 × 3 dilatation on the per-pixel hand skeleton bi-

nary mask, for metacarpal bones by a factor of 4, for ream-

ing hand bones by a factor of 2, and for neck/hand bone by

a factor of 20. These masks are then used on the original

videos to produce the masked versions in which only the

important body parts are visible.

We also represent the videos in terms of key-frames. We

detect a constant number of frames per video, where there

is minimal motion. In our experiments, we have chosen

16 key-frames per video. To obtain the key-frames we first

compute the velocity vectors of the detected joints of the

Poses

Hand Grabber Hand
Crops

Samples

Figure 2. Extraction of hand images (crops) from samples. We ex-

tract square regions enclosing all hand joints (with a 10% border)

and resize them to 70× 70 pixels.

whole body as a simple difference in the x and y axis. Next,

we compute the magnitude of these vectors and sum up all

the joint velocities. The key-frames are then the N = 16
minimal locations in the velocity signal. To suppress the

detection of nearby key-frames we use a non-minimum sup-

pression with a window of ±3 frames.

4. Methods

In this section, we describe our pipeline and its individ-

ual parts in detail. Firstly, we describe our novel Visual

Language Embedding, then the location vectors also used

for the training, and lastly the recognition models.

4.1. Visual Language Embedding

In this work, we propose a novel visual feature em-

bedding - VLE. VLEs are used as the input for the VLE-

Transformer. The premise of the system is to train a deep

neural network that will transform an input image into an

embedded vector space. This space should have a property

that similar hand poses are close to each other. To train

such a model we first needed to obtain images of hands in

the same pose. The input hand images are obtained using

the algorithm depicted in Fig. 2.

We use two consecutive algorithms. The first one finds

representative hand poses for each sign. We consider only

the dominant hand. We set a parameter of how many rep-

resentative hand poses per video sample we want to detect

at most (we set it experimentally to 5). We sort the de-

tected OpenPose hand joints by the mean confidence. We

consider only hand-poses with a minimum confidence of

0.6. We observed that hands with lower confidence are

blurred and not suitable to be representatives. We apply

a non-maximum suppression of ±5 frames to suppress the

detection of the same hand-pose from the same video sam-

ple. For each other video sample, we find all hand-poses

that have a distance smaller than 0.42. The threshold was

set empirically, by observing what maximal distance is be-



tween similar hand-poses. The distance measure is defined

as:

D(p1, p2) = min
A

21
∑

j=1

∥

∥Ap1j − p2j
∥

∥, (1)

where p1 and p2 are the two hand-poses represented as a

set of 21 2D vectors provided by OpenPose. The matrix A

is a similarity transform (i.e. restricted to scale, rotation and

translation). In practice, we estimate the matrix A using a

least-squares method. The result is in the metric of pixels.

Since p1 and p2 can stem from images of different resolu-

tions a normalization needs to be performed. In this step of

the solution, we normalize images to the length of the shoul-

der of the signer with hand p2. This normalization is not

perfect and hence the function is not symmetric and thus is

not a real distance. But for the purpose of our solution, it is

sufficient. This algorithm produces the detection of per-sign

representative hand-poses. Next, we want to cluster these

representatives, because one sign can be composed of more

representative hand-poses. During experimentation with the

clustering we modified the distance measure (Eq. 1) so that

the similarity transform is found only on palm joints:

A
⋆ = min

A

∑

k

∥

∥Ap1k − p2k
∥

∥ (2)

where k represents the palm joints (MCPs, CMC, and

wrist). And the distance is weighted:

D(p1, p2) =

21
∑

j=1

ωj

∥

∥A
⋆p1j − p2j

∥

∥, (3)

where ωj is weighting different finger joints. Precisely,

fingertips have the weight of 3.0, DIPs have the weight of

2.0, PIPs have weights of 1.5. The rest of the weights are

1.0. Finally, they are normalized to a sum of 1. The idea be-

hind these modified formulas is that we want to emphasize

the important parts of the hands. Equation 2 finds the ori-

entation, translation, and scale of the hand whilst ignoring

the configuration of fingers. Equation 3 reflects the fact that

changes of locations of different joints affect the perceived

hand-pose differently. We employ an agglomerative cluster-

ing with the distance function from Eq. 3. The actual values

of the weights in Equation 3 are set based on observation

of the results of the clustering. The clustering is stopped

when we would merge samples that have a distance of 1.0

or more. The threshold was set experimentally.

In the second algorithm, we want to join the clusters

from different signs to obtain the definite hand-pose clus-

ters. We find representative hand-poses for each per-sign

cluster. Those are the hand-poses that have a minimal sum

of distances to all the other hand-poses from the same sub-

cluster. This algorithm leaves us with 52 final hand-pose

Poses

Samples

Representative Poses
Extractor Sign

Repre-
sentants

Hand Pose Clustering

Sign Sub-
clusters

Hand Pose ClusteringHand-
Pose

Clusters

Figure 3. Hand pose clustering. The clustering is based on the

computation of weighted pose distance. First, we find per-sign

clusters and then we cluster these across all the signs.

Hand
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Hand
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Visual Language
Emedding

ImageNet pre-trained
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Figure 4. We train the VLE model from the hand crops. Each

crop has an assigned cluster (class) from the prior processing. The

VLE is a MobileNet pre-trained on ImageNet and fine-tuned on

our hand pose clusters.

clusters. When observing the data, we found some errors

that were a result of the imperfections in the distance mea-

sure. The main problem is that we are limited to 2D dis-

tance computation and perspective plays a significant role.

Hence, we corrected the errors manually and ended up with

39 hand clusters. Unfortunately, the clusters were heavily

imbalanced.

The last stage was the training of the deep neural net-

work. We performed experiments with ResNet-18 [17],

MobileNet and a custom model. We tested randomly ini-

tialized models and models pre-trained on ImageNet. The

algorithms are depicted in Figures 3, 4 and 5.

4.2. Location Vectors

We wanted to incorporate knowledge from the field of

sign language linguistics [31], namely the location of the

performed sign. We define 15 locations: Neutral space (fall-

back), Above the head, Upper part of the face, Eyes, Nose,



Hand
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VLE model

Figure 5. To obtain the VLE representation of test data, we have

to obtain the hand crops from test video samples using the pro-

cess depicted in Fig. 2. Then the model produces VLEs that are a

semantic representation of the hand images.

VLEs

Location
Vectors

VLE Transformer Classification

Figure 6. The VLE-transformer takes as input a concatenation of

the VLEs and Location Vectors. It has a form of Vision Trans-

former.

Mouth, Lower part of the face (chin), Cheeks, Ears, Neck,

Shoulders, Chest, Waist, Arm, Wrist (of the other hand).

The regions are depicted in Fig. 8. To obtain the body re-

gions we utilize the OpenPose joints locations. For each

region, we compute an enclosing box with pre-defined rel-

ative sizes around the relevant joints. For the face regions,

we use the dlib [22] face landmark detector and generate

the boxes in a similar manner. The algorithm computes

the location of both hands for every frame. First, it detects

whether the hand is in a ”pointing” gesture by computing

the extension of the index finger and bending of the other

fingers. The extension and bending are computed as nor-

malized distances of TIP and MCP of the relevant fingers

and compared to a threshold.

This approach ignores the effect of perspective trans-

form, which can lead to some misclassifications. If the

pointing gesture is recognized, the fingertip of the index fin-

ger is used for relative location computation. If not, then

both the index fingertip and mean joint location computed

from all hand joints are considered. The hand location(s)

is then compared to the defined regions. If the hand lies

inside a region, the closeness to the center of the region is

computed. A normalized vector representing the relative

Location
VectorsPoses

Location Vector
Computation

Samples
Face and Landmark

Detection

Pointing Gesture
Detector

Body Regions
Computation

Figure 7. The location vectors represent the location of individ-

ual hands in individual frames relative to other body-parts. We

selected 15 locations depicted in Fig. 8. Since many locations rep-

resent facial landmarks, we compute them using the dlib library.

Figure 8. Regions representing different body-locations, from

which the location vectors are computed.

closeness to each region is constructed for each hand and

concatenated into a 30-dimensional vector (see Fig. 7).

4.3. Body­Pose parametrization

Body-Pose parametrization is based on selected 2D key-

points provided by OpenPose. These skeleton data are fur-

ther pre-processed per frame for each video sample. The

whole dataset is normalized to have a uniform distance of

the shoulders of signing persons. This distance is calcu-

lated from the first frame of each sample. Furthermore, the

skeleton data are centered according to the position of the

neck. The final pre-processing step corrects hand poses for



low confidence images. These hand poses are replaced with

poses from surrounding frames.

4.4. Recognition Models

Our main recognition model is based on I3D archi-

tecture, which provides state-of-the-art results for ges-

ture/action recognition tasks, and therefore it is a very

strong baseline. To be more specific, we decided to utilize

ResNet50-I3D, which has a very similar architecture as the

classical ResNet50, nevertheless, all 2D convolutions are

replaced with 3D convolutions. The inputs into this model

are RGB video frames.

Other than I3D models, we also used Transformer mod-

els. To be more specific, we utilized ViT architecture. The

difference from the original architecture lies in the embed-

ding layer that prepares the input data. We utilized feed-

forward multi-layer perceptron, which transforms the input

vectors of the given parametrization into the transformer in-

put dimension. In our experiments, we used two different

parametrizations (data modalities) as an input into the mod-

els: Body-Pose, and a combination of VLE and Location

vectors.

5. Experiments

In this section, we present experimental settings for the

training of classification models, an optimization approach

for obtaining the final model ensemble, an ablation study of

the individual model’s importance, and finally the results on

the development and the test set.

5.1. I3D Training

In our final ensemble, we utilize 13 ResNet50-I3D

models in total. Their implementation is based on

https://github.com/IBM/action-recognition-pytorch. Dur-

ing the experiment, we also tested I3D-ResNet-101 archi-

tecture, however, it provides inferior results. Before the

training, each RGB video was cropped (with optional mask-

ing) based on detected poses, see Fig. 1. Furthermore, 16

frames with a size of 256 × 256 pixels were selected per

video. The selection of these frames is based on two differ-

ent methods. The first method is a pseudo-random choice

from the original repository (denoted as random). The sec-

ond method is based on our key-frames (denoted as key-

frames), see Section 3. All I3D models can be divided into

three groups.

The first group of four models was trained before the

start of the competition test phase. The validation set for

these models was signers number 40, 41, and 42. The rest

of the signers were in the training set. The models in the first

groups were trained during 50 epochs using SGD optimizer

with starting learning rate lr = 0.01 and cosine learning

schedule. These models were fine-tuned using the whole

training set after the start of the competition test phase dur-

ing 20 additional epochs using SGD with starting learning

rate lr = 0.001 and cosine learning rate schedule.

The second group of four models (denoted as new) was

trained after the start of the competition test phase. The val-

idation set for these models was competition development

data. The models were trained during 80 epochs using SGD

optimizer with starting learning rate lr = 0.01 and cosine

learning schedule.

The third group of five models (denoted as Cros) was

trained under a 5-fold cross-validation protocol using a

competition training set only. Each fold was selected man-

ually with respect to different signers. The models were

trained during 50 epochs using SGD optimizer with starting

learning rate lr = 0.01 and cosine learning schedule again.

All the I3D models were pretrained on the Kinectics400

dataset. Data were normalized to the ImageNet mean and

standard deviation. We used batch size bs = 10 for all the

experiments. Moreover, group center crop is used during

the training. A comparison of the models can be found in

Table 1. The models with the highest validation recognition

rate were selected for the final evaluation.

5.2. Pose­transformer Training

We used Body-Pose as an input parametrization for the

Pose-transformer, see Section 4.3. The pre-processing step

corrects hand poses with confidence < 0.3. During the

training of the model, we utilized the following augmen-

tations:

• a random drop of the first 10-15 frames from the be-

ginning and the end of the video;

• a random selection of even/odd frames;

• a random horizontal flip of the data (simulation of

left/right handed signing);

• Gaussian noise addition to wrist locations and hand-

pose scale.

In our final ensemble we used one model based on the

body-pose parametrization with the following parameters:

max length of the sequence: 120, size of the input vec-

tor: 84, N-stages: 2, transformer size: 1024, size of feed-

forward layer: 2048, number of heads: 2.

The Pose-transformer model was trained for 100 epochs

using SGD optimizer with starting learning rate lr = 0.1
and learning rate exponential shift ex = 0.95. The model

with the highest validation recognition rate was selected for

the final evaluation, see Table 1.

5.3. VLE­transformer Training

Firstly, we train a deep neural network that transforms

an input image into a semantic vector space, see Sec-

tion 4.1. We performed experiments with three different



Table 1. Details of the models. The recognition rate is calculated on the competition development set. Weights are found via the CMA-ES

optimization algorithm.

Model Data Frames Slc. Rec. Rate Weight

I3D-Crop, I3D-Crop new
crops

random 0.923, 0.929 0.04762968, 0.13529561

I3D-Key, I3D-Key new key-frames 0.909, 0.915 0.05915348, 0.04292918

I3D-Mask, I3D-Mask new
masked

random 0.918, 0.919 -0.02789492, 0.07635797

I3D-Key mask, I3D-Key mask new key-frames 0.906, 0.904 0.12705846, 0.03582622

I3D-Cros-1

crops random

0.903 0.05322100

I3D-Cros-2 0.912 0.12860186

I3D-Cros-3 0.910 0.02714533

I3D-Cros-4 0.900 -0.05312429

I3D-Cros-5 0.895 -0.04703171

Pose-transformer Body-Pose whole video 0.866 0.17253467

VLE-transformer-1

VLE-Locations key-frames

0.603 0.08502941

VLE-transformer-2 0.605 0.11312029

VLE-transformer-3 0.652 0.02414777

models, both, randomly initialized and pre-trained on Ima-

geNet. From these experiments, we selected the best per-

forming MobileNet pre-trained on ImageNet to serve as the

VLE extractor. We used SGD for optimization with a learn-

ing rate of 0.001 and momentum of 0.9. We augment the

training data using color jitter, horizontal flip (to accommo-

date for the right hand), per-pixel Gaussian noise, grid dis-

tortion, motion blur, random brightness, and contrast trans-

form, RGB shift, rotation of max ±10 degrees, random crop

and resize. Categorical cross-entropy was used as the opti-

mization criterion. After 40 iterations of finetuning we ob-

tain a 95% training accuracy and 65% validation accuracy.

The validation data were from two left-out signers. This

shows the high sensitivity to the hand shape, and perspec-

tive transformations of the hands (since signers perform the

signs with different hand orientations). As result, the VLE

is the 1280 dimensional vector produced by the penultimate

layer of MobileNet.

Secondly, we define VLE-Location parametrization as

an input into the VLE-transformer. VLE and Location Vec-

tors, Section 4.2, are concatenated into a single vector. Only

key-frames are selected from the whole sequence, which

forms the input sequence for the embedding layer. We train

the VLE-transformer model without using any additional

augmentations during this training phase.

In our final ensemble we used three models based

on the VLE-Locations parametrization (VLE-transformer)

with the following parameters:

1. max length of the sequence: 120, size of the input vec-

tor: 2590, N-stages: 6, transformer size: 1024, size of

feed-forward layer: 2048, number of heads: 2;

2. max length of the sequence: 120, size of the input vec-

tor: 2590, N-stages: 2, transformer size: 512, size of

feed-forward layer: 2048, number of heads: 2;

3. identical as 2) but with additional learn-able positional

encoding.

The VLE-transformer models did follow the same train-

ing protocol as the Pose-transformer model.

5.4. Final Ensemble

The final ensemble is composed of 13 I3D models, one

Pose transformer model, and three VLE transformer mod-

els. We tackle the problem of model weights optimization

as a black-box optimization problem. Therefore, we uti-

lized CMA-ES (Covariance Matrix Adaptation Evolution

Strategy) optimization algorithm to compute the weights of

these models. CMA-ES is a stochastic optimizer for robust

non-linear, non-convex, derivative- and function-value-free

numerical optimization. The inputs into the algorithm are

predicted soft-max values for the development set, whereas

the algorithm should maximize the development set recog-

nition rate. As a starting optimization point, we used an

equally weighted ensemble.

6. Results and Discussion

The final weight for each model can be found in Table 1.

It can be seen that, in this ensemble point, models from

all three categories (I3Ds, Pose-transformer, and VLEs) re-

ceive relatively high weights (e.g. 0.135, 0.173, and 0.113).

Thus, the models of all three categories are important for

the final score. Rather surprisingly the highest weight re-

ceives the Pose-transformer model (0.173) which is not the

best single prediction model (86.6% accuracy vs 92.9% ac-

curacy of the best single model I3D-Crop new model). But

it is the only model working with the whole video clip. The

effect of adding models of all particular categories is in Ta-

ble 2. The listed recognition rate results are for the compe-

tition development data.



Table 2. Recognition rates of the different model ensembles.

Higher is better. The equal ensemble is the ensemble with the

same weights for each model, whereas the optimized ensemble is

ensemble with weights obtained via the CMA-ES optimization.

Models Equal ens. Optimized ens.

all I3D models 0.9414 0.9475

+ Pose-transformer 0.9441 0.9518

+ all VLE models 0.9466 0.9556

Final Ensemble
Dev. Data Test Data

0.9556 0.9546

6.1. Final Results

The final results for the AUTSL datasets (develop-

ment+test) can be found in Table 2. Given the nature of

the competition, our method is based on combining many

models that perform well on the development data. The

work needs to be polished and when the testing phase will

be open for experimenting we can perform additional abla-

tion studies. We plan to focus on individual components of

the system and also the possibility of training them depen-

dently on each other.

6.2. Other Experiments

In this section, we describe our most relevant failed ex-

periments, because we believe that reporting approaches,

which did not lead to the goal successfully can also be very

beneficial for the scientific community.

6.2.1 CNN+LSTM

Inspired by a baseline method [34], we tested the conjunc-

tion of convolutional neural network (CNN) with LSTM.

CNN’s task is to extract spatial features from each frame,

whereas these features are sent as inputs into the LSTM

part. In the baseline method, the authors employed the

VGG model [32]. In our first experiment, we decided to

test ResNet-50 instead, which is arguably better architec-

ture for visual classification tasks overall. Unfortunately,

this change stems into a minor improvement only. More-

over, the training of the model was unstable. Motivated by

the recent success of vision transformers, we experimented

also with ViT in place of CNN. Nevertheless, this change

also did not lead to any significant improvements.

6.2.2 Confusion Matrix

When we observed the results of our individual models, we

noticed that some classes are frequently interchanged. We

computed the confusion matrix for each of the models. We

then changed the inputs into the ensemble in the following

way. For each sample and model, we detected the top-1

decision. We computed a confidence threshold as half of

the top-1 confidence. All classes above this threshold con-

tribute to the decision (with a confidence value of one) and

all classes below this threshold are set to zero. Next, we take

the confusion vector from the confusion matrix of the top-1

decision, set the diagonal value to zero (it’s the confusion

value for the top-1 decision, i.e. the correct classification),

and add the other confusion values multiplied by 5.25 to the

final ensemble input. Effectively this means that if model

A often confuses classes I and II when model A recognizes

class I it automatically adds a prediction of II with confi-

dence 5.25 times the confusion between classes I and II.

We called these modified inputs hard-soft-max. Although

we were able to produce superior accuracy on the develop-

ment set (slightly above 97%), the test set resulted in lower

accuracy of 93.56%. This shows, that this approach leads to

overfitting on the validation set.

7. Conclusion

Automatic sign language recognition is still a challeng-

ing problem even for modern approaches. In this work, we

propose the method based on the state-of-the-art algorithm

for action recognition I3D and augment its decision, which

is based on the RGB modality only, with two Vision Trans-

formers with their inputs from two different modalities -

Body-Pose parametrization, and our novel Visual Language

Embedding with Location Vectors. Despite the fact, that

these two additional models did not provide competitive re-

sults on their own, their conjunction with the main model

significantly improves the final results.

In future work, we would like to firstly polish our final

ensemble. In the second step, we believe that incorporating

an additional model working with the optical flow (i.e. with

additional data modality) can further improve our results.
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