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Abstract

Sign language is commonly used by deaf or speech im-

paired people to communicate but requires significant ef-

fort to master. Sign Language Recognition (SLR) aims to

bridge the gap between sign language users and others by

recognizing signs from given videos. It is an essential yet

challenging task since sign language is performed with the

fast and complex movement of hand gestures, body posture,

and even facial expressions. Recently, skeleton-based ac-

tion recognition attracts increasing attention due to the in-

dependence between the subject and background variation.

However, skeleton-based SLR is still under exploration due

to the lack of annotations on hand keypoints. Some ef-

forts have been made to use hand detectors with pose es-

timators to extract hand key points and learn to recognize

sign language via Neural Networks, but none of them out-

performs RGB-based methods. To this end, we propose a

novel Skeleton Aware Multi-modal SLR framework (SAM-

SLR) to take advantage of multi-modal information towards

a higher recognition rate. Specifically, we propose a Sign

Language Graph Convolution Network (SL-GCN) to model

the embedded dynamics and a novel Separable Spatial-

Temporal Convolution Network (SSTCN) to exploit skeleton

features. RGB and depth modalities are also incorporated

and assembled into our framework to provide global infor-

mation that is complementary to the skeleton-based meth-

ods SL-GCN and SSTCN. As a result, SAM-SLR achieves

the highest performance in both RGB (98.42%) and RGB-

D (98.53%) tracks in 2021 Looking at People Large Scale

Signer Independent Isolated SLR Challenge. Our code

is available at https://github.com/jackyjsy/

CVPR21Chal-SLR

1. Introduction

Sign language [14] is a visual language performed with

the dynamic movement of hand gestures, body posture, and

facial expressions. It is an effective and helpful approach for
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Figure 1. Concept of our Skeleton Aware Multi-modal Sign Lan-

guage Recognition Framework (SAM-SLR). All local and global

motion information is extracted and utilized for final prediction.

deaf and speech-impaired people to communicate with oth-

ers. Understanding and utilizing sign language requires a

considerable time of learning and training which is not prac-

tical and feasible for the public. Moreover, sign language

is affected by the language [59, 24, 67] (e.g., English and

Chinese) and culture [35] which further limits its popular-

ization potential. As machine learning and computer vision

achieved great progress in the past decade, it is important

to explore sign language recognition (SLR) which automat-

ically interprets sign language and helps deaf-mute people

communicate smoothly with others in their daily lives.

Compared with conventional action recognition, SLR is

a more challenging problem. First, sign language requires

both global body motion and delicate arm/hand gestures to

distinctly and accurately express its meaning. Facial expres-

sion can be utilized to express emotions as well. Similar

gestures can even impose various meanings depending on

the number of repetitions. Second, different signers may

perform sign language differently (e.g., speed, localism,

left-hander, right-hander, body shape), making SLR more

challenging. Collecting more samples from as many sign-

ers as possible is desired yet expensive.

Traditional SLR methods mainly deploy handcrafted

features such as HOG [71] and SIFT [33]) associated with

conventional classifiers like kNN and SVM [67, 11, 34]. As

deep learning achieves significant progress, general video



and time-series representation learning methods (e.g., RNN,

LSTM) and effective action recognition frameworks (e.g.,

3D CNNs) are first explored for SLR tasks in [52, 27, 38,

58]. To more effectively capture the local motion infor-

mation, attention modules are combined with other mod-

ules for higher accuracy [21, 20]. Besides, [31, 30, 44] use

semantic detection/segmentation models to explicitly guide

the recognition network in a two-stage pipeline.

Recently, skeleton-based methods have become popular

in action recognition tasks [66, 62, 47, 7, 53] and draw

increasing attention due to their strong adaptability to the

dynamic circumstances and complicated background. As

the skeleton-based methods provide complementary infor-

mation to the RGB modality, their ensemble results fur-

ther improve the overall performance. However, some de-

ficiencies hinder their extension to the SLR task. Those

skeleton-based action recognition methods rely on ground-

truth skeleton annotations provided by motion capture sys-

tems, restricting themselves to fewer available datasets cap-

tured in controlled environments. Besides, most motion

capture systems only consider the main body coordinates

that do not provide ground truth annotations for hands.

Those skeleton data contains insufficient information to rec-

ognize sign language, which contains dynamic motions of

hand gestures interacted with other body parts. [65] at-

tempts to obtain body skeleton and hand poses using sep-

arate models and proposes using an RNN-based model to

recognize the sign language. But their obtained hand poses

are unreliable, and the RNN base model cannot properly

model the human skeleton dynamics.

Inspired by the recent development on whole-body pose

estimation [23], in this paper, we propose a novel skeleton-

based SLR method using whole-body keypoints and fea-

tures provided by pretrained whole-body pose estimators.

We design a new spatio-temporal skeleton graph for SLR

and propose a Sign Language Graph Convolution Network

(SL-GCN) to model the dynamics embedded. To fully

exploit the information in whole-body keypoints, we pro-

pose a novel Separable Spatial-Temporal Convolution Net-

work (SSTCN) for the whole-body skeleton features. Stud-

ies on action recognition have revealed that multi-modal

data complement each other and provide extra information

in recognition. To further improve the recognition rate,

we propose a Skeleton Aware Multi-modal SLR frame-

work (SAM-SLR) to ensemble the proposed skeleton-based

method with other modalities in both RGB and RGB-D sce-

narios. Our main contributions can be summarized as fol-

lows:

• We construct a novel skeleton graph designed for SLR

using whole-body keypoints and graph reduction. Our

method utilizes pretrained whole-body pose estimator

and requires no extra annotation effort.

• We propose SL-GCN to extract information from the

whole-body skeleton graph. To our best knowledge,

this is the first successful attempt to tackle the SLR

task using whole-body skeleton graphs.

• We propose a novel SSTCN to further exploit whole-

body skeleton features, which can significantly im-

prove the accuracy on whole-body keypoints compar-

ing with the traditional 3D convolution.

• We propose a SAM-SLR framework for RGB and

RGB-D based SLR, which learns from six modali-

ties and achieves the state-of-the-art performance in

AUTSL dataset. Our proposed method ranked 1st in

both RGB and RGB-D tracks in the CVPR-21 Chal-

lenge on Isolated SLR [50].

2. Related work

Sign Language Recognition (SLR) achieves significant

progress and obtained high recognition accuracy in recently

years due to the development on practical deep learning ar-

chitectures and the surge of computational power [52, 27,

38, 58, 21, 20, 31, 30, 44]. One remaining challenge of

SLR is to capture global body motion information and lo-

cal arm/hand/facial expression simultaneously. [36] pro-

poses a multi-scale and multi-modal framework which cap-

tures spatial information at particular spatial scales. An au-

toencoder framework with connectionist-based recognition

module is proposed in [39] for sequence modelling. [26] in-

troduces an end-to-end embedding of a convolutional mod-

ule into a Hidden-Markov-Models, while interpreting the

prediction results in a Bayesian framework. [20] proposes

a 3D-convolutional neural network associated with atten-

tion module which learns the spatio-temporal features from

raw video. [38] incorporates bidirectional recurrence and

temporal convolutions together which demonstrates the ef-

fectiveness of temporal information in gesture related tasks.

[52] utilizes CNN, Feature Pooling Module, and LSTM

Networks associated with adaptive weights to obtain dis-

tinctive representations. [21] designs a Hierarchical Atten-

tion Network with Latent Space to eliminate the prepro-

cessing of temporal segmentation. However, these methods

mainly consider pure visual feature which is not effective

enough to explicitly capture the body movement and hand

gesture. [27] designs a pose-based temporal graph convo-

lution networks that model spatial and temporal dependen-

cies in human pose trajectories. [10] adopts deep CNNs

with stacked temporal fusion layers as the feature extrac-

tion module, and bidirectional RNNs as the sequence learn-

ing module. [15] proposes a hierarchical-LSTM (HLSTM)

autoencoder model with visual content and word embed-

ding for translation. It tackles different granularities by con-

veying spatio-temporal transitions among frames, clips and



viseme units. These methods are still not effective enough

to capture the complete motion information.

Skeleton Based Action Recognition mainly focuses on ex-

ploring distinctive patterns from human joint position and

motion. Skeleton data can be utilized individually to per-

form efficient action recognition [3, 13, 22, 28, 29, 32]. On

the other hand, it can also be collaborated with other modal-

ities to achieve multi-modal learning aiming for higher

recognition performances [2, 6, 8, 19, 72]. RNNs are once

popular for modeling skeleton data [13, 32, 29, 49]. Re-

cently, [66] is the first attempt to designed a graph-based

approach, called ST-GCN, to model the dynamic patterns in

skeleton data via a Graph Convolutional Network (GCN).

Such approach draws much attention and a few improve-

ments have been developed as well [28, 45, 46, 48, 47, 7,

53]. Specifically, [28] propose a AS-GCN to dig the la-

tent joint connections to boost the recognition performance.

A two-stream approach is presented in [46] and further ex-

tended to four streams in [47]. [7] develops a decoupling

GCN to increase the model capacity with no extra compu-

tational cost. ResGCN is proposed in [53] which adopts

a bottleneck structure from ResNet [17] to reduce param-

eters while increasing model capacity. However, skeleton

based SLR is still under-explored. An attempt to extend ST-

GCN to SLR directly [12] has been unsuccessful that only

achieves around 60% recognition rate on 20 sign classes,

which is significantly lower than handcrafted features.

Multi-modal Approach aims to explore action data cap-

tured from different resources/devices to improve the fi-

nal performance. It is based on the assumption that dif-

ferent modalities contain unique motion information which

could potentially complement each other and eventually ob-

tain comprehensive and distinctive action representations.

View-invariant representation learning framework is pro-

posed in [70, 61] to obtain robust representation for down-

stream tasks. [18] deploys shared weights network on

multi-modal scenario to obtain modality hallucination for

image classification task. DA-Net [60] proposes a view-

specific and a view-independent modules to capture the fea-

tures and effectively merges the prediction scores together.

A feature factorization framework is proposed in [43] which

explores the view shared-specific information for RGB-D

action recognition. A cascaded residual autoencoder is de-

signed in [57] to handle incomplete view classification set-

ting. A super vector is proposed in [4] to fuse the multi-

view representations together. [63] proposes a cross-view

generative strategy to explore the latent view distribution

connections and a late fusion strategy to effectively learn

the prediction correlations. Encouraged by the success of

those multi-modal methods, we aim to explore more visual,

depth, gesture, and hand modalities jointly to capture infor-

mation from all aspects and fuse them together via a univer-

sal framework to achieve higher performance.

3. Our approach

This section will first introduce SL-GCN and SSTCN

models based on skeleton keypoints and features, respec-

tively. Then we will present a baseline 3D CNNs model

for other modalities. Last, we will introduce our SAM-SLR

framework and explain the multi-modal ensemble process.

3.1. SL­GCN

We construct a spatio-temporal graph to model the dy-

namics of human body skeleton for SLR, and propose a

SL-GCN model with attention mechanism to extract motion

dynamics from the graph. We also adopt a multi-stream ap-

proach to further improve the performance.

3.1.1 Graph Construction and Reduction

Hand gestures play an important role in performing sign

language. For action recognition, researchers tend to use

the ground-truth skeleton annotations provided by motion

capture system such as Kinect v2 [37]. Unfortunately, such

system does not provide annotations for the hands. We use

a pretrained whole-body pose estimation network to pro-

vide 133 keypoints estimated from the detected person in

videos. A spatio-temporal graph can then be constructed

by connecting the adjacent keypoints in the spatial dimen-

sion according to the natural connections of human body,

and connecting all keypoints to themselves in the tempo-

ral dimension. In this graph, the node set V = {vi,t|i =
1, ..., N, t = 1, ..., T} includes all facial landmarks, body

skeleton, hands, and feet keypoints. Then an adjacent ma-

trix A in spatial dimension can be constructed as

Ai,j =

{

1 if d(vi, vj) = 1

0 else
(1)

where d(vi, vj) calculate the minimum distance (the mini-

mum number of nodes in the shortest path) between skele-

ton node vi and vj .

However, different from the graph used in action recog-

nition which contains a small number of nodes, the large

number of nodes and edges in the whole-body skeleton

graph introduces a lot of noise to the model. Besides, if

two nodes are far away with many nodes in between, it is

difficult to learn the interactions between those nodes. Sim-

ply using such whole-body skeleton graph containing all the

133 nodes gives a low accuracy in our experiment. There-

fore, based on observations on the data and visualizations

of GCN activations, we conduct a graph reduction on the

whole-body skeleton graph and trim down the 133 nodes to

27 nodes. The remaining graph contains 10 nodes for each

hand and 7 nodes for the upper body, which is illustrated in

Figure 2(b). Our experiments demonstrate that such graph

contain the essential information we need for SLR. Graph



Figure 2. Illustration of the SL-GCN pipeline: (a) Input sign language videos; (b) SLR graph constructed from whole-body keypoints

after graph reduction; (c) Workflow of the multi-stream SL-GCN (Joint, Bone, JM=Joint Motion, BM=Bone Motion); (d) SL-GCN block

architecture; (e) STC attention module used in the SL-GCN block.

reduction results in faster model convergence and signifi-

cantly higher recognition rate.

3.1.2 Graph Convolution

To capture the pattern embedded in the whole-body skele-

ton graph, we adopt the spatio-temporal GCN in [66] with

spatial partitioning strategy to model the dynamic skeletons.

The implementation of spatial GCN can be expressed as

xout = D
−

1

2 (A+ I)D−
1

2xinW, (2)

where adjacent matrix A represents intra-body connections

and an identity matrix I represents self-connections, D

presents the diagonal degree of (A+I), and W is a trainable

weight matrix of the convolution. In practice, such GCN

is implemented as performing standard 2D convolution and

then multiplying the results by D
−

1

2 (A+I)D−
1

2 . The tem-

poral GCN can be also implemented as a standard 2D con-

volution with kernel size kt × 1 that it performs on the tem-

poral dimension with a reception field kt. We adopt a ex-

tended variation of the spatial graph convolution called de-

coupling graph convolution proposed in [7] to further boost

the capacity of GCN. In decoupling graph convolution, the

channels of graph features split into G groups and channels

in each group share an independent trainable adjacent ma-

trix A. The convolution results of the decoupling groups

are concatenated together as the output feature.

3.1.3 SL-GCN Block

Our proposed SL-GCN Block is constructed with decou-

pled spatial convolutional network, self-attention and graph

dropping module inspired by [47, 7]. As illustrated in Fig-

ure 2(d), a basic GCN block of our proposed SL-GCN net-

work consists of a decoupled spatial convolutional layer

(Decouple SCN), a STC (spatial, temporal and channel-

wise) attention module, a temporal convolutional layer

(TCN) and a DropGraph module. The Decouple SCN

boosts the GCN modeling capacity without extra cost. The

DropGraph module avoid overfitting. The STC attention

mechanism consists of a spatial attention module, a tempo-

ral attention module and a channel attention module con-

nected in a cascaded configuration, as illustrated in Figure

2(e). Our proposed spatio-temporal GCN consists of 10

such GCN blocks. At the end, a global average pooling

is applied on both spatial and temporal dimensions before

classification using a fully-connected layer.

3.1.4 Multi-stream Approach

Inspired by [47], 1st-order representation (joints coordi-

nate), 2nd-order representation (bone vector), and their mo-

tion vectors are worth to be investigated for SLR. As shown

in Figure 2(c), our multi-stream SL-GCN uses joint, bone,

joint motion, and bone motion. Bone data are generated by

representing joint data in a vector form pointing from source

joints to their target joints following the natural connections

of human body. The nose node is used as the root joint so

that its bone vector is assigned to be zeros. Let the source

and target joint be represented as vJi,t = (xi,t, yi,t, si,t)

and vJj,t = (xj,t, yj,t, sj,t) where (x, y, s) represents x-y

coordinates and confidence score, the bone vectors of the

other nodes can be calculated by subtracting their source

joint coordinates from their current joint coordinates as

vBj,t = (xj,t − xi,t, yj,t − yi,t, sj,t), for all (i, j) ∈ H where

H is the set of naturally connected human body. Motion

data are generated by calculating the difference between ad-

jacent frames in both joint and bone streams. Joint motion

can be calculated as vJMi,t = (xi,t+1−xi,t, yi,t+1−yi,t, si,t)

and bone motion can be calculated as vBM
i,t = vBi,t+1 − vBi,t.

We train each stream separately and combine their predicted

results by adding them together with weights using the same

ensemble strategy described in Section 3.4. We tried to



Figure 3. Visualization of modalities: (a) RGB with whole-body

keypoints overlay; (b) Depth; (c) Masked HHA; (d) Optical flow;

(e) Depth flow. (better viewed in color)

adopt an early fused multi-stream method proposed in Res-

GCN [53] which captures multi-stream features via mul-

tiple input blocks capture and concatenates them together

afterwards. However, our implementation does not provide

better performance, so we stick to the late ensemble method

and leave it to be explored in future work.

3.2. SSTCN

Besides using key point coordinates generated from the

whole-body pose network, we also propose a SSTCN model

to recognize the sign language from whole-body features.

We extract features of 33 keypoints from 60 frames of each

video as the input to our model, which contain 1 landmark

on the nose, 4 landmarks on mouth, 2 landmarks on shoul-

ders, 2 landmarks on elbows, 2 landmarks on wrists, and 22

landmarks on hands. All the features are down-sampled to

24 × 24 using max pooling. Instead of using 3D convolu-

tion, we process the input features with a 2D convolution

layer separably, which reduces the parameters and makes

it easier to converge. The pipeline is shown in Figure 4.

There are four stages in total. In the first stage, we reshape

the features from 60 × 33 × 24 × 24 to 60 × 792 × 24,

and feed them to 1 × 1 convolution layers, which means

we only process temporal information in this stage. Then

we shuffle the features and divide them into 60 groups, and

utilize grouped 3 × 3 convolution to extract temporal and

spatial information among the same key point features from

different frames. In this stage, temporal information and

part of spatial information are processed. In the third stage,

the features are shuffled again and divided into 33 groups.

We still use grouped 3× 3 convolution, but only spatial in-

formation in each frame is extracted. Finally, a couple of

3 × 3 fully connected layers are implemented to generate

prediction features. In the first 3 stages, all the output is

added by a residual. Moreover, a dropout layer is deployed

in each module to avoid over-fitting [54]. An ablation study

on the effectiveness of SSTCN is shown in Section 4.5. To

further improve the performance, we utilize the Swish [41]

activation function, which can be written as:

f(x) = x · Sigmoid(x). (3)

Stage 1

F4 F3 F2 F1

J1

J2

J3

J4

NF4 NF3

J1

J2

J3

J4

NF2NF1

Stage 2

Stage 3

Stage 4

1x1 kernel 3x3 kernel
3x3 fully

connected layer

Figure 4. Illustration of the proposed SSTCN for skeleton features.

Abbrevs: J=Joints; F=Frames; NF=New Features.

Since using one-hot labels with cross-entropy loss results

in overfitting in some cases [42], we adopt the label smooth-

ing technique to alleviate such effect. Mathematically, label

smoothing can be represented as

q′(k|x) = (1− ǫ)δk,y + ǫu(k), (4)

where q′(k|x) is a new form of predicted distribution, ǫ is a

hyper-parameter between 0 and 1, u() is a uniform distribu-

tion and k is the number of classes. The cross-entropy loss

can then be replaced as

H(q′, p) = −

K
∑

k=1

log p(k)q′(k) = (1−ǫ)H(q, p)+ǫH(u, p),

(5)

where such representation can be regarded as a combination

of penalties to the difference between the predicted distri-

bution with the real distribution and the prior distribution

(uniform distribution).

3.3. 3D CNNs

As mentioned in Section 2, studies on action recogni-

tion have revealed that multi-modal ensembles can further

boost each modality’s performance, hence we construct a

simple but effective baseline using 3D CNNs for the other

modalities of RGB frames, optical flows, depth HHA and

depth flow. In our study, we find out that ResNet2+1D [56],

which decouples spatial and temporal convolution in 3D

CNNs and does them one after another, provides the best

result among popular 3D CNN architectures. We find that



increasing the architecture depth does not improve the per-

formance and makes the network easier to overfit. So in our

experiment, we choose ResNet2+1D-18 with weights pre-

trained on Kinectics dataset [5] as the backbone network.

To further improve the recognition rate, for RGB frames,

we pretrain the model on the Chinese Sign Language (CSL)

dataset [69]. We find that pretraining on CSL can improve

the model convergence and increase the final accuracy by

around 1%. Same as SSTCN, we replace the ReLU activa-

tions with Swish activations (Equation 3) and use the label

smoothing technique with corresponding cross-entropy loss

in Equation 4 and 5 to avoid overfitting.

3.4. Multi­modal Ensemble

We use a simple ensemble method to ensemble all four

modalities above. Specifically, we save the output of the

last fully-connected layers of each modality before softmax

layer. Those outputs have the size nc where nc is the num-

ber of classes. We assign weights to the every modality

according to their accuracy on validation set and sum them

up with weights as our final predicted score

qRGB = α1qskel + α2qRGB + α3qflow + α4qfeat, (6)

qRGB-D =α1qskel + α2qRGB + α3qflow + α4qfeat

+ α5qHHA + α6qdepthflow,
(7)

where q represents the result of each modality, α1,2,3,4,5,6

are hyper-parameters to be tuned based on ensemble accu-

racy on validation set. We find the indices of maximum

scores as our final predicted classes using an argmax() op-

erator. In our experiments, we use α = [1, 0.9, 0.4, 0.4] for

RGB track and α = [1.0, 0.9, 0.4, 0.4, 0.4, 0.1] for RGB-

D track. We have tried other ensemble methods such as

early fusion or training fully-connected layers to ensemble

the final prediction. Despite that, we find that the simplest

method we presented above gives us the best accuracy.

4. Experiments

In this section, we present evaluation of our proposed

SAM-SLR framework on the AUTSL dataset. We start from

a brief introduction about the AUTSL dataset and how we

extract the data of all modalities. Then we evaluate our

single-modal models and using the validation data com-

pared with the baseline methods. Besides, we demonstrate

that the effectiveness of proposed approaches via ablation

studies on the model components. After that, we fuse the

results from different modalities in both RGB and RGB-D

scenarios to show that those modalities complement each

other and improve the overall recognition rate. Last, we

show our evaluated results on the test set, which ranked the

1st place in the SLR challenge [50].

Subsets Signers Samples

Training 31 28,142

Validation 5 4,418

Testing 7 3,742

Total 43 36,302

Table 1. A statistical summary of the balanced AUTSL dataset.

4.1. AUTSL Dataset

AUTSL [51] is collected for general SLR tasks in Turk-

ish sign language. Kinect V2 sensor [37, 1] is utilized in

the collection procedure. Specifically, 43 signers with 20

backgrounds are assigned to perform 226 different sign ac-

tions. In general, it contains 38,336 video clips which is

split to training, validation, and testing subsets. The statis-

tical summary of the balanced dataset, which is used in the

challenge, is listed in Table 1.

4.2. Baseline Methods

Along with the AUTSL benchmark [51], several deep

learning based models are proposed. We treat the best

model benchmarked in [51] as well as the SLR challenge

leader board as the baseline model here (Baseline RGB and

Baseline RGB-D in Table 6). Specifically, the model is

mainly constructed using CNN + LSTM structure, where

2D-CNN model are used to extract feature for each video

frame and bidirectional LSTMs (BLSTM) are adopted on

top of the these 2D CNN features to lean their temporal

relations. A feature pooling model (FPM) [52] is plugged

in after the 2D CNN model to obtain multi-scale represen-

tation of the features. A spacial-temporal attention model

[40] is then built on top of BLSTM features to better focus

on important spacial-temporal information for SLR.

4.3. Multi­modal Data Preparation

Whole-body Pose Keypoints and Features. We use a pre-

trained HRNet [55] whole-body pose estimator provided by

MMPose [9] to estimate 133-point whole-body keypoints

from the RGB videos and construct the 27-node skeleton

graph in Section 3.1.1. As mentioned in Section 3.1.4, we

process the graph into four streams (joint, bone, joint mo-

tion and bone motion). Randomly sampling, mirroring, ro-

tating, scaling, jittering and shifting are applied as data aug-

mentations. We use a sample length of 150 in our experi-

ment. If a video has lesser frames than 150, we repeat that

video until we get 150 frames. Coordinates of keypoints are

normalized to [-1,1]. For skeleton features, as mentioned in

3.2, we choose 33 joint features for each frame. 60 frames

will be uniformly sampled from each video.

RGB Frames and Optical Flow. All frames of RGB

videos are extracted and saved as images for faster paral-

lel loading and processing. We follow the same process



Streams Top-1 Top-5

Joint 95.02 99.21

Bone 94.70 99.14

Joint Motion 93.01 98.85

Bone Motion 92.49 98.78

Multi-stream 95.45 99.25

Table 2. Performance of multi-stream SL-GCN on validation set.

Variations Top-1

SL-GCN (Joint) 95.02

w/o Graph Reduction 63.69

w/o Decouple GCN 94.66

w/o Drop Graph 94.81

w/o Keypoints Augmentation 90.16

w/o STC Attention 93.53

Table 3. Ablation studies on SL-GCN using joint stream.

in [64] to obtain optical flow features using TVL1 algo-

rithm [68] implemented with OpenCV and CUDA. The out-

put flow maps of x and y directions are concatenated in

channel dimension. RGB frames and optical flow frames

are cropped and resized to 256×256 based on the keypoints

obtained from whole-body pose estimation. Such cropping

and resizing operations are performed on the other image-

like modalities as well. During training, we randomly sam-

ple 32 consecutive frames for each video. When testing, we

uniformly sample 5 such clips from input videos and aver-

age on their predicted score.

Depth HHA and Depth Flow. We extract HHA features

from depth videos as another modality. HHA features en-

code depth information into a RGB-like 3-channel output,

where HHA stand for horizontal disparity, height above the

ground and angle normal. Using HHA instead of using

gray-scale depth videos directly enables better understand-

ing of the scene and improves the recognition rate. We ob-

serve that the provided depth videos come with a mask. So

when generating HHA features, we mask out those regions

and fill them with zeros. An example of our extracted HHA

with mask can be found in Figure 3(c). Black regions are

masked out pixels. We treat HHA feature the same way

as the RGB frames in data augmentation. Besides, we fol-

low the exactly the same procedure used for RGB to extract

optical flow from the depth modality (named depth flow).

The depth flow is cleaner and captures different informa-

tion compared with the RGB flow, as shown in Figure 3(e).

4.4. Performance of SL­GCN

The results of our proposed SL-SLR are reported in Ta-

ble 2 in terms of Top-1 and Top-5 recognition rate. The

joint stream provides the best performance among all four

streams, and their ensemble further improve the overall

Methods Feature size Top-1

ResNet3D 12× 12 92.82

ResNet2+1D 12× 12 93.03

SSTCN 12× 12 93.60

SSTCN 24× 24 94.32

Table 4. Comparing our SSTCN with ResNet3D and ResNet2+1D

on 12 × 12 feature size shows the effectiveness of our SSTCN.

Using larger feature size will further improve the performance.

recognition rate, which demonstrates the effectiveness of

our proposed multi-stream SL-GCN model using whole-

body skeleton graph. Our SL-GCN performs the best

among the other single-modality models as shown in Ta-

ble 6. Another major advantage of the graph based method

is that it is much faster to run compared with 3D CNNs us-

ing RGB frames, since the data is less complex and requires

lower computational operations.

Ablation studies on the proposed SL-GCN model is pre-

sented in Table 3. Our graph reduction technique is the

most significant contributor to the performance. Without

the graph reduction, the GCN model can hardly learn from

the complex dynamics in the skeleton graph with too many

nodes and edges. The data augmentation techniques (i.e.,

random sampling, mirror, rotate, shift, jitter) are also crucial

in learning the dynamics embedded, since the GCN model

is easy to overfit on the data. The decoupling GCN module,

the DropGraph module and the STC attention mechanism

all contribute to our final recognition rate as well.

4.5. SSTCN Results

In this subsection, the details of training will be pre-

sented. Besides, we will show the comparison results with

ResNet3D [16, 25] and ResNet2+1D [56] to show the ef-

fectiveness of our model. As shown in Figure 4, our model

has 4 stages in total. Each stage has two layers. Since the

last two layers are fully connected layers that may signifi-

cantly impact performance due to their redundant parame-

ters, we utilize three ResNet3D and ResNet2+1D modules

while implementing ResNet3D ResNet2+1D, respectively.

The training loss and the position of dropout layers are men-

tioned in Section 3.2. The learning rate is 1e− 3 in the be-

ginning with weight decay 1e−4. At epoch 50, the learning

rate is set as 1e − 4, and the weight decay is set to 0. At

epoch 100, the learning rate is set as 1e − 5. We trained

200 epochs in total. The hyper-parameters remain the same

while training ResNet3D and ResNet2+1D as baselines. We

also compare the results of different feature sizes. The com-

parison results are shown in Table 4. From the table, we can

find out that our SSTCN has the highest accuracy compar-

ing with ResNet3D and ResNet2+1D on the same scale of

features. With a larger feature size, our SSTCN can achieve

even better performance.



3D CNN Variations Top-1

Ours (RGB Frame) 94.77

w/o Label Smoothing 93.75

w/o Swish Activation 92.88

w/o Pretraining on CSL 93.41

w/ ResNet3D-18 Backbone 93.10

Table 5. Ablation studies on 3D CNN using RGB frames.

Modality Top-1 Top-5

Baseline RGB 42.58 -

Baseline RGB-D 63.22 -

Keypoints 95.45 99.25

Features 94.32 98.84

RGB Frames 94.77 99.48

RGB Flow 91.65 98.76

Depth HHA 95.13 99.25

Depth Flow 92.69 98.87

Table 6. Results of single modalities on AUTSL validation set.

4.6. Other Modalities and Ensembles

The results of our baseline 3D CNNs for the the other

modalities are reported in Table 6. Keypoints method repre-

sents our proposed multi-stream SL-GCN, which performs

the best among the other single-modality methods. If we

consider the feature based method using SSTCN as the

same modality as SL-GCN (both skeleton based), their en-

semble result achieves even higher recognition rate, see Ta-

ble 7. We observe that the depth flow provides slightly

better accuracy compared with RGB flow due to the lesser

noise introduced. An ablation study on the 3D CNN archi-

tecture is also provided in Table 5 using the RGB frames.

From the ablation study, we find that label smoothing and

swish activation both improve the recognition rate by 1%

and 2%, respectively. Pretraining on CSL dataset [69] im-

proves the final accuracy by 1.4%.

The ensemble results in both RGB and RGB-D scenar-

ios using different combinations of modalities are summa-

rized in Table 7 as two groups. The skeleton based method

combined from SL-GCN and SSTCN performs better than

RGB + Flow and Depth ensemble models, which shows the

effectiveness of our proposed skeleton based approach. The

ensemble results of RGB All and RGB-D All demonstrate

that the whole-body skeleton based approaches are able to

collaborate with the other modalities and further improve

the final recognition rate.

4.7. Evaluated on Challenge Test Set

When training our models on the training set, we adopt

an early stopping technique based on the validation accu-

racy to obtain our best models. Then we test our best mod-

Ensemble K F R O H D Top-1 Top-5

Skeleton X X 96.11 99.43

RGB+Flow X X 95.77 99.52

RGB All X X X X 96.96 99.68

Depth X X 95.76 99.41

RGB+D X X X X 96.27 99.66

RGBD All X X X X X X 97.10 99.73

Table 7. Multi-modal ensemble results evaluated on AUTSL

validation set. Abbrevs: K=Keypoints; F=Features; R=RGB;

O=Optical Flow; H=HHA; D=Depth Flow.

Finetune Track Top-1

Baseline - RGB 49.23

Baseline - RGB-D 62.03

Ensemble No RGB 97.51

Ensemble No RGB-D 97.68

Ensemble w/ Val RGB 98.42

Ensemble w/ Val RGB-D 98.53

Table 8. Performance our ensemble results (with and without fine-

tuning) evaluated on AUTSL test set.

els on the test set and use the hyperparameters tuned on val-

idation set to obtain our ensemble prediction. In the final

test phase of the challenge, we are allowed to finetune our

model using the validation set. To further improve our per-

formance, we finetune our best models on the union of train-

ing and validation set. Since we cannot validate the training

models this time, we stop training when the training loss in

our finetuning experiment is reduced to the same level as

our best models in the training phase. Our predictions with

and without finetuning are evaluated on the challenge server

and reported in Table 8. Our proposed SAM-SLR approach

surpasses the baseline methods significantly and ranked 1st

in both RGB and RGB-D tracks of the SLR challenge.

5. Conclusion

In this paper, we propose a novel Skeleton Aware Multi-

modal SLR framework (SAM-SLR) to take advantage of

multi-modal information towards effective SLR. Specifi-

cally, we construct a skeleton graph for SLR using pre-

trained whole-body pose estimators and propose SL-GCN

to model the embedded spatial and temporal dynamics. Our

approach requires no extra effort on skeleton annotation.

In addition to modeling keypoints dynamics, we propose

SSTCN to exploit information in skeleton features. Further-

more, we implement effective baselines for the other RGB

and depth modalities and assemble all modalities together

in the proposed SAM-SLR framework, which achieves the

state-of-the-art performance and won the challenge on SLR

in both RGB and RGB-D tracks. We hope our work could

encourage and facilitate future research on SLR.
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