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Abstract

Predicting 3D human pose from a single monoscopic

video can be highly challenging due to factors such as

low resolution, motion blur and occlusion, in addition to

the fundamental ambiguity in estimating 3D from 2D. Ap-

proaches that directly regress the 3D pose from independent

images can be particularly susceptible to these factors and

result in jitter, noise and/or inconsistencies in skeletal es-

timation. Much of which can be overcome if the temporal

evolution of the scene and skeleton are taken into account.

However, rather than tracking body parts and trying to tem-

porally smooth them, we propose a novel transformer based

network that can learn a distribution over both pose and

motion in an unsupervised fashion. We call our approach

Skeletor. Skeletor overcomes inaccuracies in detection and

corrects partial or entire skeleton corruption. Skeletor uses

strong priors learn from on 25 million frames to correct

skeleton sequences smoothly and consistently. Skeletor can

achieve this as it implicitly learns the spatio-temporal con-

text of human motion via a transformer based neural net-

work. Extensive experiments show that Skeletor achieves

improved performance on 3D human pose estimation and

further provides benefits for downstream tasks such as sign

language translation.

1. Introduction

This paper introduces Skeletor, a deep neural network

transformer model based on similar concepts to BERT [10].

Skeletor is trained to correct noisy or erroneous 3D skele-

tal poses using implicit temporal continuity and a strong

prior over body pose embedded within the transformer net-

work. We demonstrate Skeletor’s application to correcting

noisy 3D skeletal estimations that come from OpenPose [6]

and the application of robust 3D pose estimation to down-

stream tasks such as sign language translation. Using a fur-

ther state of the art transformer model, we show that the

corrective power of Skeletor provides significant benefits to

downstream tasks.

We train Skeletor on a large corpus of human motion

data, learning a probability distribution over the spatio-

temporal skeletal motion. This distribution is learnt in an

unsupervised manner, using a transformer network trained

in a similar fashion to BERT [10]. However, whereas BERT

learns a language model over the discrete set of symbols

that form words, Skeletor learns to embed skeletal appear-

ance in the context of human motion into the network. The

output from Skeletor is then a corrected 3D skeletal pose. It

is important to note that although we demonstrate 3D skele-

tal correction, the approach is not limited to this domain. It

would equally be possible to train the model on 2D skele-

tons or indeed any other regression problem where a large

corpus of spatio-temporal data is available for training.

Given a low quality video of a human gesturing (e.g.

suffering from low resolution, motion blur and/or occlu-

sion), our model can provide human motion estimation in

moments of uncertainty by predicting the true 3D skele-

ton pose more precisely. This has significant benefits for

fields such as gesture recognition, sign language translation

or human motion analysis where poor quality data affects

the performance of subsequent tasks. We train our model

on 25 million frames to provide sufficient variety of human

motion. Given the popularity of pose estimation, we believe

Skeletor will be a useful tool for many researchers.

The contributions of this paper can be listed as: (1) We

propose a novel transformer model that learns about the

spatio-temporal manifold that represents 3D human skele-

ton pose. We call this model Skeletor and demonstrate its

application to correcting for missing limbs or whole skele-

tons within a sequence of human motion. It is able to

correct noisy or erroneous joint positions; (2) Skeletor is

trained in an unsupervised manner, which allows it to be

used on different datasets without human annotation; (3)

Skeletor can be used to further improve the accuracy of the

downstream tasks. Experiments demonstrate that the appli-

cation of Skeletor improves performance for downstream

tasks such as Sign Language Translation.

The remainder of the paper is structured as follows: In

Section 2 we cover related work on human pose estima-



tion and transformer networks and their origins in NLP. In

Section 3 we describe the Skeletor model in detail. We de-

scribe the training process and how to apply the model to 3D

skeleton sequences in Section 4. In Section 5 we perform

qualitative and quantitative experiments to demonstrate the

effect of Skeletor on 3D pose estimation. We then apply

our model to the downstream task of sign language trans-

lation from skeletons, achieving improved performance and

demonstrating the benefits of using Skeletor. Finally, we

conclude the paper in Section 6, by discussing our findings

and the future work.

2. Related work

Human pose estimation has been an active area of com-

puter vision since the 1980’s. Early approaches were based

on optimisation as either a 3D estimation problem, us-

ing model based approaches based on geometric primitives

[16, 9], or part based 2D estimation [12]. The latter hav-

ing the added complication that it suffers from self occlu-

sion and perspective ambiguity. However, it was the intro-

duction of Convolutional Pose Machines [35], building on

the concept of pose machines proposed by Ramakrishna et.

al. [28] that provided a step change in performance. Since

the introduction of Pose Machines, there has been signifi-

cant momentum in this area, with numerous neural network

based approaches to 2D estimation proposed, e.g. Stacked

Hourglass Networks [22] and HRNet [32], to name but a

few. The power of CNN approaches to pose estimation is

not only to do with the learning approach, but also the sheer

quantity of data they are trained on. The network learns

extremely strong priors over the object pose.

When it comes to 3D estimation, there are two popular

approaches: either taking a state of the art 2D regression

approach and ‘lifting’ this into 3D [20, 29] or attempting to

regress the 3D directly from the image, often conditioned

on initial 2D estimates [36, 25]. Both approaches have their

own advantages and disadvantages but in all cases, mak-

ing use of the temporal cues to smooth out inaccuracies in

single frame estimation improves results immensely [36].

As most approaches leverage the success of 2D estimation,

failures in 2D detection directly relate to failures in 3D es-

timation.

Strong models, which are trained on large variety of data,

are key to overcoming visual ambiguities during estimation,

but the model does not need to be an explicit 3D model,

such as SMPL [25], as it can be learnt from data. In Nat-

ural Language Processing (NLP), strong language models

are behind many recent success. A language model is a sta-

tistical model which provides the probability distribution of

a fixed set of words. There have been several developments

in NLP that are of relevance to this discussion.

Firstly, embeddings: WORD2VEC was released in 2013

by Mikolov et. al [21], which allowed a relatively sim-

ple neural network to learn the linguistic context of words

from a large corpus of text. In addition to its popularity

in NLP, it was quickly adopted by the vision community

to solve problems such as image captioning [37]. From

an NLP perspective, further embeddings were developed

such as GloVe (Global vectors for Word Representations)

[26] and FASTTEXT (Enriching word vectors with Sub-

word Information) [2]. ELMO [27] went beyond embed-

dings and used bidirectional LSTMs to learn a complex

language model. However, ELMO was slow to train and

suffered from the problem of long term dependencies. To

overcome this, Bidirectional Encoder Representations from

Transformers (BERT) adopted the newer transformer-based

architecture.

Transformer networks [34] are a relatively recent ad-

vancement that have achieved impressive results in many

NLP and computer vision tasks, such as sign language

recognition [5], spotting [33], translation [4] and produc-

tion [30], object detection [8], scene segmentation [13] and

video understanding [31]. BERT demonstrated how a pre-

trained language model, built from a large corpus of text,

could be used to significantly outperform many state-of-

the-art approaches across a broad range of down stream

tasks such as question answering and language inference. A

key observation, which is commonly accepted by the vision

community, is that pretraining on a large corpus of data is

key to network performance. We take the idea of BERT and

apply it in the context of human motion, learning a strong

spatio-temporal prior from 25 million frames of video data.

The learned prior improves the skeleton estimation accu-

racy, hence enhances the performance of downstream tasks

relying on the estimated skeleton.

3. Skeletor Architecture

In this section we introduce the architecture of Skeletor,

a novel deep learning network that learns about the shape

and motion of 3D skeletons from video in an unsupervised

manner. Given an image sequence V = (f1, f2, · · · , fT ),
our goal is to estimate an accurate 3D pose of the skeleton in

each frame. We define 3D pose as P = (P1, P2, · · · , PT ),
where Pi = (J i

1
, J i

2
, · · · , J i

N ) is the 3D skeleton in the ith

frame and J i
k = (xi

k, y
i
k, z

i
k) is the 3D position of joint k.

An overview of our approach is seen in Figure 1. First,

2D Pose Estimation extracts a noisy and/or partially oc-

cluded 2D skeleton in image coordinates. This is then lifted

into 3D using either regression or inverse kinematics (IK)

to produce a preliminary 3D Pose Estimation, where errors

in the 2D skeleton can effect the 3D estimate. Skeletor then

provides 3D Pose Refinement of the 3D skeleton.

The first step is to extract the initial 2D Pose Estimation

from a video sequence. There are many existing 2D pose

estimation methods that could be employed [6, 7, 11]. Note

that the output quality of 2D pose estimation is dependant



Figure 1. Overview of our approach, which consists of three

layers: 2D pose estimation, 3D pose estimation and refinement

(Skeletor).

upon both the technique used and the quality of the input

images. Hence, any blur or occlusion in the original image

sequence may cause failure in the estimated 2D pose.

The next stage is to lift the 2D skeleton into 3D to obtain

a 3D Pose Estimation. Here we use state-of-the-art uplift

methods [39, 36] to convert our initial 2D skeleton to 3D.

The 3D pose accuracy is subject to the quality of the 2D

pose, so it indirectly depends on the quality of the input

images.

The final stage is 3D Pose Refinement, where we utilize

the proposed BERT-inspired Skeletor model. The quality of

the 3D skeleton from uplift is dependant upon the quality

of the video, motion blur or occlusions in the original im-

ages, which can lead to failures in the 3D skeleton sequence.

Skeletor solves this problem, by refining the inaccurate 3D

skeleton based on its spatio-temporal context. Its architec-

ture can be seen in Figure 2.

Assuming we have a 3D skeleton sequence of T frames,

X = {X1, X2, · · · , XT }, we first embed each skeleton

into an embedding space with a dimensionality of dmodel.

Then positional encoding is added to the embedded skele-

ton to distinguish its order in the sequence. After that, the

data goes through the encoder, which has n identical layers.

Each layer consists of two parts: a multi-head attention sub-

layer and a position-wise feed-forward sub-layer. Finally, a

linear network is employed to output the refined 3D skele-

ton sequence. In the rest of this section we introduce each

component in detail.

3.1. Skeletal Embedding

Before feeding a skeleton sequence to the encoder, we

embed the skeleton into a dmodel dimensional space. For

poses with similar context, their embedded vectors should

be closely located in the embedding space. The embedding

is implemented by linear transformation, followed by ReLU

Figure 2. The network architecture of the 3D Pose Refinement

layer in Skeletor.

activation and layer normalization [1] formulated as:

Embedding(Xt) = LayerNorm(ReLU(WeXt+be)), (1)

where We and be are learnable weights that project the

skeleton vector to the embedding space.

3.1.1 Positional Encoding:

So that the model can account for the order of the skeletons

in the sequence, we must inject information about the abso-

lute or relative position of the skeletons in the sequence. To

this end, we add a positional encoding vector to each input

embedding. These vectors follow a specific pattern, allow-

ing the model to determine the absolute position of each

skeleton, or the relative distance between skeletons in the

sequence. Here, we use sine and cosine functions of differ-

ent frequencies to encode the skeleton positions:

PE(pos, 2i) = sin(pos/100002i/dmodel)

PE(pos, 2i+ 1) = cos(pos/100002i/dmodel),
(2)

where pos is the order of the frame in the sequence and i is

the dimension in the embedding space.

3.2. Encoder

The encoder consists of a stack of n = 8 identical

layers. Each layer contains two sub-layers: a multi-head

self-attention mechanism and position-wise fully connected

feed-forward network. A residual connection [15] is em-

ployed around each of the two sub-layers, followed by layer

normalization. In order to facilitate the residual connec-

tions, all the sub-layers, as well as embedding layer, must

produce outputs with the same dimension (dmodel).

3.2.1 Attention:

An attention function maps a query and a set of key-value

pairs to an output, where the query and key are vectors of



dimension dk, while the value and output are vectors of di-

mension dv . For each skeleton in the sequence, we create

a query, key and value vector by multiplying the embed-

ding of this skeleton by three matrices WQ,WK ,WV that

we learn during the training process. In practice, we pack

all the queries on the whole sequence into a matrix Q. Sim-

ilarly, the keys and values are packed together into matrices

K and V . Then the attention outputs are computed as:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V. (3)

In order to allow the model to jointly attend to informa-

tion from different representation subspaces at different

positions, we use Multi-Head Attention(MHA) to linearly

project the queries, keys and values h times with different,

learned linear projections. This gives us h, dv-dimensional

output vectors. We concatenate all the output vectors and

project again to get the final MHA outputs.

MultiHead(Q,K, V ) = Concat(head1, · · · , headh)W
O,

where headi = Attention(QWQ
i ,KWK

i , V WV
i )

(4)

where the projections are learned matrices WQ
i ∈

Rdmodel×dk , WK
i ∈ Rdmodel×dk , WV

i ∈ Rdmodel×dv and

WO ∈ Rhdv×dmodel .

3.2.2 Position-wise Feed-Forward Networks:

The fully connected feed-forward network consists of two

linear transformations with a ReLU activation in between.

The function can be written as:

FFN(x) = max(0, xW1 + b1)W2 + b2 (5)

The input and output have the same dimensionality dmodel,

while the inner-layer has dimensionality dff .

4. Training and Evaluation

In this section we describe the training and evaluation

scheme for our models.

4.1. Training

We trained Skeletor on a large corpus of TV broadcast

footage, consisting of approximately 25 million high quality

frames of human motion. We first run OpenPose [6] on the

video footage to get the 2D skeletons and their confidence

values. We then extract the 3D skeletons using Zelinka et

al.’s 3D uplift process [38], which can be summarized in

the following steps. Firstly, the 3D coordinates of the skele-

ton’s ‘head’ joint are initialized as the coordinates of the tar-

get 2D skeleton. The length of each bone is then calculated

by taking the average 2D length found in all frames of the

current sequence. From the head joint, the 3D positions of

all other joints’ are computed recursively by optimizing the

loss function, which contains three components; the MSE

between the estimated 3D position’s projection and 2D tar-

get position, the trajectory length from the last frame and

the sum of the length of all the bones in the skeleton. There

are 50 joints in total in each skeleton, that represent the

upper-body movement.

For each sequence in a batch, some skeleton frames are

partially or entirely corrupted by masking or by adding

noise. The original skeleton and the associated corrupted

skeleton are then fed into the model. We take the original

skeleton as the ground truth due to the high quality of the

dataset and use it to calculate the loss function. As loss

function, we use the Mean Squared Error (MSE) between

the prediction and the ground truth skeletons.

All parts of our network are trained with Xavier initial-

isation [14] and Adam optimization [17] with default pa-

rameters and a learning rate of 10−5. Our code is based on

Kreutzer et al.’s NMT toolkit, JoeyNMT [18], and imple-

mented using PyTorch [24]. The whole training converged

within 8 hours after 300,000 iterations.

4.2. Evaluation

During training, we use a use a sliding window with fixed

number of frames to create batches. However, for evalua-

tion, the total number of frames in videos can differ and

generally larger than the window size. To obtain final out-

put of the ith frame in a video, we take the average of pre-

diction at the same position in the 2r + 1 closest windows

containing this frame, where r is the averaging radius. In

order to average the predictions, we need to pad r + n1/2
frames both to the front and the rear of the video, where n1

is the window size. To pad the video, we simply extend the

first frame forwards and the last frame backwards.

5. Results

In this section, we first evaluate Skeletor performance on

corrupt and noisy skeletal sequences. We conduct experi-

ments with masking and applying noise to both frames and

joints, to showcase the skeleton correction abilities of Skele-

tor. We then apply Skeletor on low quality videos to asses

how much performance improvement can be provided. Fi-

nally, we evaluate the performance of Skeletor in the context

of a back translation task and make comparisons against the

state-of-the-art.

5.1. Masked Frames

In our first experiment, we manually mask a percentage

(5%, 10%, 15%, 20%, 25%) of the frames in each sequence

and use the unmasked skeletons as ground truth targets to

train Skeletor. We use confidence values produced by 2D

pose estimators (e.g. OpenPose) to pick frames with suc-

cessful predictions (i.e. high confidence = good estimates).



Figure 3. The estimation results on test data from Skeletor models

trained with different frame mask percentages.

We consider the average joint confidence as each frame’s

confidence and choose the highest p frames to mask. While

validating, no matter what percentage we mask in train-

ing, we always validate on the same sequences with 15%

masked. As the mask is determined by the confidence, we

always have the same mask, which guarantees a fair com-

parison among different experiment setups.

We calculate the MSE on the development dataset at dif-

ferent iteration steps whilst training, reporting the minimum

(min), average (ave) and maximum (max) MSE on the test

data. The statistics in Table 1 show that using a 10% masked

model provides the best performance. In the following ex-

periments, we continue to use this model if its not specified

otherwise.

Table 1. The left column is the frame masking percentage the

model is trained with. The middle column is the MSE evaluated

on the development dataset at different training steps. The right

column is the minimum (min), average (ave) and maximum (max)

MSE evaluated on test data.
Development (# iterations) Test

Frame mask 50,000 100,000 200,000 300,000 min ave max

5% 3.086 2.124 1.195 1.103 0.147 1.833 9.628

10% 2.613 1.404 0.642 0.581 0.090 0.875 8.421

15% 5.048 1.844 0.919 0.874 0.255 1.266 9.862

20% 5.518 2.196 1.034 0.856 0.264 1.250 9.459

25% 4.842 2.469 1.116 0.971 0.210 1.147 8.273

For qualitative and intuitive comparison, we also plot the

prediction results for different models in Figure 3. From the

figure, we can see that Skeletor not only predicts masked

frames (frame 13) but is also tolerant to noisy data in train-

ing (frame 10, 11). For prediction on masked frame 13, a

5% masked model simply copies from the preceding frame.

However, as masking increases to 10% and beyond, the

model starts predicting the missing skeleton according to

the motion context that has been previously learnt.

5.2. Masked Joints

In our next experiment, we mask out the joints instead

of the frames, evaluating the ability of Skeletor to replace

missing joints. We mask a certain percentage (5%, 10%,

15%, 20%, 25%) of the highest confidence joints in the se-

quences rather than the whole skeleton of a frame. While

testing, a fixed 15% of random joints are masked, choosing

the same random seed as previous so that we get a consistent

mask for fair comparison. Evaluation of the different joint

masking percentages can be found in Table 2, showing that

the model with 10% joint masking achieves the best results.

Table 2. The MSE results on the development and test datasets for

models with different joint mask percentages.
Development (# iterations) Test

Joint mask 50,000 100,000 200,000 300,000 min ave max

5% 17.532 15.146 13.655 13.645 2.019 4.543 12.484

10% 18.192 14.493 13.585 13.521 1.869 3.555 9.590

15% 20.759 15.594 14.585 14.640 1.979 4.181 15.478

20% 23.323 18.590 17.881 17.914 2.606 6.390 42.758

25% 23.453 17.816 16.452 16.418 2.314 5.031 22.171

We visualize the masked skeletons and Skeletor predic-

tions in Figure 4. From the figure, we can see that Skele-

tor can complete missing joints without exception. Al-

though sometimes the gesture cannot be recovered accu-

rately (e.g. the left hand in frame 31 on 25% of the joint

masked model), the whole-body pose and the general hand

shape given by Skeletor are close to the original. This

demonstrates that Skeletor can not only learn the context of

the motion but also learn the context of the joint movement.

5.3. Noisy Frames

To demonstrate that Skeletor can correct erroneous

skeleton sequences, we manually corrupt the high-quality

data by adding noise to the 3D skeleton during testing. The

noise strength is determined by the parameter s. We add

noise to the ith joint’s position ni ∈ [−s ∗ limbi, s ∗ limbi],
where limbi is the length of the limb whose end is joint i. ni

is uniformly and randomly chosen between −s ∗ limbi and

s∗ limbi. We corrupt 15% of the highest confidence frames

in the sequence with different noise strengths (0.1, 0.3, 0.5,

0.7, 0.9) to see how much noise Skeletor can tolerate.

The estimated errors can be found in Table 3. Obvi-

ously, with less noise, Skeletor achieves better results. For

intuitive observation, we also draw the noisy skeleton and

Table 3. Skeletor can be used to correct the skeleton with noise

applied to the whole skeleton.
Frame-level MSE on Test set

Noise Strength (s) min ave max

0.1 0.059 0.117 1.408

0.3 0.154 0.215 1.488

0.5 0.345 0.409 1.691

0.7 0.585 0.689 1.983

0.9 0.841 1.100 2.331



Figure 4. The joint masked skeletons with different masking percentages corrected by Skeletor. The first column is the joint masking

percentages. Each column in 2-3 includes frame indices, original skeletons, joint masked skeletons and predictions from Skeletor.

Table 4. Skeletor can be used to correct the skeleton with different

levels of noise applied to the joints.
Joint-level MSE on Test set

Noise Strength (s) min ave max

0.1 0.225 0.452 4.573

0.3 0.272 0.508 4.786

0.5 0.364 0.616 5.126

0.7 0.496 0.770 5.209

0.9 0.656 0.965 5.483

Skeletor prediction in Figure 5. From the figure, we can see

that Skeletor can recover the original gesture well with a

noise strength below 0.3. However, above 0.5, Skeletor be-

gins to struggle. Although it cannot perfectly estimate the

whole-body pose under the influence of heavy noise, it can

still give recognizable results based on the whole-body pose

(especially for noise 0.9).

5.4. Noisy Joints

In order to demonstrate that Skeletor can correct erro-

neous joints in the sequence, during testing we corrupt 15%

of the highest confidence joints instead of the whole skele-

ton. We use different noise strengths (0.1, 0.3, 0.5, 0.7,

0.9). Quantitative results can be found in Table 4, with

Skeletor performing better with less noise. However, in Fig-

ure 6, we can see that Skeletor corrects the joint position

and provides a sensible prediction. Even with a large noise

strength applied to the joint (noise 0.9 in the 4-th frame),

Skeletor can produce results comparable with much smaller

amounts of noise.

5.5. Low Quality Video

For all previous experiments, the data we have trained

and tested upon has been of high quality, with synthetic

noise or masking applied. After training our model, we

want to see to what extent Skeletor can improve the na-

ture of low quality data. We apply Skeletor to the publicly

available PHOENIX14T dataset [3], which is recorded from

broadcast footage and suffers from both motion blur and in-

terlacing artifacts. As there is no 3D ground truth for this

dataset, we can only evaluate from a qualitative perspective.

In Figure 7 we see that when motion blur occurs, it is dif-

ficult for both the human eye or machine to understand the

sign from a single image. This can lead to prediction failure

(see the left hand in the row labelled Original), which would

affect the performance of downstream tasks training on this

dataset. However, Skeletor learns the context and motion

pattern from the whole sequence rather than independent

images. It can use the context of the sequence and visual

cues from when the hands are not blurred, to infer the pose

and motion throughout the entire sequence, Skeletor pre-

dicts the missed skeleton or corrects the erroneous pose es-

timation from the spatio-temporal context it has learned (see

the left hand in the Skeletor row).

5.6. Back translation

To evaluate the effect of Skeletor on the performance of

downstream tasks, we trained a separate transformer based

Sign Language Translation network on the PHOENIX14T

dataset. Our network was built using 2 layers, which have

hidden layer size of 64 and 256 feed forward units each. We

utilized Adam optimizer [17] with a learning rate of 10−3

and a batch size of 32. We also employed 0.1 dropout and

10−3 weight decay. As defined by the dataset evaluation

protocols [3], we measure the translation performance of

our model using BLEU [23] and ROUGE [19] scores, which

are commonly used in the field of machine translation.

As can be seen in Table 5, Skeletor improves the transla-

tion performance by a relative 12%/17% BLEU-4 scores on

dev/test sets respectively. Furthermore, our model was also

able to surpass the Sign2Text baseline, which goes directly

from video to spoken language text.



Figure 5. The noisy skeletons with different noise strengths corrected by Skeletor. The first column is the frame indices and the original

skeleton. Each column in 2-6 has two parts. The left part is the noisy skeletons corrupted with noise (strength noted in parentheses), while

the right part are the results recovered by Skeletor.

Figure 6. Skeletor can be used to correct different levels of joint inaccuracies in the skeleton.

Figure 7. Skeletor can be applied to datasets with low image quality to improve the estimation accuracy



Table 5. Comparison with the Sign2Text baseline sign language translation model, using the back translation evaluation.
DEV SET TEST SET

BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE

Sign2Text [3] 9.94 13.16 19.11 31.87 31.80 9.58 12.83 19.03 32.24 31.80

Raw 3D Skeleton Estimates 9.74 12.75 18.38 31.43 31.82 8.85 11.62 16.94 30.22 29.89

Skeletor 10.91 14.01 19.53 31.97 32.66 10.35 13.49 19.11 31.86 31.80

6. Conclusion

In this paper, we proposed a novel transformer based net-

work called Skeletor, which can learn the spatio-temporal

context of human motion at both the skeletal animation and

joint level. Within this context, it can not only predict the

missing joints and skeletons in the sequence, but also cor-

rect noisy skeletons or joint inaccuracies. Unsupervised

training makes it possible to learn from and leverage sig-

nificant benefits from huge corpora of data.

Our experiments showed that Skeletor improves the ac-

curacy of pose estimation, especially where we have low

quality video. Applying masking and noise augmentation at

both frame- and joint-level provides a boost in both quan-

titative and qualitative performance. Our corrected skele-

tons achieve improved results on sign language translation,

demonstrating that Skeletor can have significant benefits to

down stream tasks.

In the future, we will investigate the addition of an adver-

sarial discriminator to further increase the realism of skele-

tal prediction. Another future direction is to add sequence

ordering mechanism as adopted by BERT to detect discon-

tinuities in the sequence.
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