
Evaluating the Immediate Applicability of

Pose Estimation for Sign Language Recognition

Amit Moryossef1,2 Ioannis Tsochantaridis2
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Abstract

Sign languages are visual languages produced by the

movement of the hands, face, and body. In this paper, we

evaluate representations based on skeleton poses, as these

are explainable, person-independent, privacy-preserving,

low-dimensional representations. Basically, skeletal repre-

sentations generalize over an individual’s appearance and

background, allowing us to focus on the recognition of mo-

tion. But how much information is lost by the skeletal rep-

resentation? We perform two independent studies using two

state-of-the-art pose estimation systems. We analyze the ap-

plicability of the pose estimation systems to sign language

recognition by evaluating the failure cases of the recogni-

tion models. Importantly, this allows us to characterize the

current limitations of skeletal pose estimation approaches

in sign language recognition.

1. Introduction

Sign languages are visual languages produced by the

movement of the hands, face, and body. As languages that

rely on visual communication, recordings are in video form.

Current state-of-the-art sign language processing systems

rely on the video to model tasks such as sign language

recognition (SLR) and sign language translation (SLT).

However, using the raw video signal is computationally ex-

pensive and can lead to overfitting and person dependence.

In an attempt to abstract over the video informa-

tion, skeleton poses have been suggested as an explain-

able, person-independent, privacy-preserving, and low-

dimensional representation that provides the signer body

pose and information on how it changes over time. Theo-

retically, skeletal poses contain all the relevant information

required to understand signs produced in videos, except for

interactions with elements in space (for example, a mug or

a table).

The recording of accurate human skeleton poses is dif-

ficult and often intrusive, requiring signers to wear spe-

cialized and expensive motion capture hardware. Fortu-

nately, advances in computer vision now allow the estima-

tion of human skeleton poses directly from videos. How-

ever, as these estimation systems were not specifically de-

signed with sign language in mind, we currently do not

understand their suitability for use in processing sign lan-

guages both in recognition or production.

In this paper, we evaluate two pose estimation systems

and demonstrate their suitability (and limitations) for SLR

by conducting two independent studies on the CVPR21

ChaLearn challenge [33]. Because we perform no pretrain-

ing of the skeletal model, the final results are considerably

lower than potential end-to-end approaches (§3). The re-

sults demonstrate that the skeletal representation loses con-

siderable information. To better understand why, we evalu-

ate our approaches (§4), categorize their failure cases (§5),

and conclude by characterizing the attributes a pose estima-

tion system should have to be applicable for SLR (§6).

2. Background

2.1. Pose Estimation

Pose estimation is the task of detecting human figures

in images and videos to determine where various joints are

present in an image. This area has been thoroughly re-

searched [30, 12, 7, 20, 19] with objectives varying from the

predicting of 2D/3D poses to a selection of a small specific

set of landmarks or a dense mesh of a person. Vogler [38]

showed that the face pose correlates with facial non-manual
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features.

OpenPose [7, 32, 8, 40] was the first multi-person sys-

tem to jointly detect human body, hand, facial, and foot

keypoints (135 keypoints in total) in 2D on single images.

While this model can estimate the full pose directly from

an image in a single inference, a pipeline approach is also

suggested where first, the body pose is estimated and then

independently the hands and face pose by acquiring higher-

resolution crops around those areas. Building on the slow

pipeline approach, a single-network whole-body OpenPose

model has been proposed [21], which is faster and more ac-

curate for the case of obtaining all keypoints. Additionally,

with multiple recording angles, OpenPose also offers key-

point triangulation to reconstruct the pose in 3D.

DensePose [20] takes a different approach. Instead of

classifying for every keypoint which pixel is most likely,

similar to semantic segmentation, each pixel is classified

as belonging to a body part. Then, for each pixel, know-

ing the body part, the system predicts where that pixel is

on the body part relative to a 2D projection of a represen-

tative body model. This approach results in reconstructing

the full-body mesh and allows sampling to find specific key-

points similar to OpenPose.

MediaPipe Holistic [19] attempts to solve the 3D pose

estimation problem directly by taking a similar approach to

OpenPose, having a pipeline system to estimate the body

and then the face and hands. It uses a dense mesh model for

the face pose containing 468 points, but resorts to skeletal

joints for the body and hands. Unlike OpenPose, the poses

are estimated using regression rather than classification and

are estimated in 3D rather than 2D.

2.2. Sign Language Recognition

Sign language recognition (SLR) is the task of recogniz-

ing a sign or a sequence of signs from a video. This task has

been attempted both with computer vision models, assum-

ing the input is the raw video, and with poses, assuming the

video has been processed with a pose estimation tool.

2.2.1 Video to Sign

Camgöz et al. [4] formulate this problem as one of transla-

tion. They encode each video frame using AlexNet [24],

initialized using weights that were trained on ImageNet

[16]. Then they apply a GRU encoder-decoder architec-

ture with Luong Attention [25] to generate the signs. In a

follow-up work [6], they use a transformer encoder [37] to

replace the GRU and use Connectionist Temporal Classifi-

cation (CTC) [18] to decode the signs. They show a slight

improvement with this approach over the previous one.

Adaloglou et al. [1] perform a comparative experimen-

tal assessment of computer vision-based methods for the

SLR task. They implement various approaches from pre-

vious research [3, 15, 36] and test them on multiple datasets

[22, 4, 39, 36] either for isolated sign recognition or contin-

uous sign recognition. They conclude that 3D convolutional

models outperform models using only recurrent networks

because they better capture temporal information and that

convolutional models are more scalable given the restricted

receptive field, which results from their “sliding window”

technique.

2.2.2 Pose to Sign

Upper body poses have been widely used as a feature for

computational sign language research [14], due to their

signer-invariant representation capabilities. They have been

included into recognition [17], translation [5], or detection

[28] frameworks, either in raw coordinate form or as lin-

guistically meaningful symbols extracted from joint coordi-

nates [13].

Before the deep learning era, most sign language sys-

tems utilized specialized sensors, such as Kinect [43, 10],

to estimate signers pose in real-time [31]. There have

also been attempts to train models on sign language data

[29, 11, 26] which extract low-resolution skeletons, i.e., few

joints. However, these approaches suffered from noisy esti-

mations and had deficient hand joint resolution.

As with any subfield of computer vision, human pose

estimation also improved with the introduction of deep

learning-based approaches. Open source, general-purpose

human pose estimation models, such as convolutional pose

machines [41] and their predecessor OpenPose [7], became

widely used in sign language research. Ko et al. [23] uti-

lized a transformer-based translation based purely on skele-

tal information. Albanie et al. [2] proposed using pose es-

timates to recognize co-articulated signs. They further used

the pose estimates to train knowledge distillation networks

and learn meaningful representations for downstream tasks.

3. Experiments

To evaluate whether pose estimation models are applica-

ble for SLR, we participated in the CVPR21 ChaLearn chal-

lenge for person-independent isolated SLR on the Ankara

University Turkish Sign Language (AUTSL) [34] dataset.

Even though the dataset includes Kinect pose estimations,

Kinect poses have not been made available for the chal-

lenge. We processed the dataset using two pose estimation

tools: 1. OpenPose Single-Network Whole-Body Pose Es-

timation [21]; and 2. MediaPipe Holistic [19]; and made

the data available via an open-source sign language datasets

repository [27].

We approach the recognition task with two independent

experiments performed by different teams unaware of the

other team’s work throughout the validation stage. In the

validation stage, each team focussed on one pose estima-
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tion approach, and in the test stage, both teams got access

to both pose estimation outputs. We eventually submitted

three systems: 1. based on OpenPose poses; 2. based on

Holistic poses; 3. based on both OpenPose and Holistic

poses combined (concatenated).

3.1. Team 1

Team 1 worked with OpenPose [21] pose estimation

output and used the SLR transformer architecture from

Camgöz et al. [6]. The model takes as input a series of

feature vectors, in this case, human upper body skeletal co-

ordinates extracted from the video frames. These are each

projected to a lower dimension hidden state vector. The size

of the hidden state remains constant throughout the subse-

quent operations. A sinusoidal positional encoding is added

to provide temporal information. This is then passed to a

subnetwork consisting of a multiheaded self-attention layer,

followed by a feedforward layer. After each of these layers,

the output is added to the input and normalized. This sub-

network can be repeated any number of times. Finally, the

output is fed to a linear layer and softmax to give probabili-

ties for each class (Figure 1).

Connectionist Temporal Classification

Linear Linear LinearLinear Linear Linear

KEKEKE

Self-Attention

FF FF FFFF FF FF

Add & Normalize

Add & Normalize

Softmax Softmax SoftmaxSoftmax Softmax Softmax

PE PE

Linear Linear LinearLinear Linear Linear

PE

Figure 1. Diagram of Team 1’s model with one subnetwork (in

green). (KE: Keypoint extraction, PE: Positional encoding, FF:

feed forward)

The model is trained using CTC loss. This is designed to

allow the output to be invariant to alignment; however, this

is not a significant concern when there should only be one

output symbol. The final prediction is obtained via CTC

beam search decoding, collapsing multiple same class out-

puts into one. As the model is trained to predict a single

class per video, it does not predict different classes within a

sequence.

The number of layers, heads, hidden size, and dropout

rate affect the model complexity. There is, therefore, a

tradeoff between sufficient complexity to model the data

and overfitting.

Additionally, as a baseline, the pose estimation keypoints

were replaced with the output of three off-the-shelf image-

based frame feature extractors, giving us small dense rep-

resentations for each frame. Three extractors were used: 1.

EfficientNet-B7 [35]; 2. I3D trained on Kinetics [9]; and 3.

I3D trained on BSL1K [2].

3.2. Team 2

Team 2 worked with the MediaPipe Holistic [19] pose

estimation system output. From the 543 landmarks, the face

mesh was removed which consists of 468 landmarks and the

Linear

KEKEKE

LSTM LSTM LSTM

Softmax

Linear Linear LinearLinear Linear Linear

Feature Extractors: Angles, Length, Raw Keypoints

Batch Norm Batch Norm Batch Norm

 

LSTM LSTM LSTM

Max Pooling

 

 

Figure 2. Diagram of Team 2’s model. (KE: Keypoint extraction)
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remaining 75 landmarks were used for the body and hands.

A standard sequence classification architecture was used.

The model takes as input a series of feature vectors, con-

structed from a flat vector representation of the pose con-

catenated with the 2D angle and length of every limb, us-

ing the pose-format1 library. These representations are sub-

jected to a 20% dropout, normalized using 1D batch nor-

malization, and are projected to a lower dimension hidden

state vector (512 dimensions). This is then passed to a two-

layer BiLSTM with hidden dimension 256, followed by a

max-pooling operation to obtain a single representation vec-

tor per video. Finally, the output is fed to a linear layer and

softmax to give probabilities for each class (Figure 2).

The model is trained using cross-entropy loss with the

Adam optimizer (with default parameters) and a batch size

of 512 on a single GPU. No data augmentation or frame

dropout is applied at training time, except for horizontal

frame flip to account for left-handed signers in the dataset.

4. Results

Table 1 shows our teams’ results on the validation set.

We note that both teams’ approaches using pose estimation

performed similarly, with validation accuracy ranging be-

tween 80% and 85%. It rules out trivial errors and imple-

mentation issues that, despite working independently, and

with two separate pose estimation tools, both teams achieve

similar evaluation scores. Furthermore, from a comparison

between the pose estimation based systems (80-85%) and

the pretrained image feature extractors (38-68%), we can

see that pose estimation features do indeed generalize bet-

ter to the nature of the challenge, including unseen signers

and backgrounds.

Team 1 Team 2

EfficientNet-B7 38.80% —

I3D (Kinetics) 47.46% —

I3D (BSL1K) 68.65% —

OpenPose 83.25% 79.99%

Holistic 85.63% 82.14%

OpenPose+Holistic 84.16% 82.89%

Table 1. Results evaluated on the validation set with various frame-

level features.

We submitted Team 2’s test set predictions to the official

challenge evaluation. On the test set, both OpenPose and

Holistic performed equally well despite making different

predictions, each with 78.35% test set accuracy. However,

our combined system, which was trained using both pose

estimations, achieves 81.93% test set accuracy.

1https://github.com/AmitMY/pose-format

5. Analysis

The interpretability of skeletal poses allows us to assess

them qualitatively using visualisation. We manually review

our model’s failure cases and categorize them into two main

categories: hands interaction and hand-face interaction.

Hands Interaction When there exists an interaction be-

tween both hands, or one hand occludes the other from the

camera’s view, we often fail to estimate the pose of one of

the hands (Figure 3) or estimate it incorrectly such that the

interaction is not clearly shown (Figure 4).

Figure 3. Example of hands interaction, where the pose estimation

fails for one of the hands (Holistic).

Figure 4. Example of hands interaction, where the pose estimation

does not reflect the existing interaction (Holistic).

Hand-Face Interaction When there exists an interaction

between a hand and the face, or one hand overlaps with the

face from the camera’s angle, we often fail to estimate the

pose of the interacting hand (Figure 5).

These cases of missed interactions between the differ-

ent body parts often lose the essence of the sign, where the

interaction and the hand shape are the main distinguishing

features for those signs, and thus hinder the model’s abil-

ity to extract meaningful information from the pose that is

relevant to the sign.

Presence or absence of hand pose We describe a number

of failure cases of Holistic pose estimation above. Many of
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Figure 5. Example of hand-face interaction, where the pose esti-

mation fails for the interacting hand (Holistic).

them mean that keypoints for the hands are not available at

all, since Holistic can omit them if it fails to detect the hand.

As a complementary quantitative analysis, we correlate pre-

diction outcomes with the average number of frames where

hand pose was present (Figure 6).

Figure 6. Distribution of percent of frames containing the Holistic

pose estimation of the dominant hand in each validation sample,

grouped by whether the final prediction of our model was correct.

We find that on average, for all correct predictions

the percentage of frames that do contain hand keypoints

(85.13%) is significantly higher2 than for all incorrect pre-

dictions (79.78%). This is in line with our qualitative anal-

ysis.

6. Conclusions

Although many teams outperformed our models that use

only off-the-shelf skeletal representations, with the best

submission reaching 98.4% test set accuracy, it is unclear

how well such approaches will generalise to other datasets.

Our initial questions related to how good skeletal represen-

tations are for recognition, given their natural ability to gen-

2We tested for a significant difference of the mean values with a

Wilcoxon rank-sum test [42], p < 0.0001.

eralise. However, performance in the ChaLearn challenge

suggests that despite their benefits, considerable informa-

tion is lost in the skeletal representation that must be rep-

resented in the image domain. A qualitative analysis of our

models’ failure cases shows that pose estimation tools suffer

from shortcomings when body parts interact. We conclude

that pose estimation tools are not immediately applicable

for the use in sign language recognition – the current rep-

resentations are not sufficiently expressive, and that further

improvements with regard to interacting body parts is cru-

cial for their applicability.
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Thorsten Thorm ä hlen, and Bernt Schiele. Articulated peo-

ple detection and pose estimation: Reshaping the future.

In 2012 IEEE Conference on Computer Vision and Pattern

Recognition, pages 3178–3185. IEEE, 2012. 1

[31] J. Shotton, Andrew Fitzgibbon, M. Cook, Toby Sharp, M.

Finocchio, R. Moore, A. Kipman, and A. Blake. Real-time

Human Pose Recognition in Parts from Single Depth Images.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2011. 2

[32] Tomas Simon, Hanbyul Joo, Iain Matthews, and Yaser

Sheikh. Hand keypoint detection in single images using mul-

tiview bootstrapping. In CVPR, 2017. 2

[33] Ozge Mercanoglu Sincan, Julio C. S. Jacques Junior, Sergio

Escalera, and Hacer Yalim Keles. Chalearn LAP large scale

signer independent isolated sign language recognition chal-

lenge: Design, results and future research. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR) Workshops, 2021. 1

[34] Ozge Mercanoglu Sincan and Hacer Yalim Keles. Autsl:

A large scale multi-modal turkish sign language dataset and

baseline methods. IEEE Access, 8:181340–181355, 2020. 2

[35] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model

scaling for convolutional neural networks. In International

Conference on Machine Learning, pages 6105–6114. PMLR,

2019. 3

[36] Hamid Vaezi Joze and Oscar Koller. Ms-asl: A large-scale

data set and benchmark for understanding american sign lan-

guage. In The British Machine Vision Conference (BMVC),

September 2019. 2

[37] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-

reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia

Polosukhin. Attention is all you need. In Advances in neural

information processing systems, pages 5998–6008, 2017. 2

[38] Christian Vogler and Siome Goldenstein. Analysis of facial

expressions in american sign language. In Proc, of the 3rd

Int. Conf. on Universal Access in Human-Computer Interac-

tion, Springer, 2005. 1

6

https://ai.googleblog.com/2020/12/mediapipe-holistic-simultaneous-face.html
https://ai.googleblog.com/2020/12/mediapipe-holistic-simultaneous-face.html
https://ai.googleblog.com/2020/12/mediapipe-holistic-simultaneous-face.html
https://github.com/sign-language-processing/datasets
https://github.com/sign-language-processing/datasets
https://github.com/sign-language-processing/datasets


[39] Ulrich Von Agris and Karl-Friedrich Kraiss. Towards a

video corpus for signer-independent continuous sign lan-

guage recognition. Gesture in Human-Computer Interaction

and Simulation, Lisbon, Portugal, May, 11, 2007. 2

[40] Shih-En Wei, Varun Ramakrishna, Takeo Kanade, and Yaser

Sheikh. Convolutional pose machines. In CVPR, 2016. 2

[41] Shih-En Wei, Varun Ramakrishna, Takeo Kanade, and Yaser

Sheikh. Convolutional Pose Machines. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), 2016. 2

[42] Frank Wilcoxon. Individual comparisons by ranking meth-

ods. In Breakthroughs in statistics, pages 196–202. Springer,

1992. 5

[43] Zahoor Zafrulla, Helene Brashear, Thad Starner, Harley

Hamilton, and Peter Presti. American Sign Language Recog-

nition with the Kinect. In Proceedings of the ACM Interna-

tional Conference on Multimodal Interfaces (ICMI), 2011.

2

7


