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Abstract

The objective of this work is to find temporal boundaries

between signs in continuous sign language. Motivated by

the paucity of annotation available for this task, we pro-

pose a simple yet effective algorithm to improve segmenta-

tion performance on unlabelled signing footage from a do-

main of interest. We make the following contributions: (1)

We motivate and introduce the task of source-free domain

adaptation for sign language segmentation, in which la-

belled source data is available for an initial training phase,

but is not available during adaptation. (2) We propose

the Changepoint-Modulated Pseudo-Labelling (CMPL) al-

gorithm to leverage cues from abrupt changes in motion-

sensitive feature space to improve pseudo-labelling quality

for adaptation. (3) We showcase the effectiveness of our

approach for category-agnostic sign segmentation, trans-

ferring from the BSLCORPUS to the BSL-1K and RWTH-

PHOENIX-Weather 2014 datasets, where we outperform

the prior state of the art.

1. Introduction

Sign languages are visuo-gestural, evolved languages

that represent the natural means of communication for deaf

communities [56]. Automatic systems for recognising and

understanding signing content have a wide range of appli-

cations: enabling indexing of signing content to facilitate

efficient search, assistive tools for education and sign lin-

guistics analysis, and sign “wake-word” recognition for vir-

tual assistants [5, 48].

A major challenge in developing such systems is the rel-

ative paucity of annotated sign language data that may be

employed for training [5, 32]. Several factors drive this

state of affairs: a limited supply of annotators with requisite

knowledge of sign language required to perform labelling

and the extremely high cost of producing the labels them-

selves [17].

In this work, we focus our attention on the task of sign
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Figure 1. Changepoint-Modulated Pseudo-Labelling for sign

segmentation: Following an initial pretraining phase on annotated

data (top), our proposed approach leverages changepoints detected

in motion-sensitive feature space to enhance the quality of annota-

tion produced by pseudo-labelling video data on the target domain

of interest (bottom) to perform source-free adaptation (target do-

main adaptation without concurrent access to the source domain).

Sign boundaries are marked with blue bars.

segmentation and propose an automatic method for tempo-

rally localising sign boundaries in videos of continuous sign

language. Sign segmentation plays an important role in the

construction of sign language corpora [13, 14] and therefore

the development of tools that can perform this task automat-

ically offer the potential to alleviate the limited supply of

labelled corpora currently available.

A number of factors make the objective of localising

boundaries in continuous sign language challenging. To

solve the task, a model must be capable of discriminating

gestural patterns from hands moving at high speed, typi-

cally in the presence of motion blur, as well as subtle cues

in other modalities such as facial expressions. Moreover,



in contrast to problem settings such as human action seg-

mentation which have profited from a diverse collection of

densely annotated datasets [16, 20, 22, 36, 55, 63], existing

sign language datasets provide a relatively small quantity

of data with precise temporal boundaries [27, 52], limiting

their ability to train models that can generalise robustly be-

yond the training domain.

An additional factor of particular relevance to sign lan-

guage datasets relates to the need to protect the privacy of

individuals who have contributed human data. In particu-

lar, while marginalized communities may potentially bene-

fit from systems (such as those for automatic sign language

understanding) that are designed to meet their needs, they

face higher risk by contributing data to those systems [6].

This is because smaller group size makes personal identi-

fication easier, and marginalized status renders any privacy

breaches that occur more dangerous.

In this work, we therefore consider the setting in which

the signing data to be segmented, the “target” domain,

is sourced from a different distribution to the videos for

which segmentation annotation was available for training

the model, the “source” domain (see Fig. 4 for examples

of different domains considered in this work). We further

assume that while the source domain data is available for

training an initial model, it is no longer accessible when

adapting to the target domain, reflecting the assumption that

it may be feasible to share models trained on human data,

but infeasible to share the original training data itself.

To make use of the unlabelled data that is available on

the target domain, we propose an approach inspired by the

classical technique of pseudo-labelling, in which a classi-

fier is retrained on its own predictions on unlabelled data to

improve performance [39]. This method, which has proven

popular in the context of semi-supervised learning, lever-

ages implicitly the cluster assumption—namely that the de-

cision boundaries of the model should lie in regions of low

density [10] to adapt the model to new examples. While this

assumption is reasonable in the absence of other knowledge,

it can be problematic when transferring a sign segmenta-

tion model from one domain to another when invariances

learned on the former are inappropriate on the latter. Partic-

ularly for a small source training set, there may be forms of

sign boundaries to which the segmentation model has sim-

ply not been exposed, and the discovery of such examples

through entropy minimisation schemes [24] such as pseudo-

labelling is unlikely.

Consistent with this hypothesis, we show through exper-

iments in Sec. 4 that pseudo-labelling provides a boost to

performance but exhibits a subtle systematic bias towards

under-segmentation. To address this issue, one finding of

this work is that it is possible to correct this bias by en-

coding a simple assumption into the pseudo-labelling pro-

cess, namely that sign boundaries typically correspond to

motion disfluencies. To this end, we propose an extension

to pseudo-labelling that uses changepoint detection among

sequences of motion-sensitive features to modulate the la-

belset produced on the target domain, increasing their sen-

sitivity to abrupt changes in feature space (see Fig. 1).

We make three contributions: (1) We motivate and in-

troduce the task source-free domain adaptation for sign lan-

guage segmentation, in which labelled source data is avail-

able for an initial training phase, but is not available dur-

ing adaptation. To the best of our knowledge, despite its

importance, this task has not been previously investigated

in the literature. (2) We establish baselines for this task

and propose a modification to pseudo-labelling, which we

term Changepoint-Modulated Pseudo-Labelling, to address

the under-segmentation bias exhibited by naive pseudo-

labelling on the target domain. (3) We showcase the ef-

fectiveness of our approach for category-agnostic sign seg-

mentation, transferring from the BSLCORPUS [52, 53] to

the BSL-1K [1] and RWTH-PHOENIX-Weather 2014 [33]

datasets, where we outperform the prior state of the art.

2. Related Work

Our work relates to several themes that have been ex-

plored in the literature: temporal action segmentation,

pseudo-labelling techniques, source-free domain adapta-

tion, changepoint detection and sign language segmenta-

tion.

Action segmentation. The temporal segmentation of

untrimmed videos into sequences of actions has received

a great deal of attention in the literature, leading to the

development of temporal sliding window classifiers [29,

49], generative techniques with Hidden Markov Models

(HMMs) [37, 57] and stochastic grammars [59]. More re-

cently, the considerable effectiveness of temporal convolu-

tional networks has been demonstrated for action segmenta-

tion, notably with the introduction of Multi-Stage Temporal

Convolutional Networks [19] (which we employ in our ap-

proach). Of relevance to our approach, the work of [12]

explored the task of domain adaptation for action segmen-

tation networks. While effective, their approach requires

continued access to the source domain to enable feature

alignment between domains (in common with many other

unsupervised domain adaptation methods [2, 21, 46, 60]),

and is therefore not applicable in our problem formulation.

Pseudo-labelling. The use of pseudo-labelling schemes for

exploiting unlabelled data to improve performance has a

long history of study stretching back to the 1960s [54, 62].

Variants of this idea have been explored in semi-supervised

learning, in which the model is assumed to have access

to both labelled and unlabelled data from which to learn

from [10, 24]. One particular formulation of this idea

known as pseudo-labelling [39] has emerged as an espe-

cially effective mechanism for semi-supervised learning in

which the predictions of a classification model are dis-

cretized into one-hot categorical labels and assigned to un-

labelled examples, then mixed in with labelled examples



to provide an updated training set for the model. A form

of pseudo-labelling was also recently considered for the

task of sign recognition by [40] who proposed to localise

additional training samples in unlabelled news footage to

achieve greater robustness. We employ pseudo-labelling in

the specialised source-free setting in which no labelled ex-

amples are available after the initial training phase on the

source domain, discussed next.

Source-free domain adaptation. The adaptation of a

model to unlabelled data on a target domain of interest with-

out concurrent access to labelled source domain data be-

comes more important due to privacy policies in certain do-

mains. Recently the task has been explored using generative

models [26, 38, 41], with class prototypes [61] or pseudo-

labelling [43]. In this work, we also use pseudo-labelling

to adapt models but in addition, we seek to explicitly en-

code knowledge about the sign segmentation task through

changepoint detection.

Changepoint detection. Our category-agnostic sign

boundary detection naturally relates to changepoint detec-

tion algorithms [8, 11, 45], in which the goal is to locate

state changes in time series in order to segment the un-

derlying signal. We refer the reader to [58] for a detailed

overview of offline changepoint detection methods. In this

work, we propose a learning framework in which we in-

tegrate the bottom-up changepoint detections in our high-

dimensional video features obtained from motion-sensitive

pretraining tasks.

Sign segmentation. The segmentation of continuous

streams of signing into individual sign “tokens” has been

the subject of considerable interest in the sign linguistics

community, with a particular focus on how to define ap-

propriate boundaries [14, 15, 25] and measuring consis-

tency between annotation teams [4, 23]. By contrast, au-

tomatic sign segmentation has received relatively limited

attention in the computational literature. Of the prior re-

search in this area, the dominant approach has been to em-

ploy methods that require a semantic labelling of the sign-

ing content (this can take the form of glosses—the minimal

lexical units of signing used for annotation, or full trans-

lations) [35, 51]. This differs from continuous sign lan-

guage recognition (CSLR) [34] which aims to determine

sign order without localising boundaries (note that while

such methods may produce sign boundaries implicitly, they

likewise require access to dense semantic labels). Other

methods have proposed to tackle related tasks such as iden-

tifying whether a person is actively signing [3, 44] and pars-

ing continuous sign language into sentence-like units [7].

Of most relevance to our work, the recent works of [18]

and [47] proposed methods to tackle the category-agnostic

segmentation problem. In [18], the authors investigated the

use of a random forest with geometric features derived from

3D skeleton data (gathered via motion capture). The later

work of [47] demonstrated the superiority of the MS-TCN

architecture [19] for this task, and we therefore adopt this

model in our approach. Differently from [47] who assume

the training and test data are drawn from the same distri-

bution, we consider the setting in which the target domain

differs from source domain.

3. Method

We propose a simple adaptation method for improv-

ing sign segmentation performance on a target domain for

which labelled data is unavailable under the assumption that

the source domain (containing labelled data) may not be

accessed during the adaptation process (we formalise this

problem definition in Sec. 3.1). Our approach employs a

standard fully-supervised training phase on the source do-

main (Sec. 3.2), before running a secondary phase of iter-

ative adaptation with the Changepoint-Modulated Pseudo-

Labelling algorithm (described in Sec 3.3).

3.1. Problem formulation

Let X denote the set of videos containing a person per-

forming continuous sign language. The goal of tempo-

ral sign segmentation is to produce for each x ∈ X with

frames (x1, . . . , xN ) a corresponding set of frame labels

y = (y1, . . . , yN ) ∈ {0, 1}N , in which label values of 1 and

0 denote boundaries between sign segments and the interior

of segments, respectively. We assume access to a set of la-

belled sign segments that are gathered from a “source” do-

main XS ⊂ X on which an initial model may be trained to

perform the segmentation task. We further assume that this

domain differs from that of the “target” videos XT ⊂ X of

interest, for which annotations are not available. The objec-

tive of this work is to maximise sign segmentation perfor-

mance on XT , under the constraint that at no point we have

concurrent access to video samples from both the source

and target domain.

3.2. Source domain training

To make best use of labelled data in the source do-

main, we first train a sign segmentation model in a fully-

supervised manner. Following the dominant approaches in

the temporal segmentation literature [19, 42], we assume

that the sign segmentation model decomposes into a visual

feature extractor, φ(x), (typically instantiated as a spatio-

temporal convolutional network such as I3D [9]) and a seg-

mentation network, ψ(φ) which ingests these features and

outputs per-frame segmentation labels [19, 47]. In this

work, we employ a standard frame-level cross-entropy loss

in combination with the smoothing loss proposed by [19]

to train f = ψ ◦ φ. Once source domain training has com-

pleted, the source videos and labels are discarded and only

the trained model, f , is retained.
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Figure 2. Method overview: The proposed approach extracts I3D

features and employs both semantic and low-level cues to produce

labels on the target dataset (block 1) via the CMPL algorithm.

These labels are then employed directly via finetuning (block 2).

3.3. ChangepointModulated PseudoLabelling

The key idea behind our adaptation approach is to lever-

age the benefits of pseudo-labelling [39] while mitigat-

ing its limitations for the task of sign language segmen-

tation through a simple technique we term changepoint-

modulation. A method overview can be seen in Fig. 2.

Pseudo-labelling works by minimising the conditional

entropy of a given classification model across unlabelled

samples. It achieves this by assigning to each sample the

class label corresponding to the maximum posterior proba-

bility of the model and then retraining the model to become

more confident in its predictions. In doing so, it encodes

the intuition that individual samples should not represent a

mixture of classes—rather they should belong to one or the

other (corresponding to the cluster assumption that decision

boundaries should lie in regions of low-density [10]). In this

work we employ pseudo-labelling in the manner described

above: we perform inference with the sign segmentation

model f = ψ ◦ φ (that was trained on the source domain)

across videos of unlabelled signing drawn from XT to pro-

duce frame-level posterior probabilities for each frame. We

then assign each frame the binary label corresponding to the

maximum posterior probability of the model and retrain the

model by employing the same losses that were used on the

source domain (Sec. 3.2).

As we show through experiments in Sec. 4 (and consis-

tent with the literature [39, 50, 64]), pseudo-labelling yields

a boost in performance on the target domain. However,

while it brings consistent improvement, we observe that in

practice the algorithm exhibits a subtle but systematic bias

towards under-segmenting signs. In the absence of other

knowledge, the cluster assumption represents a reasonable

prior to improve target domain performance. However, for

the particular task of sign segmentation, the sign linguistics

literature suggests that there are particular gestural move-

ments and cues that correlate with sign boundaries [25, 28]

which we can expect to hold true across domains. While

prescribing a precise set of rules that define a sign bound-

ary would be extremely challenging [25], we can never-
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Figure 3. CMPL components: We show the effect of the inser-

tion and refinement pseudo-label transformations on a sequences

of pseudo-labels (PL) and changepoints (CP) relative to ground

truth (GT) (see Sec. 3.3 for details). (Top) An example where the

changepoints help to mitigate under-segmentation in the PL se-

quence. (Bottom) Small refinements on the pseudo-labels lead to

improved boundary locations.

theless integrate our knowledge about the nature of these

boundaries—in particular, their weak correspondence with

human motion disfluencies—into the pseudo-labelling pro-

cess. To do so, we propose to couple motion-sensitive fea-

tures (which may be learned on a host of human activity-

based visual understanding tasks) with changepoint detec-

tion in feature space (implementation details are given in

detail in Sec. 4.3). In this way, we obtain, in addition to the

pseudo-labels described above, an additional set of candi-

date frame-locations at which a sign boundary is more likely

to occur (those that correspond to discontinuities in feature

space detected by the changepoint algorithm).

A natural question then arises: how should the two sets of

candidate frame-level labels be integrated to improve target

domain performance? One simple strategy would be to take

the union of boundaries predicted by both methods. How-

ever, this strategy, as with that of simple averaging, does not

account for the fact that intuitively, we would like pseudo-

labels to be reinforced when they appear in a close neigh-

bourhood of a motion feature changepoint without requiring

exact alignment to achieve this effect.

To address this, we propose the Changepoint-Modulated

Pseudo-Labelling algorithm, which comprises two pseudo-

label transformations. Motivated by the under-segmentation

issue described above, the first transformation inserts

new boundaries suggested by abrupt changes in feature

space, when far from pseudo-label boundaries. More con-

cretely, given a sequence of target-domain frame-level bi-

nary pseudo-labels, (ŷT1 , . . . , ŷ
T
N ), and frame-level binary

changepoint labels (cT1 , . . . , c
T
N ) (obtained by placing a unit

value at every frame corresponding to a changepoint), we

perform the following pseudo-label insertion transforma-



tion:

ŷTi =

{

cTi , if
∑

j∈(−γ,γ) ŷ
T
i+j = 0

ŷTi , otherwise
(1)

where γ represents a bandwidth value (set as a hyperpa-

rameter). The second refinement transformation aims to

minimise potential bias towards the annotation style used

in the source dataset. First, each contiguous sequence of

boundary labels in the pseudo-labels is matched to the near-

est contiguous sequence of boundary labels in the change-

point sequence, under the condition that it falls within a

matching window of δ frames (also set as a hyperparame-

ter). Matched contiguous pseudo-label boundary sequences

are then translated in time such that their central element

occupies the midpoint between the original pseudo-label

and changepoint boundary positions prior to performing the

translation. Examples for these transformation steps can be

seen in Fig. 3.

Following these transformations, the sign segmentation

model is simply retrained on the updated set of pseudo-

labels across the target domain videos. We conduct abla-

tions to assess the utility of both the insertion and the re-

finement transformations in Sec. 4, as well as the role of

the corresponding bandwidth and matching neighbourhood

hyperparameters, γ and δ.

4. Experiments

This section describes the datasets (Sec. 4.1), the evalu-

ation metrics (Sec. 4.2), and further implementation details

(Sec. 4.3). We then present various baselines, ablations and

comparisons to the prior state of the art (Sec 4.4). Finally,

we provide qualitative results (Sec 4.5).

4.1. Datasets

We use three datasets in our experiments. Sample video

frames from each of these datasets are provided in Fig. 4.

BSLCORPUS [52, 53] is a British Sign Language (BSL)

dataset which contains, inter alia, continuous signing in the

form of conversations or narratives. For a subset of the data,

fine-grained annotations exist which contain start and end

times, as well as the sign categories. We use this as the

source dataset to perform pretraining. We employ the train

and test partitions used in [47] which contain approximately

six hours of signing with gloss-level annotations. A detailed

description of the dataset can be found via [52].

BSL-1K [1] consists of public broadcast footage of sign

language interpreted videos, organised into a number of

episodes. This dataset shares the same language as

BSLCORPUS (i.e., BSL) but differs in content, background,

person position, and signing speed. To evaluate the perfor-

mance on this dataset we use the manually-annotated subset

of signing data provided by [47], comprising two minutes

of video footage with 177 sign instances. We experiment
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Figure 4. Sample frames from the three video datasets consid-

ered in this work: We investigate source-free domain adaptation

for sign segmentation across different domains of discourse (per-

sonal narratives vs TV broadcast content), context (conversational

vs interpreted signing) and sign language (BSL vs DGS).

with training on a subset of three episodes of BSL-1K cor-

responding to 3.5 h of signing content. We also conduct

experiments under a transductive setting in which we per-

form adaptation directly on the episode from which the la-

belled test set sequence was sourced (this episode represents

45min of signing content).

RWTH-PHOENIX-Weather 2014 [33] (PHOENIX14) is

a German Sign Language (DGS) dataset that has been

widely employed for the study of automatic sign language

recognition. The work of [35] provides automatic temporal

segment labels for the training partition of this data, which

they obtain through forced-alignment (using ground-truth

gloss information). We use these labels against which we

evaluate our predictions. To enable direct comparison, we

employ the same train/test partitions as used in [47] result-

ing in a 1.76 h test set.

4.2. Evaluation metrics

We use the same metrics as in [47] and report for each the

mean and standard deviation out of three runs with differ-

ent random seeds. They use two different metrics: mF1B

to measure the performance of the boundary position and

mF1S for the extent of the sign segments.

mF1B. One boundary, which we define as a series of fol-

lowing 1s in y, is predicted correct, if the distance to a

ground truth boundary is lower than a certain threshold. We

use the mean of all F1 scores with thresholds in the interval

[1, 4].

mF1S. A sign segment is counted as correct if the IoU is

higher than a given threshold. We calculate the average F1

score for all thresholds in the range of 0.4 and 0.75 with the

step size 0.05. This metric is, in contrast to the mF1B met-

ric, sensitive to the width of the predicted and ground truth

boundaries, which leads also to sensitivity to different anno-



Adaptation protocol mF1B mF1S

Source-only [47] 46.75±1.2 32.29±0.3

Pseudo-labels inductive 47.94±1.0 32.45±0.3

Changepoints inductive 48.51±0.4 34.45±1.4

CMPL inductive 53.57±0.7 33.82±0.0

Pseudo-labels transductive 47.62±0.4 32.11±0.9

Changepoints transductive 48.29±0.1 35.31±1.4

CMPL transductive 53.53±0.1 32.93±0.9

Table 1. Results on the PHOENIX14 dataset: (Top) Naive sign

segmentation performance without assuming any target domain la-

bels. (Middle and Bottom) A comparison of adaptation strategies

in the inductive (middle) and transductive (bottom) setting. In each

case, we see that the proposed Changepoint-Modulated Pseudo-

Labelling method (CMPL) outperforms alternatives.

tation styles between annotators. To avoid this, we consider

the mF1B metric as our main metric for ranking the results

but include mF1S for completeness.

4.3. Implementation details

Features. For all datasets, we employ an I3D [9] backbone

architecture, φ, pretrained for the task of action recognition

on the Kinetics dataset [30] to provide representations that

are sensitive to fine-grained human motions. To ensure vi-

able adaptation on any unlabelled data, we do not use any

annotations from the target domain; therefore we train the

model directly on the class labels of BSLCORPUS.

MS-TCN pretraining on the source domain. For the

source domain training phase described in Sec. 3.2, we pre-

train an MS-TCN model [19] as our sign segmentation net-

work, f = ψ ◦ φ, that further processes the outputs of

the I3D feature extractor φ described above with a seg-

mentation network ψ comprising a stack of temporal con-

volutional layers. The model is trained under a per-frame

binary-class classification objective. Similar to [19], we use

an architectural design of 4 stages with 10 layers in each

stage, 64 filters, and an Adam optimizer.

Changepoint-Modulated Pseudo-Labelling implemen-

tation details and hyperparameters. We adopt the

Pelt [31] method, an exact changepoint detection algorithm

which exhibits linear average runtime behaviour, as a ba-

sis for discovering disfluencies in signing from the space

of I3D features. We employ the implementation provided

by [58] with an L2 cost function on I3D features exacted

with a stride of one frame. We use a Pelt cost penalty term

of 100 when using changepoints to modulate pseudo-label

insertion and refinement. Both the bandwidth and matching

window hyperparameters (γ and δ) introduced in Sec. 3.3

are set to a value of four frames. Since boundaries estimated

by the changepoint algorithm span only a single frame, we

expand the changepoints to span three frames in terms of

sign boundary width (all videos considered in this work are

encoded at 25 fps). This ensures that the boundary estima-

tions are similar in width to the pseudo-labels produced by

the MS-TCN sign segmentation network.

PL threshold mF1B mF1S

0.5 47.94±1.0 32.45±0.3

0.4 48.01±1.0 31.26±0.7

0.3 48.21±1.0 29.87±1.1

0.2 46.67±0.6 27.52±0.7

Table 2. Pseudo-label training with reduced thresholds on the

PHOENIX14 dataset: Reducing the threshold at which a pseudo-

label probability is mapped to a boundary label does not address

the under-segmentation issue in a way that improves performance.

Adaptation protocol mF1B mF1S

Baselines:

Uniform (using GT #signs) - 41.80 34.75

Changepoints (using GT #signs) - 60.73 52.89

Changepoints (estimating #signs) - 60.25 53.94

Prior works:

Geometric features + RF [18, 47] source-only 51.26±0.5 34.28±1.0

MS-TCN [19, 47] source-only 61.12±0.9 49.96±0.6

Proposed model:

CMPL inductive 65.99±1.0 48.81±1.3

CMPL transductive 67.01±2.2 50.20±0.6

Table 3. Results on the BSL-1K dataset: We compare our ap-

proach to several baselines and the previous state of the art. The

changepoint-only approach already builds a strong baseline, espe-

cially for the mF1S metric. With CMPL we gain about 6% mF1B

over the naive transfer from BSLCORPUS-labelled training of [47].

Training and evaluation. To evaluate performance, we re-

port the improvement derived from performing adaptation

using unlabelled training set videos from the target domain

(inductive setting). Since our approach does not require the

use of labels on the target dataset, we also report results

for experiments in which perform adaptation directly on the

test data without labels (transductive setting), a formulation

which can often arise in practice when the target videos to

be segmented are known in advance. Due to the small por-

tion of BSL-1K with annotations available, we do not use a

separate validation set, and fix the number of epochs to 10.

4.4. Ablation studies

PHOENIX14. To assess the influence of components

of our framework, we first present an ablation study on

the PHOENIX14 dataset in Tab. 1, in which we compare

against the baseline performance of [47] trained only on

source data. By using the pseudo-labelling technique, we

obtain a first small improvement (46.75 vs 47.94 mF1B).

It is interesting to note that the changepoint detection al-

gorithm alone establishes a very strong baseline (48.51

mF1B). More generally we observe that self-training with

both pseudo-labels and changepoints provide a significant

boost in adapting the model to the new domain under both

inductive and transductive model evaluations. However,

we see that our Changepoint-Modulated Pseudo-Labelling

(CMPL) provides a significantly greater boost in mF1B (of

about 6 points).

We also show that the under-segmentation issue is not ad-

dressed by simply reducing the threshold employed to con-



Figure 5. Sensitivity to the threshold hyperparameters of the

CMPL method for BSL-1K (transductive): We show the influ-

ence of different values for thresholds for the insertion bandwidth

γ (left) and refinement matching window δ (right).

vert pseudo-label posterior probabilities into boundary class

labels (for all other experiments we simply convert each

frame that is assigned a boundary probability higher than

0.5 to a boundary label). Tab. 2 reports the performance

of the model under the influence of varying this thresh-

old. See Sec. A of the appendix for further ablations on

PHOENIX14.

BSL-1K. We observe that in both the inductive and trans-

ductive setting, CMPL yields a significant gain over the

strongest reported result for sign segmentation on BSL-

1K. In particular, we observe an improvement of about 6%

mF1B over the naive transfer of the model trained on the

source data. To better understand the behaviour of the pro-

posed approach, we next conduct further ablations using

various baselines on the BSL-1K dataset. We describe these

baselines next and report their performance in Tab. 3. We

also show the performance of alternative fusion strategies

and the hyperparamter sensitivity of our approach.

Uniform baseline. We report the performance of uniformly

splitting the target video into segments of equal size such

that the total number of segments match the total number

of ground-truth boundaries. Since the uniform baseline as-

sumes that the ground-truth number of signs are known, it is

thus not directly comparable to the automatic segmentation

models, but provides a degree of calibration for the diffi-

culty of the task.

Changepoints-only baseline. For the changepoint baseline,

also reported in Tab. 3, we employ only the feature ex-

traction network, φ, and calculate the changepoints on the

extracted features, φ(x). The first method uses dynamic

programming with the ground-truth number of boundaries

given. By using the changepoint algorithm, we observe a

large improvement in both metrics over uniformly splitting

the video. However, we also observe that by using the Pelt

method to predict position and number of boundaries we

come close to matching the variant that uses ground truth

information, suggesting the robustness of this technique and

its suitability as a building block in our approach. In Fig. 9,

we assess the sensitivity of this approach to the choice of

different values for the penalty hyperparameter and deter-

mine that a choice of 80 represents a reasonable trade-off

Figure 6. Sensitivity to the penalty hyperparameter of the

CMPL method for BSL-1K (transductive): We show the influ-

ence of different values for varying the changepoint penalty when

fixing the threshold hyperparameters to γ = 4, δ = 4 as used in

all other experiments.

Fusion strategies Adaptation protocol mF1B mF1S

merge PL + CP inductive 65.10±1.6 42.73±1.0

local fusion inductive 62.35±1.4 48.77±2.3

insertion inductive 62.49±2.2 45.77±1.6

insertion + refinement (CMPL) inductive 65.99±1.0 48.81±1.3

merge PL + CP transductive 65.69±1.3 43.06±3.0

local fusion transductive 62.71±3.1 50.69±1.9

insertion transductive 63.27±3.4 48.49±3.1

insertion + refinement (CMPL) transductive 67.01±2.2 50.20±0.6

Table 4. Fusion strategies: We compare several strategies for fus-

ing pseudo-labels and changepoints on the BSL-1K test set. We

observe that the combined “insertion + refinement” strategy pro-

posed as part of the CMPL approach consistently performs best.

for the changepoints-only baseline.

Effect of the fusion strategy. We explore several alterna-

tive ways to fuse the two knowledge sources provided by

pseudo-labels and changepoint detections. The simplest

such strategy takes the union of predictions and keeps all

boundaries which are present either in the pseudo-labels or

in the changepoints (labelled “merge PL + CP” in Tab. 4).

We also consider an alternative strategy that specifically tar-

gets the under-segmentation problem induced by a pseudo-

label-only approach. To insert more boundaries we se-

lect those segments which are longer than the average sign

length and insert detected changepoints only amongst such

regions. These results are reported in Tab. 4 under the

row title “local fusion”. Finally, we evaluate our proposed

CMPL fusion strategy and investigate the impact of the two

different pseudo-label transformations that it employs. In

Tab. 4, we observe when used in isolation the insertion

transformations produce some improvement, but that there

is a clear benefit to the combination of insertion and refine-

ment, justifying the usage of this combination in our design.

Hyperparameter sensitivity. We further show the sensitiv-

ity to the hyperparameters of the CMPL method. First we

show the impact of different values for thresholds for the in-

sertion bandwidth γ and refinement matching window δ in

Fig. 5. Changes to these hyperparameters produce a small

variation in the results. We observe that an insertion band-

width of γ = 4 frames and a refinement matching window

of δ = 4 frames with the given changepoint penalty of 100
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Figure 7. Qualitative results on PHOENIX14 [33]: We com-

pare the results of the different models, source-only (SO), pseudo-

labels (PL), changepoints (CP), Changepoint-Modulated Pseudo-

Labelling (CMPL) with the ground truth (GT). We show two dif-

ferent extracts, in which our method is able to detect new and sup-

press wrong boundaries (green box). The red box indicates failure

cases, where further work is necessary.

works well. Next, in Fig. 6, we fix γ = 4 and δ = 4 and

change the changepoint penalty. We observe the best result

in the mF1B metric for a penalty of 100. Looking at the

mF1S metric, leads to the assumption, that this metric gains

from the insertion of fewer boundaries.

4.5. Qualitative analysis

In Fig. 3, we illustrate two examples of the proposed

Changepoint-Modulated Pseudo-Labelling method in ac-

tion. The upper one depicts an extract of an episode in

which the described under-segmentation problem of the

pseudo-labels (PL) can be clearly observed. As the change-

point detection finds a boundary and no pseudo-label is in

the neighbouring area, we insert a new boundary at the de-

tected position, remedying the omission. In the lower exam-

ple, we observe the behaviour of the refinement transforma-

tion and its role in improving overall pseudo-label quality

by adjusting the boundary locations to account for evidence

from the changepoint detections.

In Fig. 7 and Fig. 8 we provide a qualitative compari-

son of the different models on two sequences from the

PHOENIX14 and BSL-1K datasets. We show failure cases

in red and success cases in green. In Fig. 7, the upper exam-

ple demonstrates the effectiveness of the CMPL for predict-

ing new boundaries through the changepoint insertion. The

first two false positive boundaries in the bottom example are

due to a repeated sign, which leads to abrupt changes at the

time the sign gets repeated. The last boundary in the red

frame, which is falsely detected by each method, is aligned

with a strong direction change in the signing. In general, we

observed in our error analysis two main issues: (i) the new

method mainly helps against under-segmentation, but can

only in seldom cases suppress false positive predictions in

the pseudo-labels or changepoints, (ii) the insertion of the

changepoints leads to higher true positive rate, but also to a

higher false positive rate. This can be observed especially

 

GT

SO

PL

CMPL

GT

SO

PL

CMPL

CP

CP

Figure 8. Qualitative results on BSL-1K [1]: (Top) Change-

points help to find boundaries which were previously missed.

(Bottom) Through the insertion of the changepoint the CMPL

method detects new boundaries, but is in most cases not able to

suppress the false positives detected by the source-only approach.

Figure 9. Pelt changepoint penalty term: We study the influence

of the penalty value for Pelt changepoint detection algorithm when

using only changepoints as labels to train on the target domain. We

observe that high penalty results in under segmentation, whereas a

low penalty score over-segments.

for PHOENIX14. The previously mentioned two issues can

be also observed for BSL-1K (Fig. 8). We detect more cor-

rect boundaries (green box), but also some false positives

(left red box) and are not able to suppress already exist-

ing false positives (right red box). For further qualitative

results, we refer to our supplemental video on the project

webpage and Sec. B of the appendix.

5. Conclusion

We presented an approach to temporally segment signs

in continuous sign language videos, with a particular em-

phasis on leveraging unlabelled data for training. We mo-

tivated and introduced the problem of source-free domain

adaptation in this context, in which we assume access to

labelled source data during model training but not dur-

ing adaptation to the target domain. We proposed the

conceptually simple but powerful Changepoint-Modulated

Pseudo-Labelling algorithm and demonstrated its effective-

ness through state-of-the-art performance on two sign lan-

guage datasets. Potential future directions include repurpos-

ing our segmentation models for improving sign language

recognition and active signer detection performance.
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