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Abstract

The performances of Sign Language Recognition (SLR)

systems have improved considerably in recent years. How-

ever, several open challenges still need to be solved to allow

SLR to be useful in practice. The research in the field is in its

infancy in regards to the robustness of the models to a large

diversity of signs and signers, and to fairness of the models

to performers from different demographics. This work sum-

marises the ChaLearn LAP Large Scale Signer Independent

Isolated SLR Challenge, organised at CVPR 2021 with the

goal of overcoming some of the aforementioned challenges.

We analyse and discuss the challenge design, top winning

solutions and suggestions for future research. The chal-

lenge attracted 132 participants in the RGB track and 59

in the RGB+Depth track, receiving more than 1.5K sub-

missions in total. Participants were evaluated using a new

large-scale multi-modal Turkish Sign Language (AUTSL)

dataset, consisting of 226 sign labels and 36,302 isolated

sign video samples performed by 43 different signers. Win-

ning teams achieved more than 96% recognition rate, and

their approaches benefited from pose/hand/face estimation,

transfer learning, external data, fusion/ensemble of modali-

ties and different strategies to model spatio-temporal infor-

mation. However, methods still fail to distinguish among

very similar signs, in particular those sharing similar hand

trajectories.

1. Introduction

Sign/gesture recognition in the context of sign languages

is a challenging research domain in computer vision, where

signs are identified by simultaneous local and global artic-

ulations of multiple manual and non-manual sources, i.e.

hand shape and orientation, hand motion, body posture, and

facial expressions. Although the nature of the problems in

this field is primarily similar to the action recognition do-

main, some peculiarities of sign languages make this do-

main specially challenging; for instance, for some pairs of

signs, hand motion trajectories look very similar, yet local

hand gestures look slightly different. On the other hand, for

some pairs, hand gestures look almost the same, and signs

are identified only by the differences in the non-manual fea-

tures, i.e. facial expressions. In some cases, a very similar

hand gesture can impose a different meaning depending on

the number of repetitions. Another challenge is the varia-

tion of signs when performed by different signers, i.e. body

and pose variations, duration variations etc. Also, varia-

tion in the illumination and background makes the problem

harder, which is inherently problematic in computer vision.

The performance of sign recognition algorithms have

been improved considerably in recent years, mainly thanks

to the release of associated datasets [20] and the develop-

ment of new deep learning methodologies. Past works used

to deal with data obtained in controlled lab environments,

with a limited number of signers and signs. Recent works

are dealing with more realistic and unconstrained settings

and large scale datasets. In parallel, recent advancements

in the domains of machine learning and computer vision, in

particular deep learning, have pushed the state-of-the-art on

the field substantially. Still, several open challenges need to

be solved to allow recognition systems to be useful in sign

language, including signer independent evaluation, continu-

ous sign recognition, fine-grain hand analyses, combination

with face and body contextual cues, sign production, as well

as model generalisation to different sign languages and de-

mographics.

To motivate research in the field, we challenged re-

searchers with a signer independent classification task us-



ing a novel large-scale, isolated Turkish Sign Language

Dataset, named AUTSL [31]. The video samples in

AUTSL, containing variations in background and lighting,

are performed by 43 signers. The challenge attracted a

total of 191 participants, who made more than 1.5K sub-

missions in total for the two challenge tracks. The RGB

and RGB+Depth tracks (detailed in Sec. 3) received 1374

and 209 submissions, respectively, suggesting that the re-

search community on SLR is currently paying more at-

tention to RGB data, compared to RGB+Depth informa-

tion. Moreover, top-winning solutions employed a wide

variety of methods, such as the use of body/face/hand es-

timation/segmentation, different fusion/ensemble strategies

and spatio-temporal modelling, external data and/or transfer

learning, among others.

The rest of this paper is organised as follows: in Sec. 2,

we provide a short literature review. In Sec. 3, we present

the challenge design, evaluation protocol, dataset and base-

line. Challenge results and top-winning methods are dis-

cussed in Sec. 4. Finally, in Sec. 5, we conclude the paper

with a discussion and suggestions for future research.

2. Related Work

Automatic sign language recognition has been an active

area of research since early 90s. Early studies relied on us-

ing colored gloves or haptic sensors to segment and track

hands [12, 13, 26]. However, intrusive methods that require

wearing external gloves with some probes create practical

difficulties in daily life and often limit the movements of

the signers. Therefore, recent studies focus more on com-

puter vision based solutions that use only cameras as the

primary equipment for a solution.

Early studies were trained and evaluated on small-scale

datasets in terms of number of signs and signers, e.g.,

Purdue RVL-SLLL [25], RWTH BOSTON50 [40]. In

these studies, hand-crafted features, such as scale invariant

feature transform (SIFT), histogram of oriented gradients

(HOG) [8, 14], were frequently used. After feature extrac-

tion, support vector machine (SVM) models or sequence

models, such as Hidden Markov Models (HMMs) [8, 41],

were used for classification. Similar to earlier works, some

studies segmented hand regions before extracting the fea-

tures, yet this time utilising computer vision based methods,

like skin color detection, hand motion detection and trajec-

tory estimation [14, 39].

The emergence of Microsoft Kinect technology in 2010

enabled obtaining new data modalities, such as depth and

skeleton, alongside RGB data sequence. New sets of small-

scale multi-modal datasets (with less than 50 signs and

15 signers) were created using Kinect, such as DGS [7],

GSL [7] and PSL [19]. In ChaLearn Looking at Peo-

ple (LAP) 2013 challenge, a multi-modal Italian gesture

dataset, Montalbano V1, was released [10], including RGB,

depth, user mask, skeletal model, and audio. It contains

20 gestures and approximately 14,000 samples performed

by 27 different signers in total. In ChaLearn LAP 2014

challenge, an enhanced version of the dataset, i.e. Mon-

talbano V2, was released [9]. Although there is only 20

different signs, Montalbano gesture dataset contains more

samples and more variance in the video recordings than pre-

viously released datasets. In 2014, a large scale isolated

Chinese Sign Language that is named as DEVISIGN was

released [4]. It consists of 2,000 signs that are performed

by 8 signers. The videos were recorded in a lab environ-

ment with a controlled background. With the emergence of

multiple modalities, researchers worked on different fusing

techniques using the features extracted from these modal-

ities, e.g., early, intermediate or late fusion, to get more

robust results [36, 27, 28, 38]. Moreover, recent advances

prompted researchers to extract features using deep learning

based models, instead of using hand-crafted features. Some

works preferred using both manually extracted features and

deep learning based features together [27, 38].

In 2016, Chalearn LAP RGB-D Isolated Gesture Recog-

nition (IsoGD) dataset was released [37]. It was planned to

challenge researchers for high performance automatic clas-

sification in “large-scale” and “signer independent” evalu-

ation settings, which means that the samples in the test set

are performed by different signers from the train set. In

this dataset, there are 249 gestures that are performed by

21 different signers; each class contains approximately 200

RGB and depth videos. In the related years, commonly, 2D-

CNN based models were used for feature extraction and se-

quence models, such as RNN, LSTM, GRU, HMM, were

used for encoding temporal information [32, 21, 29, 35].

Recent developments in action recognition have also con-

tributed significantly to the recognition of signs in sign

languages. Using and fine-tuning 3D-CNN models, e.g.,

C3D [34], I3D [3], pre-trained on large action recognition

datasets helped achieving higher accuracy rates compared

to 2D-CNNs [23, 18, 15, 1].

In recent years, a number of large-scale isolated sign lan-

guage datasets have been released, with large vocabulary

sizes, large number of samples performed by many signers,

e.g., MS-ASL [18], CSL [15] and WLASL [22]. MS-ASL

provided 1,000 signs with 222 signers in signer indepen-

dent setting. It was collected from a public video sharing

platform. CSL is a multi-modal Chinese Sign Language

dataset that consists of 500 signs performed by 50 different

signers, arranged for signer independent evaluations. It con-

tains RGB, depth, and skeleton data modalities. WLASL

consists of 2,000 signs performed by 119 signers. It was

collected from sign language websites. Although each of

these datasets has several different challenges, video sam-

ples usually have plain backgrounds and data is collected

in a controlled setting. Table 1 provides an overview of the



Table 1. Overview of isolated sign language/gesture datasets.

Datasets Year Signer independent Modalities #Signs #Signers #Samples

RWTH BOSTON50 [40] 2005 No RGB 50 3 483

DGS [7] 2012 No RGB, depth 40 15 3,000

GSL [7] 2012 No RGB 20 6 840

Montalbano V1, V2 [10, 9] 2014 No RGB, depth, audio, user mask, skeleton 20 27 13,858

DEVISIGN[4] 2014 No RGB, depth 2,000 8 24,000

PSL [19] 2015 No RGB, depth 30 1 300

LSA64[30] 2016 No RGB 64 10 3,200

isoGD [40] 2016 Yes RGB, depth 249 21 47,933

MS-ASL [18] 2019 Yes RGB 1,000 222 25,513

CSL [15] 2019 Yes RGB, depth, skeleton 500 50 125,000

WLASL [22] 2020 No RGB 2,000 119 21,083

AUTSL [31] 2020 Yes RGB, depth, user mask, skeleton 226 43 36,302

available isolated sign language/gesture datasets.

In the context of this challenge, a new large-scale, multi-

modal Turkish Sign Language dataset, AUTSL [31], is uti-

lized in a signer independent evaluation setting. Different

from the other large-scale datasets, it contains a variety of

20 different backgrounds obtained from indoor and outdoor

environments, with several challenges (detailed in Sec. 3.1).

3. Challenge Design

The challenge1 focused on isolated Sign Language

Recognition (SLR) from signer independent non-controlled

RGB+D (depth) data, involving a large number of sign cat-

egories (>200, detailed in Sec. 3.1). It was divided into

two different competition tracks, i.e., RGB2 and multimodal

RGB+D3. The only restriction was that depth data was not

allowed in any format and stage of training in RGB track.

The participants were free to join any of these tracks. Both

modalities have been temporally and spatially aligned. Each

track was composed of two phases, i.e., development and

test phase. At the development phase, public train data was

released and participants submitted their predictions with

respect to a validation set. At the test (final) phase, partic-

ipants were requested to submit their results with respect

to the test data. Participants were ranked, at the end of the

challenge, using the test data.

The challenge ran from 22 December 2020 to 11 March

2021 through Codalab4, a powerful open source framework

for running competitions that involve result or code submis-

sion. It attracted a total of 191 registered participants, 132

in RGB track and 59 in RGB+D track. During develop-

ment phase we received 1317 submissions from 39 teams

in the RGB track, and 176 submissions from 15 teams in

the RGB+D track. At the test (final) phase, we received 57

1Challenge Webpage: http : / / chalearnlap . cvc . uab . es /

challenge/43/description/
2https://competitions.codalab.org/competitions/27901
3https://competitions.codalab.org/competitions/27902
4https://codalab.org/

submissions from 23 teams in the RGB track, and 33 sub-

missions from 14 teams in the RGB+D track. The reduction

in the number of submissions from the development to the

test phase is explained by the fact that the maximum number

of submissions per participant on the final phase was limited

to 3, to minimise the change of participants to improve their

results by try and error.

It is important to note that the challenge was designed to

deal with the submission of results (and not code). Partic-

ipants submitted only their prediction files containing one

label for each video. Therefore, participants were required

to share their codes after the end of the challenge so that the

organisers could validate their results in a “code verification

stage”. At the end of the challenge, top ranked methods

(discussed in Sec. 4.2) passing the code verification stage

(e.g., they publicly released their codes and the organisers

were able to reproduce the results) were announced as top

winning solutions.

3.1. The Dataset

AUTSL [31] is a large-scale, signer independent, multi-

modal dataset that contains isolated Turkish sign videos. It

contains 226 signs that are performed by 43 different sign-

ers. The dataset is recorded with Microsoft Kinect V2 and

contains RGB, depth, user mask, and skeleton data. Only

RGB and depth modalities are released within the scope of

the challenge. Some clipping and resizing operations are

applied to RGB and depth data and video frames are re-

sized to 512 x 512 pixel resolution. The average number of

frames per video is 60 ± 10, while the frame rate for video

is 30 frame per second (fps).

In the associated publication [31], while AUTSL test

split was designed as a signer independent set; validation

split was generated using a random split, i.e. 15% of the

train data. For this challenge, we split the training set to

create a signer independent validation set, making all sets

signer independent. We selected 31 signers for training,

6 signers for validation, and 6 signers for testing. In this



Figure 1. Some screenshots from the AUTSL [31] dataset.

setting, training set contains 28,142, validation set contains

4,418, and test set contains 3,742 video samples. AUTSL

is a balanced dataset according to the sign distribution, i.e.

each sign contains approximately the same number of sam-

ples (∼160). The train, validation and test set contain ap-

proximately 124, 19, and 17 samples per sign, respectively.

Signs are selected from the daily spoken vocabulary. They

cover a wide variety in terms of hand shape and hand move-

ments; some signs are performed only with one hand while

some with both hands, in some signs hands occlude each

other or parts of the face. We depict examples of different

backgrounds and signers from the dataset in Fig. 1.

Challenges: The dataset has various challenges, includ-

ing lighting variability, different postures of signers, dy-

namic backgrounds, such as moving trees, or moving peo-

ple behind the signer, high intra-class variability and inter-

class similarities. In order to provide a basis for signer

independent recognition systems, train, val, and test splits

include different signers. The dataset contains 20 differ-

ent backgrounds with several challenges. The test set con-

tains 8 different backgrounds, 3 of which are not included

in the training or validation sets. Another challenge is the

inter-class similarity of signs; some signs contain exactly

the same hand gesture, but differing only by the number of

repetitions of the same gesture. Also, some signs are quite

similar in terms of hand shape, hand orientation, hand posi-

tion or hand movement; there is only subtle differences.

Limitations: The fact that the society is right-handed in

general is also reflected in the distribution in AUTSL. Only

2 of the signers are left-handed out of 43 signers. There-

fore, there is a bias towards the right handed signers in the

dataset. Furthermore, female signers are more dominant, al-

most 3:1 ratio, in the dataset; 10 of the signers are men and

33 are women. The ages of our signers range from 19 to

50, and the average age of all signers is 31. In other words,

there are no child or elderly signers. Another point that can

be considered a source of bias in the dataset is the distri-

bution of skin color, as there is no signer with dark skin.

Although these limitations exist, we believe the challenge

we have organised can help to advance the state-of-the-art

on the field, as well as to promote either the design of new

dataset or the development of novel methodologies that can

deal with the aforementioned limitations.

3.2. Evaluation Protocol

To evaluate the performances of the models, we use the

recognition rate, r, as defined in previous ChaLearn LAP

challenges [37].

r =
1

n

n∑

i=1

f(pi, yi), (1)

where n is the total number of samples; pi is the predicted

label for the ith sample; yi is the true label for the ith sam-

ple; f(.) is 1 when pi = yi, 0 otherwise.

3.3. The Baseline

In order to set a baseline, several deep learning based

models are trained and evaluated on AUTSL dataset. In the

baseline method [31], 2D-CNNs are used to extract spatial

features. Then, a Feature Pooling Module (FPM) [32] is

placed on top of the last CNN layer. The idea behind FPM

layers is to increase the field-of-views by using different di-

lated convolutions. In order to capture temporal information

bidirectional LSTM (BLSTM) is used. A temporal atten-

tion mechanism is integrated to BLSTM in order to select

the most effective video frames in classification.

The methods used in RGB and RGB+D track are basi-

cally the same, with minor modifications. Since the depth

data is represented as a single channel gray-scale image for

each frame, the same depth data is repeated into three color

channels. Then, RGB and depth modalities are given as in-

puts to the two parallel CNN models that share the same

parameters. After generating two feature matrices, i.e. one

for the RGB data and one for the depth data, these feature

matrices are concatenated at the end of the FPM layer.



In contrast to some top-winning solutions (detailed in

Sec. 4), our baseline did not consider any face/hand/body

detection or segmentation technique, nor additional modal-

ities such as pose keypoints, optical flow, nor external data.

4. Challenge Results and Winning Methods

4.1. The Leaderboard

Results obtained by the top-10 winning solutions (in ad-

dition to the Baseline) at the test phase, for the RGB and

RGB+D tracks, are reported in Table 2. The main observa-

tion from the table is that RGB+D and RGB results do not

significantly differ, suggesting that state-of-the-art meth-

ods are obtaining highly accurate results without the use

of depth information, at least on the adopted AUTSL [31]

dataset. Later in Sec. 4.3, we analyse possible causes why

some samples were not properly recognised by the top win-

ning solutions, which could be used to guide future research

directions on the field.

Table 2. Codalab leaderboards of RGB and RGB+D Tracks. Meth-

ods that passed the code verification stage are highlighted in bold.

RGB Track RGB+D Track

Rank Participant Rec. Rate Rank Participant Rec. Rate

1 smilelab2021 0.9842 1 smilelab2021 0.9853

2 wz 0.9834 2 wz 0.9834

3 rhythmblue 0.9762 3 rhythmblue 0.9765

4 Bo 0.9743 4 wenbinwuee 0.9669

5 wenbinwuee 0.9655 5 lin.honghui 0.9567

6 deneme4 0.9626 6 ly59782 0.9548

7 jalba 0.9615 7 Bugmaker 0.9396

8 xz 0.9596 8 m-decoster 0.9332

9 wuyongfa 0.9580 9 papastrat 0.9172

10 adama 0.9578 10 xduyzy 0.9086

23 Baseline 0.4923 14 Baseline 0.6203

Fig. 2 illustrates the evolution of the challenge with re-

spect to the number of submissions and highest score ob-

tained for each day and competition track. Different ob-

servations can be made from these plots: 1) the participants

were much more active in the RGB track, also reinforced by

the number of registered participant on this track, suggest-

ing that the research community is paying more attention on

SLR from RGB data if compared to RGB+D information;

2) the number of submissions increases close to the end of

each phase (development phase finished on 3rd of March

and the test phase finished on 11th of March), suggesting

that participants were struggling to improve their results to

obtain a better rank position.

4.2. Top Winning Approaches

This section briefly presents the top winning approaches

of both tracks. More concretely, the top-3 methods that

passed the code verification stage (see Table 2). Table 3

shows some general information about the top-3 winning

approaches. As it can be seen from Table 3, common strate-

gies employed by top-winning solutions are transfer learn-

ing, external data, face/hand detection and pose estimation,

fusion of modalities and ensemble models as well as differ-

ent strategies to model spatio-temporal information.

4.2.1 Top-1: smilelab2021

Inspired by the recent development of whole-body pose es-

timation [17], the smilelab20215 team proposed to recog-

nise sign language based on the whole-body key points and

features. The recognition results are further ensembled with

other modalities of RGB and optical flows to further im-

prove the accuracy. The top-1 winning solution [16] pro-

posed to use whole-body pose keypoints to recognise sign

language via a multi-stream Graph Convolutional Network

(GCN) model.

A total of 133-points including face, hand, body and foot

are extracted from the input images. They are used in their

GCN network as skeleton modality. Features extracted from

pretrained whole-body pose estimation are used as another

modality. The keypoints are also used to crop frames in

other modalities (RGB and optical flow). As base model,

Resnet2+1d pretrained on Kinetics [2] dataset is used. For

RGB modality, they pre-trained their models on Chinese

Sign Language dataset [42] before training on the challenge

dataset. Label smoothing and weight decay were used as

regularization during training on both tracks. In the RGB+D

track, they extracted HHA [16] features from depth video

as another modality, referred to as handcraft features. HHA

features encode depth information and are generated using

a RGB-like 3-channel output, where HHA stand for “Hor-

izontal disparity”, “Height above the ground”, and “Angle

normal makes with”. Since multiple modalities are consid-

ered (skeleton keypoints, skeleton features, RGB and opti-

cal flow - and HHA and depth flow in the case of RGB+D

track), they adopted a late fusion technique where the out-

put of the last fully-connected layers is kept, before soft-

max, associating weights to them and sum them up with

weights as a final predicted score. Those weights serve as

hyper-parameters and are tuned based on the accuracy on

validation set.

4.2.2 Top-2: rhythmblue

The rhythmblue6 team proposed an ensemble framework

composed of multiple neural networks (e.g., I3D, SGN) to

conduct isolated sign language recognition, also taking into

account pose, hand and face patch-based information. The

5Code: https://github.com/jackyjsy/CVPR21Chal-SLR
6Code: https://github.com/ustc-slr/ChaLearn-2021-ISLR-

Challenge



(a) RGB Track (b) RGB+D Track

Figure 2. Challenge evolution with respect to the number of submissions and best obtained score, per day and per track. The blue line

indicates the end of the development phase and the start of the test phase.

Table 3. General information about the top-3 winning approaches.

Participant
top-1:

smilelab2021

top-2:

rhythmblue

top-3:

wenbinwuee

Feature/Track RGB RGB+D RGB RGB+D RGB RGB+D

Depth information either during training or testing stage -
√

-
√

-
√

Pre-trained models
√ √ √ √ √ √

External data
√ √

- - - -

Regularization strategies/terms
√ √

- - - -

Handcrafted features -
√

- - - -

Face/hand/body detection, alignment or segmentation - -
√ √ √ √

Pose estimation
√ √ √ √

- -

Fusion of modalities
√ √ √ √

- -

Ensemble models
√ √ √ √ √ √

Spatio-temporal feature extraction
√ √ √ √ √ √

Explicitly classify any attribute (e.g. gender) - - - - - -

Bias mitigation technique (e.g. rebalancing training data) - - - - - -

networks are trained separately for different cues. For patch

sequence of full-frame, hands and face, 3D-CNNs are used

to model the spatio-temporal information. For pose data,

GCN-based method is selected to capture the skeleton cor-

relation. During ensemble stage, late fusion is adopted for

final prediction.

More concretely, an upper-body patch is obtained ac-

cording to a bounding box estimation of the signer, given

by MMDetection [5] and the joint positions estimated by

HRNet [33]. Full body joint positions are extracted with

MMPose [6]. Hand and face regions are obtained from key-

point positions. Five types of data are generated, i.e., full-

body patch, left-hand patch, right-hand patch, face patch

and full-body pose. To process full-body patch, left-hand

patch and right-hand patch, separately I3D [3] networks are

used. A SlowFast [11] Network is used for full-body patch.

To process full-body pose, SGN [43] is used. During infer-

ence, all outputs are summed before the SoftMax layers of

the above networks with weights. Then, the category with

the largest activation is selected. In the case of RGB+D

track, I3D-Depth is used, with a pretrained model provided

by I3D-Kinectics-Flow [3].

4.2.3 Top-3: wenbinwuee

The wenbinwuee7 team used RGB, Depth information (in

RGB+D track), optical flow and human segmentation data

to train several models using SlowFast [11], SlowOnly [11]

and TSM [24]. Results are late fused to get a final predic-

tion. For the RGB+D track, results are obtained by fusing

the RGB+D models prediction scores with the RGB track

results.

4.3. What challenge the models the most?

In this section, we analyse the prediction files submitted

at the test phase on both competition tracks and for the top-

10 teams shown in Table 2, and discuss some particularities

that challenge the methods the most. For instance, we show

the samples that were more frequently wrongly classified

given the signer or sign IDs, which could indicate a weak-

ness of the evaluated methods or any issue in the adopted

dataset (e.g., high inter-class similarity), that could suggest

future research.

Fig. 3 shows misclassification rates in the RGB track for

7Code: https://github.com/Koooko96/Chalearn2021code
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Figure 3. Misclassification rate (%) per signer on the test set, given the top-10 teams (shown in Table 2) in the RGB track. Average

misclassification rate is also reported. In bold, the top-3 winning solutions that passed the code verification stage.

each signer in the test set. No significant differences were

observed for the results that are obtained for RDB+D track.

The first 10 segments show the results of the top-10 teams

shown in Table 2, and the last segment shows the average

misclassification rates per signer. As it can be seen, differ-

ent teams misclassified different signers without a clear pat-

tern, suggesting that there was not a particular signer (or set

of signers) that could be considered an outlier. Neverthe-

less, if we take the average misclassification as reference,

we can observe that Signer 14 and 27 were the ones more

frequently misclasified (which was not the case of the top-1

winning solution, at least for Signer 14). One possible ex-

planation for these cases is the high intra-class variability,

which imposes an additional challenge for generalisation.
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Figure 4. Average recognition rate (%) of top-10 misclassified

signs (test set) given the top-10 teams (shown in Table 2).

In Fig. 4, we show the average recognition rate of top-

10 misclassified signs on the test phase, given the submitted

files of top-10 teams (shown in Table 2). As it can be seen,

the set of signs with lower recognition rates (e.g., top-5) are

more or less the same in both tracks, suggesting that RGB

and RGB+depth are providing similar information to solve

the task on those cases, or maybe that the complementarity

of RGB and depth are not being fully exploited.

By analysing a confusion matrix of the signs and submit-

ted predictions of both tracks, we observed that the most fre-

quently confused sign pairs by participants methods in the

AUTSL [31] dataset are: {heavy vs. lightweight}, {fasting

vs. school}, {not interested vs. why}, {school vs. soup}
and {government vs. Ataturk}. The reason behind such

misclassifications are due to the high similarity of local and

global hand gestures in these signs, illustrated in Fig. 5. In

some signs, there is only a subtle difference in the position

of the hand, e.g., government and Ataturk. While in the sign

of government the index finger touches under the eye, in the

sign of Ataturk it touches the cheek. In some signs, there is

only a subtle difference in movement of hands, e.g., school

and soup. In the sign of soup the hand moves a little more

from the bottom up. In some signs, facial expression also

contains an important clue for the meaning of the sign, e.g.,

heavy.

5. Conclusions

This work summarised the ChaLearn LAP Large Scale

Signer Independent Isolated SLR Challenge. The chal-

lenge attracted more then 190 participants in two compu-

tational tracks (RGB and RGB+D), who made more than

1.5K submissions in total. We analysed and discussed the

challenge design, top winning solutions and results. Inter-

estingly, the challenge activity and results on the different

tracks showed that the research community in this field is

currently paying more attention to RGB information, com-

pared to RGB+Depth data. Top winning methods com-

bined hand/face detection, pose estimation, transfer learn-

ing, external data, fusion/ensemble of modalities and differ-

ent strategies to model spatio-temporal information.

We believe that future research directions should move

at least in two different lines, that is, on the development of

novel large-scale and public datasets, and on the research

and development of methods that are both fair and accu-

rate. Fairness is an emergent topic in computer vision and



(a) {heavy vs. lightweight}

(b) {not interested vs. why}

(c) {fasting vs. school vs. soup}

(d) {government vs. Ataturk}

Figure 5. The most frequently confused sign pairs in both RGB and

RGB+D track. Each row displays a sign video sample summarised

in 4 frames.

machine learning, and new datasets should include peo-

ple from different ages, gender, skin tones, demographics,

among others, with the goal of having as much as possible

balanced distributions given the different attributes. More-

over, continuous sign language seems to be a logical next

stage in order to do research on begin-end of sign detection

and to include of a higher level of language semantics in the

recognition process. The inclusion and analysis of context

and spatio-temporal attention mechanisms could be helpful

for discriminating very similar signs. On the other hand,

models are benefiting from state-of-the-art approaches de-

veloped for other purposes to achieve state-of-the-art per-

formance. The fusion of different modalities and models

seems to be a key to advance the research on this field.

It should be noticed that the top-2 winning solutions ben-

efited from Graph Convolutional Networks (GCN), which

demonstrated to be very useful to model spatio-temporal in-

formation. Furthermore, up to date self-attention strategies

have not been fully exploited in sign language, and its usage

could benefit the spatio-temporal learning of signs.

Finally, future work should also consider paying more

attention to explainability/interpretability, so that the results

obtained by different models could be easily explained and

interpreted. This is key to understand what part or compo-

nents of the model are more relevant to solve a particular

problem, or to explain possible sources of bias or misclas-

sification.
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