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Abstract

We formulate a causal extension to the recently intro-

duced paradigm of instance-wise feature selection to ex-

plain black-box visual classifiers. Our method selects a

subset of input features that has the greatest causal effect

on the model’s output. We quantify the causal influence of

a subset of features by the Relative Entropy Distance mea-

sure. Under certain assumptions this is equivalent to the

conditional mutual information between the selected subset

and the output variable. The resulting causal selections are

sparser and cover salient objects in the scene. We show the

efficacy of our approach on multiple vision datasets by mea-

suring the post-hoc accuracy and Average Causal Effect of

selected features on the model’s output.

1. Introduction

Explaining the predictions of black-box classifiers is

important for their integration in real world applications.

There have been many efforts to understand the predictions

of visual systems, by generating saliency maps that quantify

the importance of each pixel to the model’s output. How-

ever, such methods usually require gradient information and

often suffer from insensitivity to the model and the data [1].

Researchers in the recent past have taken a different per-

spective by proposing the task of instance-wise feature se-

lection for explaining classifiers in general, and visual clas-

sifiers in particular. Here, the aim is to select a subset of

pixels or superpixels to explain a black-box model’s output.

L2X[4] is the first work in this space wherein it se-

lects a fixed number of features which maximize the mu-

tual information w.r.t. the output variable. Its successor,

INVASE[12] removes the constraint of having to fix the

number of features to be selected. But, both INVASE and

L2X have optimization functions which try to maximize

mutual information in some form or the other. For an expla-

nation to be correct, the selected features should be causally

consistent with the model being explained. Therefore, a

good instance-wise feature selection method should cap-

ture the most causal features in an instance. We hypothe-

size that the most sparse and class discriminative features

are indeed the most causal features, and they form good

visual explanations. However, existing methods(L2X and

INVASE) select features that may not capture causal in-

fluence, since mutual information does not always capture

causal strength[2].

In this work we take a step towards unifying causality

and instance-wise feature selection to select causally im-

portant features for explaining a black box model’s output.

First, in order to measure causal influence of input features

w.r.t the output, we choose a causal metric which satis-

fies properties relevant for our task and subsequently we

simplify this metric(under certain assumptions) to condi-

tional mutual information. Secondly, we derive an objective

function for training our explainer using continuous subset

sampling. We evaluate our explainer on 3 vision datasets

and compare it with with 3 popular baseline explainability

methods. For the purposes of quantitative comparison, we

use two metrics, post-hoc accuracy[4] and a variant of av-

erage causal effect(ACE) which we introduce in our work.

Our results show performance improvements over the base-

lines, especially in terms of the ACE values, which verifies

our claim of selecting causal features.

1.1. Problem Formulation

Our goal is to explain a black-box classifier F : Rd →
Y by learning a explainer network Ek : Rd → Sk where

Sk = {e|e ∈ {0, 1}d, |e| = k}. The explainer/selector

network Ek chooses a subset of features(size of subset is

fixed as k) for each input that best explains the predictions

made by F .

We intend to find the subset(of cardinality k) which has

the maximum causal strength. Since there is no gold stan-

dard for measuring causal influence between random vari-

ables, we choose a metric which has some good properties.

Causal Model: Assuming that the underlying ar-

chitecture of the black-box model is a directed acyclic

graph(DAG), it can be shown that such models can be in-

terpreted as structural causal models [3]. This SCM(Figure

1) simply has directed edges from input layer to the output

layer representing the fact that the output is only a function

of the inputs. We explain explicitly what Xi and Yj mean



Figure 1. Black-box model as a SCM

in our context as we go along.

Causal metric: We now quantify the causal influence

between two random variables in the causal graph(Figure 1)

by the Relative Entropy Distance(RED)[6] metric. RED is

an information theoretic causal strength measure, which is

based on performing interventions on the causal graph and

exposing the target of the cut/intervened edges with product

of marginal distributions.

We choose RED as the metric for causal strength because

it satisfies certain useful properties:

• It can capture the non-linear, complex relationship be-

tween input and output variables in a black-box model

[8]. Such complex relationships are common in mod-

els such as neural networks.

• The causal strength of an edge Xi → Yj depends on

Xi and the other parents of Yj and on the joint distri-

bution of parents of Yj . This locality property ensures

that we do not have to take into account the causes of

Xi when computing causal influence of Xi on Yj , un-

less the causes are also immediate causes of Yj[6].

As we are operating in the vision domain, instead of rea-

soning at the level of subset of pixels, we reason at the level

of superpixels/patches in an image. These patches are dis-

joint i.e. there is no overlap between the patches. Now, for

simplifying the RED metric for the purposes of experiment-

ing in real-world setting, we assume local influence-pixels

only depend on other pixels within a patch. That is the rea-

son why we have no edges between Xi’s in the SCM(Figure

1). Also, in the given SCM Xi refers to the ith patch in the

image and Yj refers to jth output node in the model. Under

this setting we propose lemma 1.1, which is an extension of

the findings by authors in [6].

Lemma 1.1 The causal strength of a subset of links s go-

ing from input X to the response variable of the model Y ,

denoted as CSs, is given as follows:

CSs = I(Xs;Y |Xs) (1)

Here, Xs denotes the features in set s, Xs denotes the fea-

tures not in set s, and X = Xs ∪Xs.

Now, we simplify the equation 1 to formulate an optimiza-

tion problem.

Objective Function: The conditional mutual informa-

tion between Xs and Y can be expressed as follows:

CSs = I (Xs;Y |Xs)

CSs = −H(Y |X) +H(Y |Xs)

In order to solve the above objective function, we need to

focus only on H(Y |Xs) as the other term is independent of

set s. Now, if we further simplify the remaining term by

expanding it and viewing it as an expectation over variables

Y and Xs, we get the following equation:

max
s

CSs ≡ min
s

EY,Xs
[log(P (Y |Xs)] (2)

P ( s|X ) is the explainer’s output distribution, i.e. given

an input X , the explainer gives its corresponding s i.e. the

complement of the explanation.

2. Methodology

There are two main issues with maximizing the causal

strength in equation 2. First, approximating the condi-

tional distribution P (Y |Xs), and second, dealing with sub-

set sampling. We address these issues below.

Approximating P (Y |Xs) : We simply use the output of

the black-box model F when Xs is given as input, to esti-

mate P (Y |Xs). Xs is represented as follows: if si = 0,

Xsi = Xi, else Xsi = 0. [9] have used a similar approxi-

mation in their works.

Continuous subset sampling: Our objective func-

tion(2) requires sampling of subsets which is a non-

differentiable operation. Similar to [4] we use the Gumbel

Softmax trick [5, 7] for continuous subset sampling.

The goal of this procedure is to sample a subset s con-

sisting of k distinct features out of the d input dimensions.

Sampling set s is similar to sampling a k-hot random vec-

tor, where the length of this random vector is d. Before we

perform sampling, we define a function g which maps each

input feature Xi to a value which indicates its probability of

being part of s. In other words, g(X) defines a categorical

distribution from which we wish to sample from. We learn

this function g via a neural network parameterized by θ.

Then, we use the gumbel-softmax continuous subset sam-

pling for sampling from this categorical distribution. The

result of this sampling is a random variable Z which is a

function of the neural net parameters θ and Gumbel random

variables ζ. This effectively means that we can estimate s

by Z(θ, ζ).

Final optimization function: After applying continu-

ous subset sampling, and approximation of P (Y |Xs) we

have simplified our objective to the following equation:



min
θ

EX,Y,ζ [log(F(Z(θ, ζ)⊙X))]

= min
θ

EX,ζ

[

c
∑

y=1

P (y|X) log(F(Z(θ, ζ)⊙X))

]

(3)

P (y|X) is equivalent to F(X). The expectation operator in

the above equation does not depend on the parameter θ. So,

we can learn the parameter θ by using stochastic gradient

descent. We use Adam optimizer in our work.

3. Experiments and Results

In this section, we quantitatively and qualitatively com-

pare our method with one instance-wise feature selec-

tion method L2X and, two pixel attribution methods

GradCAM[10] and Saliency[11]. We use MNIST, Fashion

MNIST and CIFAR as our datasets for experiments.

Our method reasons at the level of superpixels or patches

of images, which means that our explainer selects patches

instead of pixels. Therefore, for the baseline pixel attribu-

tion methods we consider the average attribution value for

each patch, and then pick top k patches. This is done in

order to fairly compare the instance-wise feature selection

and existing pixel attribution methods.

Below we briefly explain the two metrics we use for

quantitative evaluation:

3.1. Post­hoc accuracy[4]:

Each explainability method would return a subset of fea-

tures/patches s for every instance x. Post-hoc accuracy

measures how close is the predictive performance of the

black-box model when it gets xs as input w.r.t. getting the

entire x as input. It is given by the following formula:

1

|Xval|

∑

x∈Xval

(argmax(P (y|x)) == argmax(P (y|xs))

Xval refers to the validation set.

3.2. Average Causal Effect:

First, we define individual causal effect(ICE) of a set of

features s for a particular instance x as follows:

ICE = P (y|xs)− P (y|xrandom)

Here, xrandom represents an image in which k

patches(k = |s|) belong to x and the rest patches are null.

These k patches are selected randomly from x. To compute

average causal effect(ACE) we simply take the average of

the ICE values over the validation set.

3.3. Results:

For the all datasets, we report the mean and standard de-

viation of the post-hoc accuracy and ACE values across 5

runs for L2X and our method. In the tables shown below, k

denotes the number of 4× 4 patches that are selected.

MNIST:This data set has 28×28 images of handwritten

digits. We use a subset of the classes i.e. class 3 and 8 for

experimentation. We train a simple convolutional neural net

consisting of 2 layers of convolution and 1 fully connected

layer, and achieve 99.74% accuracy on the test data. We pa-

rameterize the selector network of L2X and our method by

a 3 layer fully convolutional net. For the L2X, we param-

eterize its variational approximator by the same network as

that of the black-box model(for all the experiments).

Method k=4 k=6 k=8

Our 0.953± 0.006 0.976 ± 0.004 0.985± 0.005

L2X 0.942± 0.008 0.970± 0.004 0.981± 0.003

GradCAM 0.804 0.832 0.844

Saliency 0.868 0.923 0.958

Table 1. Post-hoc accuracy(MNIST)

Method k=4 k=6 k=8

Our 0.351± 0.012 0.358± 0.009 0.353± 0.006

L2X 0.318± 0.003 0.341± 0.012 0.343± 0.004

GradCAM 0.127 0.142 0.151

Saliency 0.242 0.277 0.308

Table 2. Average Causal Effect(MNIST)

Figure 2. In the above figure, we can see that selected

patches(highlighted in copper color) of our method capture class

discriminative regions(i.e. regions differentiating 3 vs 8) in the

query image.(Here, k=5)

FMNIST:This data set has 28×28 images of fashion

items such as t-shirts, shoes, purse etc. We use a subset of

the classes i.e. class 0 and 9(t-shirt and shoe) for experimen-

tation. We train a simple convolutional neural net of same

architecture as before for MNIST, and achieve 99.9% accu-

racy on the test data. We parameterize the selector network

of L2X and our method by a 3 layer fully convolutional net.



Method k=4 k=6 k=8

Our 0.910± 0.022 0.956± 0.014 0.978± 0.005

L2X 0.885± 0.026 0.963± 0.006 0.970± 0.013

GradCAM 0.589 0.636 0.679

Saliency 0.558 0.831 0.927

Table 3. Post-hoc accuracy(FMNIST)

Method k=4 k=6 k=8

Our 0.177± 0.009 0.193± 0.016 0.163± 0.007

L2X 0.138± 0.027 0.173± 0.018 0.142± 0.016

GradCAM -0.113 -0.159 -0.196

Saliency -0.053 0.053 0.071

Table 4. Average Causal Effect(FMNIST)

CIFAR:This data set has 32×32 images of 10 different

classes. We use a subset of the classes i.e. class 2 and 9(bird

and truck) for experimentation. We train a 3 layer convo-

lutional neural net, and achieve 94% accuracy on the test

data. We parameterize the selector network of L2X and our

method by a 3 layer fully convolutional net.

Method 20% pixels 30% pixels 40% pixels

Our 0.600± 0.060 0.720± 0.050 0.780± 0.030

L2X 0.510± 0.130 0.600± 0.010 0.660± 0.010

GradCAM 0.580 0.660 0.710

Saliency 0.551 0.570 0.610

Table 5. Post-hoc accuracy(CIFAR)

Method 20% pixels 30% pixels 40% pixels

Our 0.078± 0.055 0.130± 0.048 0.153± 0.028

L2X -0.017± 0.12 0.080± 0.001 0.101-0.001

GradCAM 0.055 0.08 0.088

Saliency 0.028 0.033 -0.005

Table 6. Average Causal Effect(CIFAR)

Figure 3. The first row shows 20% pixels being selected, and the

second row shows result of selecting 30% pixels. Our method ap-

pears to focus well on the object in the scene, w.r.t. other methods.

4. Conclusion

In this work, we derive a causal objective from a rig-

orously chosen causal strength measure for the task of

instance-wise feature subset selection. We also describe a

training procedure for solving our causal objective func-

tion for real-world experiments. Finally, through carefully

chosen metrics we evaluate the proposed method on mul-

tiple vision datasets and show its efficacy w.r.t other exist-

ing methods. When sparse explanations are required, our

method often finds discriminative salient objects. We also

provide the code 1 for reproducing our results.
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