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Abstract

In this paper, we propose to investigate out-of-domain

visio-linguistic pretraining, where the pretraining data dis-

tribution differs from that of downstream data on which the

pretrained model will be fine-tuned. Existing methods for

this problem are purely likelihood-based, leading to the spu-

rious correlations and hurt the generalization ability when

transferred to out-of-domain downstream tasks. By spuri-

ous correlation, we mean that the conditional probability

of one token (object or word) given another one can be

high (due to the dataset biases) without robust (causal) re-

lationships between them. To mitigate such dataset biases,

we propose a Deconfounded Visio-Linguistic Bert frame-

work, abbreviated as DeVLBert 1, to perform intervention-

based learning. We borrow the idea of the backdoor ad-

justment from the research field of causality and propose

several neural-network based architectures for Bert-style

out-of-domain pretraining. The quantitative results on three

downstream tasks, Image Retrieval (IR), Zero-shot IR, and

Visual Question Answering, show the effectiveness of De-

VLBert by boosting generalization ability 2.

1. Introduction

Since early attempts that pretrain a backbone model on

large-scale dataset and then transfer the knowledge to nu-

merous vision and language tasks, pretraining has become

a hallmark of the success of deep learning. Despite the

significant progress that recent methods have made over

the initiative work ViLBert [6], part of their success can

be traced back to the introduction of in-domain pretraining

datasets besides the Conceptual Caption [8] dataset. By in-

domain, we refer to those datasets used in both pretraining

and downstream tasks. However, out-of-domain pretrain-

1Please refer to the full version of this paper [11] for better clarity.
2https://github.com/shengyuzhang/DeVLBert
∗These authors contributed equally to this work.
†Corresponding Authors.

ViLBert

DeVLBert

Association-based

learning

Intervention-based

learning

Spurious Correlation OR 

Z causes both X and Y?

X causes Y?

P(Y=shirt|X=instrument)=5.98%

Visual Objects/ Language Words

P(Y=shirt|do(X=instrument))=3.09%

?

d
o

-c
a

lc
u

lu
s

Figure 1. An illustration of the transition from traditional

association-based learning to causal intervention-based learning.

ing, i.e., pretraining models on out-of-domain datasets and

transferring the learned knowledge into downstream tasks

with unkown data distributions, can be an essential research

topic. In this paper, we focus on out-of-domain pretraining

and learning generic representations as the ViLBert does.

A fundamental requirement for out-of-domain transfer

learning is to mitigate the biases from the pretraining data

[9], which may be useful for the in-domain testing but harm-

ful for out-of-domain testing [2] due to the spurious corre-

lation. Most previous works just blame this for the biased

data collection without further justification. However, this

is not reasonable since we human ourselves are just living

in a biased nature. In our methodology, we draw inspi-

ration from the causal inference [2] and borrow the idea

of the backdoor adjustment (also known as covariate ad-

justment or statistical adjustment) [7] to mitigate these bi-

ases. The essence of deconfounding with the do-operation

can be found in Figure 1. In this way, the pure associa-

tion-based pretraining becomes to the causal intervention-

based pretraining. We are particularly targeting at the Bert-

style pretraining models and the context-based proxy tasks

for supervision, such as masked language/object model-

ing (MLM/MOM). Context-based proxy tasks solely care

about association, i.e., what co-occur with the anchor to-



ken without considering whether there are spurious corre-

lations (e.g., shirt cannot cause instrument, and vice

versa) or not. We propose several intervention-based BERT

architectures to help learn deconfouned visio-linguistic rep-

resentations. We name this kind of architectures as DeVL-

Bert, which refers to Deconfounded Visio-Linguisitic Bert.

DeVLBert is designed as model-agnostic and can be easily

encapsulated into any other Bert-style models.

We conduct in-depth experiments to discuss the perfor-

mance of the proposed DeVLBert architectures. Out-of-

domain pretrainin with three downstream vision-language

tasks demonstrate that DeVLBert can boost the generaliza-

tion ability by mitigating dataset biases.

2. Deconfounded Vsio-Linguistic Bert

2.1. Bert in the causal view

As illustrated in [11], the Transformer layer connects

each output token representation with all input token rep-

resentations. We denote the representation of one output

token as Y and the representations of all other tokens as X .

Bert models the function of P (Y |X). In the causal view,

there can be some confounder Z affecting both X and Y .

Formally, by the Bayes Rule, the conventional likelihood

can be re-written as:

P (Y |X) =
∑

z
P (Y |X, z)P (z|X), (1)

By using the do-calculus [7], we remove any incoming in-

fluence to the intervened variable, i.e., X:

P (Y |do(X)) =
∑

z
P (Y |X, z)P (z). (2)

It is infeasible to individually model the distribution of

P (Y |X, z) for each z as the number of potential con-

founders can be large. We borrow the idea of Normalized

Weighted Geometric Mean [10] to approximate the expen-

sive sampling. Formally, if the last objective is classifica-

tion, we can re-write the following terms:

P (Y |do(X)) = Ez [σ (fc(x, z))] , (3)

where x and z denote the feature representations of X and

z, and fc denotes the classification head of intervention. σ
denotes the softmax function The essence of NWGM is to

move the expectation into the operation of softmax:

P (Y |do(X))
NWGM
≈ σ (Ez [fc(x, z)]) . (4)

In this paper, we model the term fc(x, z) by the feed-

forward neural network Wc[x, αy(z)∗z], where [, ] denotes

the concatenation operation and αy(z) denotes the impor-

tance factor that is parameterized by y. Formally, we have:

αy(z) =
(Wyy)

T (Wzz)∑
v 6=ς(Wyy)T (Wzv)

, (5)

P (Y |do(X)) = σ(Wc[x,
∑

z
P (z) ∗ αy(z) ∗ z]). (6)
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Figure 2. A vivid illustration of four intervention formulations

for Bert-style training. Deciding the forms of X and Y in Bert is

essential for further intervention-based context prediction. Design

A&C require twice inference.

where y/v is the feature representation of Y/v. ς denotes

the confounder that has the same token class as Y . We pro-

pose several implementations for the Bert structure.

Design A. We firstly investigate how to harness masked to-

ken modeling with intervention. Still, we take natural lan-

guage pretraining as an example for illustration. For one

masked word wt, it is intuitively to view the final represen-

tation wt as xt since wt contains no explicit information

from the word itself (being masked). We choose to run an-

other inference with no masked tokens, and view the final

representation of word wt as y (shown in Figure 2 A).

Design B. Figure 2 B depicts another design to harness

MTM. In this perspective of context modeling, the final rep-

resentation of the masked token wt can be viewed as yt

while the final representations of all unmasked tokens can

be viewed as {xk}k=1,...,t−1,t+1,...,Nw
. This design is ef-

ficient without an extra inference process. The time com-

plexity is O(Nu ∗Nm), where Nu and Nm are the numbers

of unmasked tokens and masked tokens, respectively.

Design C. As depicted in Figure 2 C, Design C is a vari-

ant of Design A and views the final representations of all

unmasked tokens as {xk}k=1,...,t−1,t+1,...,Nw
.

Design D. By viewing the final representations of un-

masked tokens as integrated representations of X and Y ,

Design D is non-intrusive and can be the most efficient

among the proposed designs. In this design, the modeling

of P (Y |do(X)) is slightly different:

αr(z) =
(Wrr)

T (Wzz)∑
z(Wrr)T (Wzz)

, (7)

P (Y |do(X)) = σ(Wc

∑
z
P (z) ∗ αr(z) ∗ z). (8)

where r denotes the integrated representation of y and x,

and αr(z) is the importance factor parameterized by r.

Since the representation x is no longer available, we omit



Table 1. Comparison between DeVLBert and other competitors,

including ViLBERT which only uses out-of-domain◦ pretraining

datasets, VisualBERT only uses in-domain• datasets, and Inter-

Bert using both⊙.
Image Retrieval (IR) Zero-shot IR VQA

Methods R@1 R@5 R@10 R@1 R@5 R@10 test-dev test-std

SCAN [3] 48.6 77.7 85.2 - - - - -

BUTD [1] - - - - - - 65.3 65.7
•VisualBERT [4] - - - - - - 70.8 71.0
⊙InterBert [5] 61.9 87.1 92.7 49.2 77.6 86.0 70.3 70.6
◦ViLBERT [6] 58.2 84.9 91.5 31.9 61.1 72.8 70.6 70.9
◦DeVLBert 61.6 87.1 92.6 36.0 67.1 78.3 71.1 71.5

the concatenation operation.

2.2. Intra & Intermodality Intervention

Vision deconfounding & Vision Confounder Set. Fol-

lowing VC R-CNN [9], we consider the high-level object

classes as potential confounders. The representation of each

object class is obtained by averaging pooling the set of ob-

ject features belonging to the class (but in different im-

ages). For vision deconfounding, Y and X are only se-

lected from the final representations of the visual regions,

and confounders in the vision confounder set are discussed.

For Design A and B, the MOM objective is totally replaced

by the intervention objective. For Design C and D, the in-

tervention is married with the MOM objective.

Language deconfounding & Language Confounder Set.

We extract nouns as potential confounders by Part-of-

Speech Tagging and filter those of low-frequencies, result-

ing in 156 potential confounders. The feature representa-

tion of each noun is initialized as the mean-pooled vector of

the Bert contextual embeddings of words (the same noun)

in different sentences. Deconfounding strategy is similar to

the vision part.

Inter-modality Intervention. For inter-modality interven-

tion, Y and X can be tokens from different modalities, and

confounders can be selected from both vision and language

confounder sets.

3. Experiments

Pretraining DeVLBert. We follow ViLBERT [6] to

pretrain DeVLBert on the Conceptual Caption [8] dataset,

which is an out-of-domain dataset that has little data over-

lap with most downstream tasks. Finetuning on down-

stream tasks. Also, we are following the pipelines of

three downstream tasks, i.e., Text-to-Image Retrieval (IR),

Zero-shot Text-to-Image Retrieval (Zero-shot IR), and Vi-

sual Question Answering (VQA) of ViLBERT. For more

details, such as dataset split, fine-tuning strategies, and

hyper-parameters, please refer to ViLBERT[6].

Table 2. Comparisons between different DeVLBert implementa-

tions, and ablation studies on the architecture D.
Image Retrieval (IR) Zero-shot IR

Method R@1 R@5 R@10 R@1 R@5 R@10

Baseline 58.2 84.9 91.5 31.9 61.1 72.8

A-V 60.3 86.24 92.06 30.18 59.46 71.88

A-VL 58.3 85.5 91.6 25.4 54.7 67.2

B-V 58.9 85.3 91.1 33.0 62.2 74.0

C-V - - - 27.0 56.2 69

D-V 59.3 85.4 91.8 32.8 63.0 74.1

D-VL 60.3 86.7 92.2 34.9 65.5 77.0

D-VLC 61.6 87.1 92.6 36.0 67.1 78.3

3.1. Quantitative Evaluation

How do different intervention-based architectures per-

form? To answer this question, we evaluate the perfor-

mance of different architectures on the downstream tasks,

i.e., image retrieval, and zero-shot image retrieval. The

results are listed in Table 2. We use A-V to denote the

architecture of design A, A-VL to denote the architecture

of design A with both vision and language deconfounding.

Based on the results, we can see that:

1) Most of the architectures obtain performance gain on at

least one of the tasks, which demonstrates the effectiveness

of intervention-based learning.

2) The twice inference design achieves inferior results on

the zero-shot image retrieval task. Due to the complexities

introduced by another inference, it might take more itera-

tions to converge, which can be computationally expensive.

3) Comparing A-VL with A-V, the introduction of language

deconfounding leads to a performance drop on IR and zero-

shot IR. We attribute this phenomenon to the incomplete

training of MTM. For the language side, following ViL-

BERT, the classification module shares the word embedding

matrix with the input embedding layer. For A-VL, we only

mask noun words since the language confounder set com-

prises only noun words. Therefore, the embedding matrix

solely sees noun words in the classification, which leads to

inferior results due to incomplete learning of other words.

Non-intrusive design D mitigates this problem.

4) Without the structure and training complexities intro-

duced by the other inference, B-V and D-V show clear ad-

vantages over A-C and C-V.

5) D-V further outperforms the architecture of B-V, and we

attribute this consistent improvement to the non-intrusive

intervention modeling. More concretely, isolating the

masked token modeling makes the shared embedding mod-

ule in the MTM classification module learn better. Mean-

while, architecture D is the most efficient.

Do both intra-/inter- modality intervention improve the

out-of-domain pretraining? Since architecture D-V

achieves the best performance, we further extend architec-

ture D-V to architecture D-VL by incorporating language
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Figure 3. Case studies by visualizing the attention of the last

cross-modal attention layer in DeVLBert (the left for each case)

and ViLBERT (right).

deconfounding, and architecture D-VLC by incorporating

the cross-modal (inter-modality) deconfounding. The eval-

uation results are shown in Table 2, it can be seen that re-

moving any deconfounding component will lead to a per-

formance drop, which again verifies the effectiveness of the

proposed framework.

Comparison with SOTA pretraining methods and task-

specific downstream models. DeVLBert (with archi-

tecture D-VLC) achieves consistent performance improve-

ment over task-specific SOTA models, including SCAN [3],

BUTD [1], and over pretraining baselines, including ViL-

BERT [6], and VisualBERT [4]. DeVLBert achieves com-

parative performance with InterBert [5] that also incorpo-

rates in-domain dataset MSCOCO for pretraining.

3.2. Case Studies

We visualize the image region with the biggest attention

weight for each language word (See Figure 3). The results

indicate that: 1) The attended visual tokens (object boxes)

of DeVLBert are more accurate than those of ViLBERT.

By ”accurate”, we mean the attended tokens are more use-

ful for determining whether this image is locally relevant to

the query sentence, and better as reasoning cues given the

question. We further compute the conditional probability of

the answer given word sitting, which shows that DeVL-

Bert can generate less frequent but more accurate answers.

2) The results of DeVLBert yields less cognitive errors

or spurious correlations. For example, in case C11, ViL-

BERT considers ”person with wedding veil” as the ”bride”,

and view the man as ”bride” by mistake. The conditional

probabilities under C22 and C31 show DeVLBert can learn

to pay less attention to spuriously correlated tokens such as

sky and highway by deconfounding.

4. Conclusion

In this paper, we propose to mitigate the spurious corre-

lations for out-of-domain visio-linguistic pretraining. The

fact that each output token is connected with all input to-

kens in Bert, and the pure association nature of masked to-

ken modeling objective makes the problem more severe.

We borrow the idea of back-door adjustment to propose

four novel Bert-style architectures as DeVLBert for out-of-

domain pretraining. We conduct extensive quantitative eval-

uations as well as ablation studies to discuss the empirical

effectiveness of different architectures.
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