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Abstract

In this paper, we present an approach, namely Lexical

Semantic Image Completion (LSIC) 1, that may have poten-

tial applications in art, design, and heritage conservation,

among several others. Existing image completion proce-

dure is highly subjective by considering only visual context,

which may trigger unpredictable results which are plausi-

ble but not faithful to a grounded knowledge. To permit

both grounded and controllable completion process, we ad-

vocate generating results faithful to both visual and lexi-

cal semantic context, i.e., the description of leaving holes

or blank regions in the image (e.g., hole description). One

major challenge for LSIC comes from modeling and align-

ing the structure of visual-semantic context and translat-

ing across different modalities. We devise multi-grained

reasoning blocks to address this challenge. Another chal-

lenge relates to the unimodal biases, which occurs when the

model generates plausible results without using the textual

description. We devise an unsupervised unpaired-creation

learning path that explicitly performs counterfactual think-

ing, i.e., what the complete image would be if given an

unpaired text description to the incomplete image. A cy-

cle consistency loss is devised to guarantee counterfactual

faithfulness. We conduct extensive quantitative and qualita-

tive experiments that reveal the strengths of LSIC in being

grounded, controllable, and debiased.

1. Introduction

The recent progress in deep neural networks has shown

high capability in image completion[10]. However, on the

one hand, these techniques tend to generate blurry regions

and artifacts [8], especially when the hole is rather large,

due to lack of information of foreground objects[7]. On the

1Please refer to the full version of this paper [9] for better clarity.
∗These authors contributed equally to this work.
†Corresponding Authors.
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Figure 1. Overall schema of our model, which mainly comprises

a progressive reasoning generator and two learning paths.

other hand, the subjective nature [10] of image completion

may lead to results that are visually authentic but not faithful

to a grounded truth (i.e., factual cues or attribute informa-

tion). The grounded and controllable image completion can

be a fundamental requirement in many real-world scenarios.

To bridge these gaps, we propose an approach named Lex-

ical Semantic Image Completion (LSIC). The completion

results are conditioned not only on the structural continuity

and visual semantic but also on the lexical semantic con-

cepts within natural language descriptions.

One major challenge of LSIC is the sheer difficulty to

model both the visual semantic structure within the un-

masked image and the lexical semantic structure within

the sentence and to learn the aligned relationship between

them. To address this challenge, we propose first to per-

form coarse-grained reasoning to depict rough shapes and

colors and refine it progressively by performing fine-grained

reasoning, which is realized by coarse-grained reasoning

block (CGR) and fine-grained reasoning block (FGR) in our

model. Another challenge regards collecting dataset con-

taining multiple text conditions per masked image, which

is often prohibitively expensive to acquire or even unavail-

able. The annotated sentences for one image are often se-



mantically equivalent in existing datasets. The only-one-

text may lead to unimodal biases, which is common in the

VQA task [4]. In other words, the completion result may

be mostly conditioned on the unmasked regions while dis-

regarding the text information, resulting in the loss of con-

trollable generation ability or suffering a performance drop

on the test dataset. To this end, we consolidate the idea of

Dual Learning [2] and devise an unpaired-creation training

path to guarantee the faithfulness of counterfactual think-

ing, i.e., what the complete image would be if given an un-

paired text description to the incomplete image. As a re-

sult, we aim to achieve grounded, controllable, and debi-

ased image completion. Extensive experiments on multiple

datasets with SOTA text-guided image manipulation meth-

ods demonstrate the effectiveness of LSIC.

2. Generator

Let I , Im, and Î denote the original image, the partially

masked image, and the generated image, respectively. t, t̄
and t̂ denote the paired text to I , an unpaired text which is

randomly sampled and the re-generated text by REG, sepa-

rately. The generator takes text t or t̄ and the masked image

Im as inputs. We propose to explicitly model the lexical

semantic structure. by transforming text t or t̄ into graph

representation g or ḡ by their grammar dependencies. Since

the semantic relation between nodes cannot be simply eval-

uated by the similarity of word embedding vectors, we ini-

tialize all the edge weights by default 1. The masked im-

age is encoded by two standard resnet blocks into an image

code r0 = {ri}i=1,...,N0,r
, where N0,r is the number of

initial visual region features. To perform structure align-

ment and translation both globally and locally, we devise

two novel reasoning blocks, termed coarse-grained reason-

ing block (CGR) and fine-grained reasoning block (FGR).

Coarse-Grained Reasoning block Starting from the ini-

tial image code r0 and the initial semantic graph g0 =
(V0, E0). The CGR firstly performs visual structure reason-

ing by the resnet block and obtains c1 = {ci}i=1,...,N1,r
.

For lexical semantic structure modeling, CGR employs the

Graph Convolution Network (GCN) to reason along the

grammar connection between words and thus generates fea-

tures V1 = {v1,j}j=1,...,Nv
with the semantic relationship.

Then, we obtain the high-level semantic concepts by pool-

ing the graph into a global representation v1,∗. This process

can be formulated as:

V1 = D
−1/2

AD
−1/2V0Θ, (1)

v1,∗ = Pool(V1) = 1/Nv

∑

j

v1,j (2)

where Θ is the weight of graph convolutions and A is the

adjacency matrix with inserted self-connections. D denotes

the diagonal degree matrix for A The Pool function used

in our model is mean-pooling. We then filter relevant con-

tent using a gated fusion function. Given the image region

feature r1,i and graph representation v1,∗, the gated fusion

function performs the following operations:

αi = σ(W1,a[c1,i, v1,∗]) (3)

r1,i = αi ∗W1,rc1,i + (1− αi) ∗W1,gv1,∗ (4)

where σ is the sigmoid function. [., .] denotes the concate-

nate operation. W1,a and W1,r and W1,g are linear transfor-

mations.

Fine-Grained Reasoning block To further capture fine-

grained detail like texture and patterns, we design the fine-

grained reasoning block using node-level attention. In the

τth iteration, FGR takes the nodes features Vτ−1 and im-

age features rτ−1 from previous (τ − 1)th reasoning block

as input. Similarly, FGR performs cτ = ResBlock(rτ−1)
and Vτ = GCN(Vτ−1, Eτ−1) for visual-semantic struc-

ture modeling. Different from CGR, FGR builds the gated

fusion function as follows:

cτ,∗ = 1/Nτ,r

∑

i

cτ,i (5)

βτ,j = σ(Wτ,a[cτ,∗, vτ,j ]) (6)

oτ,j = βτ,j ∗Wτ,rcτ,∗ + (1− βτ,j) ∗Wτ,gvτ,j (7)

Given the fused features oτ = {oτ,j}j=1,...,Nv
and image

features cτ , we apply attention mechanism to perform lo-

cal visual-semantic reasoning on salient and reusable vi-

sual patterns as well as meaningful semantic concepts. For

ith image region feature, we compute the lexical-semantic-

aware visual features as:

ǫτ,i,j =
exp(f(cτ,i, oτ,j))

∑

k exp(f(cτ,i, oτ,k))
(8)

rτ,i = cτ,i +

Nv∑

j=1

ǫτ,i,jWτ,moτ,j (9)

where function f computes the joint-space similarity of cτ,i
and oτ,j by f(cτ,i, oτ,j) = (Wτ,lcτ,i)

T (Wτ,noτ,j). Wτ,m,

Wτ,l and Wτ,n are linear transformations at step τ . The first

CGR and following T − 1 FGRs are stacked sequentially

and form the multi-grained progressive generation process.

Our generator incorporates multiple output layers to gener-

ate multi-scale images hierarchically.

3. Discriminator and Two Learning Paths

As shown in Fig. 1, our framework comprises two par-

allel training paths, i.e., the supervised reconstruction path,

and the unsupervised creation path.



Reconstruction Path The reconstruction path follows the

conventional pipeline, which takes the masked image Im
and the paired textual description t as input. We train it

adversarially using a conditional discriminator DR. We add

hierarchical ℓ1 losses in different scales. During training,

the loss function introduced by this path can be defined as:

LR
G =−λadvEÎ∼pG

logDR(Î , v0,∗)
︸ ︷︷ ︸

conditional adversarial loss

+λl1EÎ∼pG
||I − Î||1

︸ ︷︷ ︸

ℓ1 loss

(10)

LR
D =− EI∼pdata

logDR(I, v0,∗)− EÎ∼pG
log (1−DR(Î , v0,∗))

(11)

where v0,∗ denotes the initial global representation of se-

mantic graph, which is obtained by v0,∗ = Pool(V0). The

pooling method used in our paper is mean pooling. We here

omit the multi-scale ℓ1 losses for brevity.

Creation Path To reduce unimodal biases and enhance

controllable image completion, we propose an unsupervised

creation path via dual learning. The creation path takes

the unpaired textual description and masked image as in-

put. Since there is no ground-truth image, we employ an

unconditional discriminator to guarantee the visual plausi-

bility. We incorporate a referring expression generator to

re-generate the description with the unmasked area as con-

text. The cross-entropy loss between the re-generated words

and the input tokens penalizes the inconsistency between

the completion area and semantic-visual context, i.e. the in-

put text and unmasked area. Therefore, we name it context

loss. The loss function introduced by creation path can be

formulated as:

LC
G =−λadvEÎ∼pG

logDC(Î)
︸ ︷︷ ︸

adversarial loss

−λceEÎ∼pG

∑

κ
logP (t̂κ)

︸ ︷︷ ︸

context loss

(12)

LC
D =− EI∼pdata

logDC(I)− EÎ∼pG
log (1−DC(Î))

(13)

where t̂ = {t̂κ}κ=1,...,Ne
= REG(Î) is the re-generated

sentence and Ne is the length of the sentence.

4. Experiments

We mainly carry out experiments on two fine-grained

caption-annotated dataset, CUB and Oxford-102. Since

there is no research precisely comparable when this work

is conducted, we adopt three state-of-the-art semantic im-

age manipulation methods and make proper adjustments to

them. Specifically, we incorporate Dong et al. [1], MC-

GAN [5], and TAGAN [3].

This bird has a 
brown crown, brown 
primaries, and a 
yellow belly.
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Medium black and 
purple bird with long 
black tarsus and 
medium black beak.

This flower has 
white petals as well 
as a yellow pistil.

This flower is orange 
and yellow in color, 
with petals that are 
ovals shaped and 
layered.

This bird is white 
and black in color 
with a small curved 
beak, and grey eye 
rings.

This bird has a long 
curved bill, a black 
cheek patch, and a 
white throat.

Figure 2. Qualitative comparison of three methods on the CUB

and Flower test set with centered-square/irregular masks.

4.1. Quantitative Evaluation

Following the image completion convention, we choose

to evaluate the generation results with three numeric met-

rics, i.e., Peak Signal-to-Noise Ratio (PSNR), Total Varia-

tion (TV) loss, and Structural Similarity Index (SSIM). We

also employ an image generation metric named Inception

Score (IS) [6], which measures both the visual quality and

generation diversity. We consider both center-square mask

and irregular ones in the experiments. Overall, the results

(see Table 1) verify the visual authenticity, global consis-

tency of our results as well as the completion variety. We at-

tribute these substantial improvements to the multi-grained

reasoning blocks and progressive generation process.

4.2. Qualitative Evaluation

Subjective Analysis Figure 2 displays the completion re-

sults produced by our proposed method and three modified

comparison models concerning quality assessment. These

samples are conditioned on text descriptions and center-

masked images on the test dataset. Figure 2 also shows

the free-form completion results on the CUB test set. Our

method produces images with a coherent structure and vivid

grounded details (i.e., factual attributes) in most cases, com-

paring to the Dong et al., MC-GAN, and TAGAN.

Generation Variety Figure 3 shows the controllable

completion results. We deliberately change the factual at-

tribute (e.g. colors and sizes) within the input text. The re-

sults show that our model is able to capture the fine-grained

semantic concepts and generate completions with corre-

sponding details. These results indicate that the proposed

Creation path is a promising direction for better leverag-

ing limited annotations and and reducing unimodal biases

in image completion.



Table 1. Quantitative results on the CUB test set and Oxford-102 dataset.
CUB (Center) CUB (Free-form) Oxford-102 (Center)

Method PSNR ↑ TV loss ↓ SSIM ↑ IS ↑ PSNR ↑ TV loss ↓ SSIM ↑ IS ↑ PSNR ↑ TV loss ↓ SSIM ↑ IS ↑

Dong et al. 14.63 15.08 0.70 2.71 16.75 14.19 0.75 2.96 13.89 16.04 0.71 3.07

TAGAN 19.10 13.42 0.76 4.04 23.96 13.05 0.83 4.11 19.50 13.92 0.78 3.89

MC-GAN 18.23 14.88 0.75 3.98 24.30 13.27 0.82 4.20 19.50 15.69 0.76 4.31

Ours 19.68 10.73 0.82 4.34 26.19 10.87 0.90 5.82 19.83 10.99 0.81 5.28

Table 2. Ablation test of different architectures.
Models PSNR ↑ TV loss ↓ SSIM ↑ IS ↑

B(aseline) 19.20 12.53 0.801 3.71

+R(easoning blocks) 19.31 11.84 0.810 3.84

+C(reation path) 19.41 11.89 0.813 4.09

+D(ual learning) 19.68 10.73 0.819 4.34

1 FGR 19.66 11.24 0.817 4.21

0 FGR 19.41 11.54 0.811 3.86

(E11) A ____ bird with a black throat and a white 
eyebrow and malar stripe.

Black Yellow White

Large Medium Small Large Medium Small

Black Yellow White

(E31) This flower has four distinct and very smooth 
white petals with rounded edges and a ____ center.

(E22) A ____ bird has a small black bill and black back 
and crown.

(E21) A ____ bird is royal blue with a black head and 
throat with very long tail feathers and a short neck.

(E32) The  petals  on  this  flower  are  ____  with  no  
visible  stamen.

(E12) ____  bird  with  black  wings  with  white  
wingbars  and  black  hood.

Black Yellow White Black Yellow White

Figure 3. Controllable completion results.

4.3. Ablation Study

To obtain a better understanding of different modules

in our model, we surgically remove some components and

construct different architectures (see Table 2). B denotes

the baseline method, which only takes the masked image as

input. R stands for the group of reasoning blocks, which

includes CGR and FGR. C is the creation path without re-

ferring expression generator, which is named as D, i.e. Dual

Learning. The results indicate that the elimination of any

component would result in a decrease in efficiency. To in-

vestigate whether the hierarchically stacked FGR blocks is

beneficial, we gradually replace the last FGR block in our

model with a plain resnet block, which takes only the visual

features from the previous reasoning block as the input, i.e.,

without considering the semantic concepts. Our model in-

cludes two FGR. Therefore, 1 FGR indicates that the last

FGR is replaced, and 0 FGR indicates that all FGRs are re-

placed by plain resnet blocks. The results verify the merit

of our hierarchical architecture.

5. Conclusion

In this paper, we propose a framework for the challeng-

ing Lexical Semantic Image Completion task, which aims to

generate grounded results faithful to the textual description

and controllable results by changing the attributes within

the text. Our architecture encapsulates the coarse-grained

reasoning block and the fine-grained reasoning block to

progressively complement the broken image. Besides con-

ventional paired-reconstruction generation, we incorporate

the idea of Dual Learning and devise an unpaired-creation

path to mitigate the unimodal biases problem with counter-

factual thinking. The consistent quantitative improvement

across various metrics and substantial qualitative results on

two fine-grained datasets reveal the efficacy of our proposed

method.
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