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Abstract

Conventional textual-based causal knowledge acquisition

methods typically require laborious and expensive human an-

notations. As a result, their scale is often limited. Moreover,

as no context is provided during the annotation, the resulting

causal knowledge records (e.g., ConceptNet) typically do

not consider the context. In this paper, we move out of the

textual domain to explore a more scalable way of acquiring

causal knowledge and investigate the possibility of learning

contextual causality from the visual signal. Specifically, we

first propose a high-quality dataset Vis-Causal and then con-

duct experiments to demonstrate that with good language

and visual representations, it is possible to discover mean-

ingful causal knowledge from the videos. Further analysis

also shows that the contextual property of causal relations

indeed exists and considering the contextual property can

help better predict the causal relation between events. The

Vis-Causal dataset and experiment code are available at

https://github.com/HKUST-KnowComp/Vis_Causal.

1. Introduction

Humans possess a basic knowledge about facts and under-

standings for commonsense of causality in our everyday life.

For example, if we leave five minutes late, we will be late

for the bus; if the sun is out, it’s not likely to rain; and if we

are hungry, we need to eat. Causal relations in the common-

sense domain typically appear between daily eventualities

(i.e., events and states) and are generally contributory and

contextual [1]. By contributory,1 we mean that the cause is

neither necessary nor sufficient for the effect, but it strongly

contributes to the effect. By contextual, we mean that some

causal relations only make sense in a certain context. The

*This work was done when the author was visiting HKUST.
1The other two levels are absolute causality (the cause is necessary and

sufficient for the effect) and conditional causality (the cause is necessary

but not sufficient for the effect), which commonly appear in the scientific

domain rather than our daily life.

contextual property of causal relations is important for both

the acquisition and application of causal knowledge. For

example, if some people tell the AI assistant (e.g., Siri) “they

are hungry” in a meeting, a basic assistant may suggest that

they order food because it knows that “being hungry” causes

“eat food.” A better assistant may recommend ordering food

after the meeting because it knows that the causal relation

between ‘being hungry’ and ‘eat food’ may not be plausible

in the meeting context. Without understanding the contex-

tual property of causal knowledge, achieving such a level of

intelligence would be challenging.

To help machines better understand the causality com-

monsense, many efforts have been devoted to developing

the causal knowledge bases. For example, ConceptNet [5]

leverages human-annotation to acquire the causal knowl-

edge. However, these KGs are often of small scale and do

not consider the aforementioned contextual property.

In this paper, we propose to ground causal knowledge

into the real world and explore the possibility of acquiring

causal knowledge from visual signals (i.e., images in time

sequence, which are cropped from videos). By doing so, we

have three significant advantages: (1) Videos can be easily

acquired and can cover rich commonsense knowledge that

may not be mentioned in the textual corpus; (2) Events con-

tained in videos are naturally ordered by time. As discussed

by [6], there exists a strong correlation between temporal

and causal relations, and thus such time-consecutive images

can become a dense causal knowledge resource; (3) Objects

from the visual signals can act as the context for detected

causal knowledge, which can remedy the aforementioned

“lack of contextual property” issue of existing approaches.

2. The Task Definition

The goal is to acquire contextual causal knowledge from

time-consecutive frames (i.e., images), which are cropped

from the video. Thus, we formally define the task as fol-

lows. Each image pair P ∈ P , where P is the overall image

pair set, consists of two images I1 and I2, sampled from the



Figure 1: Distribution of plausibility scores under different settings and their difference.

same video, in temporal order (i.e., I1 appears before I2).

For each P , our goal is to identify all possible causal rela-

tions between the two images. Normally, this task contains

two sub-tasks: identifying events in images and identifying

causality relation between events. As there exists a huge

overlap between the event identification task and the scene

graph generation task [8], in this work, we focus on the sec-

ond sub-task. We assume that the event set contained in I1 is

E1, and the set of all events contained in all images sampled

from V1 is Ev. For each event e1 ∈ E1, our goal is finding

all events e2 ∈ Ev such that e1 causes e2.

3. The Vis-Causal Dataset

We create the Vis-Causal dataset with following steps2.

1. Data Pre-processing: We use ActivityNet [4] as the

video resource and randomly select 1,000 videos. We take

five uniformly sampled screen-shots for each video and

take adjoined screen-shots as pairs of time-consecutive

images. In total, we collected 4,000 image pairs.

2. Event Identification: We then invite annotators to write

down any events they can identify in the first image. We

invite three annotators for each image pair, resulting in

12,000 events in total for 4,000 image pairs.

3. Causality Annotation: For each pair of time-

consecutive images, we select all three identified events

in the first image, and for each one of them, we ask an-

notators to describe one event that happens in the second

image and is caused by the selected event, which occurs in

the first image. For each question, we invite three differ-

ent annotators to provide annotations. After filtering out

answers that contain ‘None’ or have less than two words,

2We select Amazon Mechanical Turk as the annotation platform.

we obtain 23,558 event pair candidates. To investigate

the contextual property of causal knowledge, we invite

annotators to annotate whether the visual context can in-

fluence the causal relation in their mind. Specifically, for

each identified event pair, we invite five annotators to

annotate if there is a causal relation with or without the

context. We employ Inter Annotator Agreement (IAA),

which computes the average agreement of an annotator

with the average of all other annotators, to evaluate the

overall annotation quality. As a result, we achieve 78%

and 76% IAA scores for “with context” and “without

context” settings, respectively.

The distribution of annotation results for both settings are

shown in Figure 1(a) and Figure 1(b) respectively. For each

pair of events, we compute the plausibility based on voting.

In general, we can see that the majority of the candidate

events pairs have weak causal relations for both settings,

and only a small portion of the candidates contain strong

causal relations, especially for the “with context” setting.

To investigate the contextual property of causal relations,

we show the distribution of plausibility difference (“with

context” minus “without context”) in Figure 1(c). From the

result, we can observe that about 6% of event pairs, which is

indicated with the dashed box, have stronger causal relations

without any context, while about 1% of event pairs, which is

indicated with the solid box, have a stronger causal relation

when the visual context is provided. Two examples of both

cases are shown in Figure 1(d) and 1(e) respectively.

We split the dataset into the train, dev, and test sets based

on the original split of ActivityNet [4] and collect 800, 100,

and 100 videos, respectively. We select positive causal rela-

tions based on the annotation under the “with context” setting.

If at least four of five annotators think there exists a causal

relation between a pair of events given the context, we will

treat it as a positive example. As a result, we got 2,599, 329,



Figure 2: Demonstration of the proposed model.

and 282 positive causal pairs for the train, dev, and test set.

4. The VCC Model

This section introduces the proposed Vision-Contextual

Causal (VCC) Model. We show the overall framework in

Figure 2. In total, we have three major components: event

encoding, visual context encoding, and cross attention. The

details about these components are introduced as follows.

4.1. Textual Event Encoding

As both e1 and e2 are represented with natural language,

we begin with converting them into vector representations. In

this work, we leverage a pre-trained language representation

model BERT [2] to encode all events. Assuming that after

the tokenization, event e contains n tokens w1, w2, ..., wn,

we denote their contextualized representations after BERT

as w1,w2, ...,wn.

4.2. Visual Context Encoding

Following the standard approach in multi-modal ap-

proaches [8], we first leverage an object detection module

to detect objects from images and use all extracted objects

to represent the visual context. Assuming that for I1 and I2,

we extract m1 and m2 objects, respectively. After combin-

ing all objects from two images together and sorting them

based on the confidence score provided by the object detec-

tion module, we keep the top m objects and denote them

as o1, o2, ..., om. As all objects are in the form of words,

to align with events, we use the same pre-trained language

representation model to extract the vector representation3 of

selected objects and denote them as o1,o2, ...,om ∈ O.

4.3. Cross­Attention Module

The cross-attention module aims to minimize the influ-

ence of noise by selecting important context objects with

3If an object word is tokenized to multiple tokens, we take their average

representation as the token representation.

events and informative tokens in events with the context.

Thus, the cross-attention module contains two sub-steps: (1)

context representation; (2) event representation.

Context Representation: For each event e, whose tokens’

vector representations are w1,w2, ...,wn, we first take the

average of all tokens and denote the resulted average vec-

tor as w̃. As the vector representation set of all selected

objects is denoted as O, we compute the overall context

representation as:

o =
∑

o
′∈O

a
w̃,o′ · o

′, (1)

where a
w̃,o′ is the attention weight of w̃ on object o′. Here

we compute the attention weight as:

a
w̃,o′ = NNa([w̃,o′]), (2)

where NNa is a standard two-layer feed forward neural

network and [, ] indicates the concatenation.

Event Representation: After getting the context represen-

tation, the next step is computing the event representation.

Assuming that the vector set of e is W , we can get the event

representation with a similar attention structure:

e =
∑

w
′∈W

bo,w′ ·w
′,

bo,w′ = NNb([o,w
′]),

where b is the attention weight we computed with another

feed forward neural network NNb.

4.4. Causality Prediction

Assuming that the context representations with e1 and e2
as attention signal are denoted as oe1 and oe2 respectively

and the overall representations of e1 and e2 are e1 and e2,

we can then predict the final causality score as follows:

F (e1, e2, I1, I2) = NNc([e1, e2,oe1 ,oe2 ]). (3)

5. The Experiment

As each event in the first image could cause multiple

events in the second image, we evaluate different causal-

ity extraction models with Recall@1, Recall@5, and Re-

call@10, and compare with the following models:

1. No Visual Context: Directly predicts the causal relation

between events without considering the visual context.

We take the average of word representations as the event

representation and concatenate the representations of two

events together for the final prediction for each event.

2. No Attention: Removes the cross-attention module and

uses the average word embeddings of all selected objects

to represent the context.



(a) Recall@1 (b) Recall@5 (c) Recall@10

Figure 3: Experimental results on Recall@1, Recall@5, and Recall@10, respectively.

3. ResNet as Context: Removes the object detection mod-

ule and uses the average image representation extracted

by ResNet-152 [3] as the context representation. We ac-

quire event representation as same as the ‘no context’

setting and concatenate the representation of context and

events together for the final prediction.

We use the pre-trained BERT [2] as the textual represen-

tation model and follow the previous scene graph generation

work [8] to leverage a Faster R-CNN network [7] to detect

objects. We set the hidden state size in the feed-forward

neural network to be 200 and the number of selected objects

m to be 10. During the training phase, for each positive

example, we randomly select one negative example and use

cross-entropy as the loss function. We employ stochastic

gradient descent (SGD) as the optimizer. All parameters are

initialized randomly, and the learning rate is set to be 10−4.

From the results in Figure 3 we can make the follow-

ing observations: (1) All models significantly outperform

the “random guess” baseline, which shows that models can

learn to extract meaningful causal knowledge from these

time-consecutive images; (2) With the help of the context

information, VCC outperforms the baseline ‘No Context’

model in most experiment settings, proving the importance

of visual context and is consistent with our previous observa-

tion that some causality only makes sense in certain contexts;

(3) All proposed components contribute to the final success.

6. Conclusion

In this paper, we explore the possibility of learning causal

knowledge from time-consecutive images. To do so, we first

formally define the task and then create a high-quality dataset

Vis-Causal. On top of the collected dataset, we propose

a Vision-Contextual Causal (VCC) model to demonstrate

that with the help of strong pre-trained textual and visual

representations and careful training, it is possible to directly

acquire contextual causality from visual signals. Both the

dataset and code will be released to encourage research on

causality acquisition.
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