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Abstract

Autoencoders are a widespread tool in machine learn-

ing to transform high-dimensional data into a lower-

dimensional representation which still exhibits the essential

characteristics of the input. The encoder provides an em-

bedding from the input data manifold into a latent space

which may then be used for further processing. For in-

stance, learning interpolation on the manifold may be sim-

plified via the new manifold representation in latent space.

The efficiency of such further processing heavily depends

on the regularity and structure of the embedding. In this

article, the embedding into latent space is regularized via a

loss function that promotes an as isometric and as flat em-

bedding as possible. The required training data comprises

pairs of nearby points on the input manifold together with

their local distance and their local Fréchet average. This

regularity loss functional even allows to train the encoder

on its own. The loss functional is computed via a Monte

Carlo integration which is shown to be consistent with a

geometric loss functional defined directly on the embed-

ding map. Numerical tests are performed using image data

that encodes different data manifolds. The results show that

smooth manifold embeddings in latent space are obtained.

These embeddings are regular enough such that interpola-

tion between not too distant points on the manifold is well

approximated by linear interpolation in latent space.

1. Introduction

A central task in machine learning is to represent objects

in high-dimensional data manifolds by points in a lower-

dimensional hidden latent space. Methods in this direction

can be split into linear and nonlinear approaches. The for-

mer include principal component analysis (PCA) and mul-

tidimensional scaling (MDS) [14], examples for the latter

are Isomap [26], Local Linear Embedding [23] and Hessian

Eigenmaps [5]. Such methods take a collection of high-

dimensional data points as input and give a collection of

low-dimensional vectors as output. They rely on neighbor-

hood graphs, and a central part of these methods is usually

the computation of a spectral embedding and computation

of eigenvalues.

A more recent approach to nonlinear dimensionality re-

duction are a special type of neural networks called autoen-

coders. They consist of an encoder and a decoder. The

encoder maps from the high-dimensional ambient space of

the data manifold to a low-dimensional Euclidean space,

called latent space. The decoder maps from latent space

back to the ambient space of the data manifold and tries to

reproduce the original input data. In the training phase, the

encoder and decoder mapping are determined via the min-

imization of a loss functional. The image of a smooth data

manifold via a smooth encoder map is a smooth subman-

ifold in the Euclidean latent space. The assumption that

the observed high-dimensional data actually forms a low-

dimensional manifold – the image of the latent manifold

under the decoder map – is called the manifold hypothesis.

In deep manifold learning one aims at recovering a sim-

pler, low-dimensional latent manifold representation of the

data manifold from the observed data via the minimization

of a loss functional. In the first place, this loss functional

measures the reconstruction loss by comparing the input

data with its image under the composition of encoder and

decoder mapping. Since neural networks can be arbitrar-

ily complex, though, a focus solely on the reconstruction

loss risks that the autoencoder simply “learns by heart”.

Different strategies have been investigated in addition to

the reconstruction loss which favor smoothness of the en-

coder and decoder mapping and thus regularity of the latent

manifold. Among them are methods which promote spar-

sity [20], contractive autoencoders [22], or denoising au-

toencoders [28]. In [22] the loss functional penalizes the

norm of the Jacobian of the encoder to achieve robustness

to small changes of the input around the training samples.

Data manifolds often come with a metric encoding the

cost of local variations on the manifold. For sufficiently

regular data manifolds it is shown in [25] how to transfer

this metric to the latent manifold and thereby make it Rie-

mannian. This allows to compute shortest paths, exponen-



tial maps, and parallel transport in latent space, which the

decoder can push forward to the data manifold.

Autoencoders also offer the possibility to interpolate be-

tween data points by interpolating linearly in the latent

space. In [4] an adversarial regularizer was proposed to en-

sure visually realistic interpolations in latent space. The ad-

versarial regularizer tries to make the decoding of interpola-

tions in latent space indistinguishable from real data points.

Recently, a generalized definition of interpolation via the

training of a discriminator was proposed in [16] which al-

lows to check that the interpolated point belongs to the orig-

inal dataset. In this approach an additional smoothness loss

is used based on differentiation along interpolation paths in

latent space. While the method in [4] relies solely on an

adversarial network to discriminate between real data and

interpolations, the approach in [16] also suggests to include

ground truth interpolation data.

A major deficit of autoencoders is that they frequently

fail to reproduce the statistical input data distribution in the

latent space. In [12] isometric, i.e., length-preserving en-

coder maps are used to more accurately push forward dis-

tributions from input to latent space. To this end a loss func-

tion based on Shannon-Rate-Distortion theory is proposed.

The loss functional from [3] promotes isometry of

the decoder map (by penalizing deviation from a non-

orthogonal Jacobian matrix) and that the encoder is a

pseudo-inverse of the decoder (by enforcing the Jacobians

of de- and encoder to be transposes of each other). In

[18] isometric embeddings in latent space are learned to

obtain standardized data coordinates from scientific mea-

surements. The authors approximate the Jacobian through

normally distributed sampling around each data point (so-

called bursts), and an objective functional measures the lack

of orthogonality of the Jacobian via the deviation of the lo-

cal covariance of bursts from the identity. In [24], with the

goal of producing a globally isometric encoder map, a loss

functional is proposed which measures the difference be-

tween distances in the pushforward metric and distances in

latent space. The training of encoders in [17] is based on a

loss functional which compares Euclidean distances in la-

tent space with geodesic distances on the input manifold.

Our contribution. This paper investigates a loss functional

for the geometric regularization of the latent manifold. Such

a loss requires some geometric data of the input manifold in

the training. We follow here a minimalistic approach in-

volving data on distances and averages on the input mani-

fold. We provide as testbed examples for which this data is

explicitly known and easy to compute.

• We propose to complement a discrete loss functional

that promotes isometric embeddings in latent space

with a discrete bending loss functional which prefers

as flat as possible embeddings; this combination

optionally permits to train the encoder on its own.

• To train a corresponding autoencoder network

we consider training data consisting of triplets

of two input data points and their Fréchet average

together with the distance between the two data points.

• Unlike other isometry promoting approaches we do

not approximate the Jacobian of the encoder (via

backpropagation or complete correlation of all nearest

neighbors) but use simple Monte Carlo point sampling.

• Matching the theory of isometric maps, our numerical

experiments confirm that the bending loss significantly

increases smoothness of the resulting latent space

manifold over a pure isometry loss. Also we find that

the decoder maps linear interpolation in latent space

to reasonable interpolations on the data manifold.

• We demonstrate that our discrete loss functional is

consistent with a well-posed, continuous limit func-

tional on encoder maps from a smooth Riemannian

data manifold into latent space.

The paper is structured as follows. Section 2 derives the

new regularization loss and discusses its Monte Carlo limit

for dense sampling of point pairs. The limit functional of

this Monte Carlo limit for vanishing distance between the

point pairs is introduced in section 3, and we prove exis-

tence of minimizers. As a proof of concept, we train autoen-

coders on three image datasets representing a priori known

data manifolds. Section 4 describes the autoencoder set up,

the experimental datasets, and the numerical results.

2. A low bending and low distortion regular-

ization for encoders

Consider a smooth compact m-dimensional Riemannian

manifold (M,g) possibly with boundary, of which we have

samples available. To avoid technical details the theory

will be presented only for input manifolds without bound-

ary. We assume that M is embedded in some very high-

dimensional space Rn, for instance the space of images with

n pixels. The aim is now to compute an embedding of M

into Euclidean space R
l (called the latent space), where we

think of the dimension l as being only moderately larger

than m (for instance l = 2m so that the existence of a

smooth embedding is guaranteed by Whitney’s embedding

theorem). Such a representation is often learned from sam-

ples by training an autoencoder, which is a pair of maps

φ ∶M → R
l, ψ ∶ Rl → R

n with ψ(φ(x)) ≈ x for all x ∈M.

The image φ(M) of M is called latent manifold. The au-

toencoder functions φ and ψ are implemented as deep neu-

ral networks. An appropriate structure and regularity of the

embedding φ into latent space is known to aid downstream

tasks such as classification, Riemannian interpolation and



extrapolation, clustering or anomaly detection. For this rea-

son we aim for a natural, geometrically inspired regulariz-

ing loss function for the encoder φ.

From the viewpoint of downstream processing, the

nicest embedding φ ∶ M → R
l would of course be an

isometric embedding into an affine subspace of R
l. This

would identify M as isometric to flat Euclidean space so

that any downstream processing on M can be performed

with the simplicity and efficiency immanent to Euclidean

space. In particular, the most basic operations of computing

distances and interpolations would become trivial. Of

course, such an embedding is usually prevented by the

intrinsic or the global geometry of M , nevertheless one

may try to get as close as possible to an Isometric and

Flat embedding, at least locally. Hence we suggest the

following two simple objectives for any two not too distant

points x, y ∈M :

(I) The intrinsic Riemannian distance between x and y in

M should differ as little as possible from the Euclidean

distance between the latent codes φ(x) andφ(y).
(F) A (weighted) average between x and y in M should

deviate as little as possible from the (weighted)

Euclidean average between φ(x) and φ(y).
If the first objective is only applied to infinitesimally close

points x, y ∈M , it is nothing else than asking for an isomet-

ric embedding, as extensively pursued in the literature (cf .

section 1). It ensures that φ embeds M in latent space with

low distortion. However, asking for isometry alone is highly

questionable from the mathematical point of view since the

family of isometric embeddings is very large and contains

quite irregular elements (Nash–Kuiper embeddings are in

general only Hölder differentiable). Therefore, in (I) and

(F) we go beyond this infinitesimal isometry viewpoint:

● The isometry objective (I) asks that the intrinsic dis-

tances between x and y in M are approximated by the ex-

trinsic distances between φ(x), φ(y) ∈ Rl in latent space

(rather than the intrinsic distances in the latent manifold

φ(M), which would define an isometric embedding).

● The flatness/bending objective (F) enforces some sec-

ond order low bending regularity or flatness on φ by requir-

ing that the geodesic interpolation between x and y in M

is well approximated by extrinsic linear interpolation in the

latent space R
l.

A low bending and low distortion loss. Denote the

geodesic distance between two points x, y ∈ M by

dM(x, y) and their geodesic average by avM(x, y). As in-

put data to the training or optimization of the encoder φ we

consider a sample Sǫ ⊂ {(x, y) ∈ M ×M ∣dM(x, y) ≤ ǫ}
of pairs (x, y) ∈ M ×M of nearby points together with

dM(x, y) and avM(x, y). For a sufficiently small fixed lo-

cality radius ǫ > 0, the unique existence of the geodesic av-

erage is ensured. Our proposed loss function to regularize

the encoder φ then reads

ESǫ(φ) = 1

∣Sǫ∣ ∑(x,y)∈Sǫ

(γ(∂(x,y)φ) + λ ∣∂2(x,y)φ∣2)

with first order difference quotient ∂(x,y)φ = φ(y)−φ(x)
dM (x,y)

and second order difference quotient ∂2(x,y)φ =
8
av

Rl
(φ(x),φ(y))−φ(avM (x,y))

dM (x,y)2
, where γ(s) = ∣s∣2 + ∣s∣−2 − 2,

avRl(a, b) = (a + b)/2 denotes the linear average in R
l,

and λ > 0. Note that the first term in ESǫ has a strict

minimum for ∣∂(x,y)φ∣ = 1. This term thus promotes∣φ(x) − φ(y)∣ = dM(x, y) and thus low distortion and

approximate isometry. The second term in ESǫ penalizes

the deviation of intrinsic averages on φ(M) from extrinsic

ones in R
l. Note that this does not only penalize bending

or any extrinsic curvature of φ(M) in R
l, but in addition

it also penalizes deviation of the inplane parameterization

of φ(M) from a linear one (cf . the corresponding remark

for Hessφ in the next section). Examples of how to

compute avM and dM for image input data include the

corresponding methods from the theories of LDDMM

[29], metamorphosis [27], or optimal transport [19]. In

our testbed we purposely used low-dimensional manifolds

where avM and dM are explicitly known.

The Monte Carlo limit for dense sampling. Assuming

that Sǫ is drawn uniformly from M ×M (subject to the lo-

cality condition), our loss function ESǫ is up to O(ǫ) the

Monte Carlo integration of the energy

Eǫ(φ)=⨏
M

⨏
BM

ǫ
(x)

γ(∂(x,y)φ)+λ ∣∂2(x,y)φ∣2dVg(y)dVg(x), (1)

where BM
ǫ (x) denotes the geodesic ǫ-ball in M , centered

at x, and where ⨏ . . .dVg denotes the mean with respect to

the Riemann–Lebesgue volume measure on M (the index g

indicates the Riemannian metric). As for the discrete func-

tionalESǫ , the energy Eǫ penalizes deviation from isometry

and from intrinsically and extrinsically flat embeddings.

The energy Eǫ is rigid motion invariant by construction,

i.e., composition of φ with a rigid motion does not change

the energy. However, even apart from this invariance one

cannot expect uniqueness of minimizers due to the noncon-

vexity of the first integrand. This is unavoidable when pro-

moting isometries, e.g., if M is represented in latent space

as a half sphere φ(M), then an equivalent embedding would

be obtained for the half sphere flipped inside out. Whenever

M is intrinsically flat and homeomorphic to the m-disc (or

at least globally compatible with an embedding into an m-

dimensional Euclidean space), there is a unique minimizer

of Eǫ, though, as stated in the following proposition.



Proposition 1 (unique embedding of intrinsically flat

discs). If M is the flat m-disc Dm, the unique minimizer

(up to rigid motion) of Eǫ is φ ∶M ∋ x↦ (x,0, . . . ,0) ∈ Rl.

Proof. It is straightforward to check Eǫ ≥ 0 as well as

Eǫ(φ) = 0 so that φ is a global minimizer. The uniqueness

up to rigid motion then follows from the fact that fixing φ at

m+1 points x0, . . . , xm uniquely determines φ at all points

x within the convex hull of x0, . . . , xm since such x can

be represented as (limit of) iterated averages of x0, . . . , xm
so that φ(x) must be the (limit of the) corresponding iter-

ated averages of φ(x0), . . . , φ(xm) (that one may take lim-

its of φ follows from the condition ∂(x,y)φ = 1 for all close

enough x, y). However, fixing m + 1 points with prescribed

distances just fixes a rigid motion.

Note that this property of recovering flat embeddings

may be quite relevant in applications as generative image

manifolds were noticed in [25] to have almost no curvature.

Affinely invariant loss functions. In several applications

one may already be content with a nice embedding φ that is

specified only up to an affine transformation (rather than a

rigid motion). Indeed, one may want to abandon isometry

in favor of improving the approximation of geodesic aver-

ages by linear averages. This raises the question whether

one can replace the integrand in (1) by some function

f(∂(x,y)φ, ∂2(x,y)φ) which is invariant under left composi-

tion of φ with invertible affine (and not just rigid) transfor-

mations. Yet, if ∂(x,y)φ and ∂2(x,y)φ are non-parallel there is

always an affine transform that maps ∂(x,y)φ onto (1,0,⋯)
and ∂2(x,y)φ onto (0,1,0,⋯) so that necessarily f is of the

form f(a, b) ≡ c for a, b non-parallel and f(a, b) = h(s)
for b = sa with some constant c and function h ∶ R → R.

Thus, the regularizing properties would be lost. An alter-

native could be to just penalize ∣∂2(x,y)φ∣/∣∂(x,y)φ∣. Though

not affinely invariant, it still encodes that geodesics should

be close to linear interpolation without any competing isom-

etry constraints (∣∂(x,y)φ∣ in the denominator is needed for

scale invariance and prevents a collapse to φ(M) = 0). Our

loss Eǫ controls this flatness measure due to

2
√
λ∣∂2(x,y)φ∣/∣∂(x,y)φ∣ ≤ ∣∂(x,y)φ∣−2 + λ ∣∂2(x,y)φ∣2 .

Replacing Eǫ(φ) with ⨏M ⨏BM
ǫ
(x) ∣∂2(x,y)φ∣/∣∂(x,y)φ∣dy dx

would be infeasible, though: a straightforward calculation

shows that a minimizing sequence of embeddings of the

cylinder M = S1 × [0,1] into R
l would be cylinders of van-

ishing radius and diverging length.

3. The limit of vanishing locality radius

An appropriate structure and regularity of an embedding

φ ∶ M → R
l can also be promoted by a purely local func-

tional. Below we present a natural candidate and identify

it as a consistent limit of Eǫ when ǫ → 0 under smoothness

assumptions on the embedding.

A purely local low bending and low distortion loss. The

Riemannian gradient (Jacobian) gradφ(x) ∈ (TxM)l of φ

is defined (denoting standard differentiation of smooth ex-

tensions onto R
n by D) via the identity

Dφj(x)(v) = d

dt
(φj ○ expx)(tv)∣t=0 = g(gradφj(x), v)

for all v ∈ TxM , where expx ∶ TxM → M denotes the

Riemannian exponential map in x. An isometric embed-

ding φ ∶ M → R
l is characterized by gradφ(x) being or-

thogonal in any point x ∈ M . Thus, deviation from an iso-

metric embedding manifests as non-unit singular values of

gradφ(x). Similarly, extrinsic bending of the embedding

φ(M) manifests as a non-vanishing Riemannian Hessian

Hessφ of φ, where the Riemannian Hessian at x is the lin-

ear operator Hessφ(x) ∶ TxM → (TxM)l, Hessφ(x)(v) =
(∇v gradφj)j=1,...,l for ∇ the Levi-Civita connection and

∇v the covariant derivative in direction v [1, Chp. 5]. The

associated quadratic form D2φ(x) ∶ TxM × TxM → R
l is

D2φj(x)(v, v) = d
2

d2t
(φj ○ expx(tv))∣t=0

= g(Hessφj(x)(v), v),

where the Riemannian metric g on (TxM)
l × TxM is ap-

plied componentwise, i.e., we use the notation g(A,v) =
(g(Aj , v))j=1,...,l for a matrix whose rows Aj are tangent

vectors. A natural loss function to promote low distortion

and low bending embeddings thus reads

E(φ)=⨏
M

Γ(gradφ(x)) + λ
2
∥Hessφ(x)∥2FdVg(x), (2)

where ∥A∥2F = tr(A∗A) is the Frobenius norm of an op-

erator A and B ↦ Γ(B) is an admissible function, i.e., a

nonnegative function depending only on the singular values

of B and being zero if and only if all of them are one.

Let us remark that the orthogonal projection of

Hessφ(x) onto the normal bundle [Tφ(x)φ(M)]
⊥ of φ(M)

is the second fundamental form of φ(M) pulled back onto

TxM . If m = 2 and l = 3, this is also known as the Wein-

garten map or shape operator relative to TxM . In addition

to penalizing this second fundamental form, which indicates

extrinsic bending of φ(M), our functional E also penalizes

the tangential components of Hessφ.

Reformulation with directional derivatives. The above

energy can be rewritten in terms of averages. To this end,

let Sm−1 denote the unit sphere in TxM (the base point x

will be clear from the context), and let Hm−1 denote the

(m − 1)-dimensional Hausdorff measure in TxM .

Proposition 2 (double integral representation of E). The

choice Γ ∶ (TxM)l → [0,∞],
Γ(B) = ⨏Sm−1 γ(g(B,v)) dHm−1(v)



is admissible in the above sense and leads to the represen-

tation

E(φ) = ⨏
M
⨏
Sm−1

γ(Dφ(x)(v))
+ λ∣D2φ(x)(v, v)∣2dHm−1(v)dVg(x).

Proof. Let B have singular values σ1, . . . , σm and left and

right singular vectors w1, . . . , wm ∈ Rl, v1, . . . , vm ∈ TxM ,

then ∣g(B,v)∣2 = ∣∑m
i=1 σig(vi, v)wi∣2 = ∑m

i=1 σ
2

i g(vi, v)2.

Inserting this expression into Γ, one sees that the integral

makes the expression independent of the orthonormal frame

v1, . . . , vm so that Γ(B) indeed only depends on the singu-

lar values of B. Furthermore, Γ is nonnegative since its

integrand is, and it is zero if and only if ∣g(B,v)∣ = 1 for all

v ∈ Sm−1 in TxM , which by the above is equivalent to all

singular values being one. Analogously one shows that

⨏
Sm−1

l

∑
j=1

∣D2φj(x)(v, v)∣2dHm−1(v)
=

l

∑
j=1

m

∑
i=1

(σj
i )2⨏

Sm−1

g(v, e)2dHm−1(v) = 1

2
∥Hessφ(x)∥2F

for the eigenvalues σ
j
i of Hessφj(x) and some arbitrary

e ∈ Sm−1 using that the integral inside the sum is 1

2
.

Identification as limit for vanishing locality radius. It

turns out that for ǫ → 0 our loss Eǫ approximates E , which

thus gives a simple interpretation of Eǫ in terms of first and

second order derivatives of φ.

Theorem 1 (limit energy for vanishing ǫ). Eǫ is a consistent

approximation of E in the sense Eǫ(φ) = E(φ)+O(ǫ∥φ∥C3).
Proof. For ǫ small enough, the Riemannian exponential

expx defines a diffeomorphism between the ǫ-ball Bǫ(0) ⊂
TxM ≅ Rm and BM

ǫ (x) with inverse denoted by logx. For

any measurable function fx ∶M → R we then have

⨏
BM

ǫ
(x)

fx(y)dVg(y) = ⨏
Bǫ(0)

fx(expxw)d(log∗x Vg)(w),
where log

∗
x Vg is the pushforward measure of Vg under logx.

The Lebesgue density of log
∗
x Vg at w ∈ Bǫ(0) is known to

have the expansion 1 + O(∣w∣2) (the constant depends on

the Ricci curvature, cf . [2]). This can be used together with

the transformation formula to get

⨏
Bǫ(0)

fx(expxw)d(log∗x Vg)(w)
=⨏
B1(0)

fx(expx(ǫw))(1 +O(ǫ2))dw

=⨏
Sm−1

1

∫
0

fx(expx(ǫrv))(1+O(ǫ2))mrm−1drdHm−1(v).

Now we consider the cases fx(y) = γ(∂(x,y)φ) as well as

fx(y) = ∣∂2(x,y)φ∣2. Letting y = expx(ǫrv) and abbreviating

θ(t) = φ(expx(tv)), Taylor expansion yields

∂(x,y)φ = θ(ǫr) − θ(0)
rǫ

= θ′(0) +O(rǫ) and

∂2(x,y)φ = 8
1

2
(θ(0) + θ(ǫr)) − θ( ǫr

2
)

r2ǫ2
= θ′′(0) +O(rǫ).

Now by the definition of gradient and Hessian we have

θ′(0) = Dφ(x)(v) and θ′′(0) = D2φ(x)(v, v). The proof is

concluded by inserting these estimates in fx and noting that

the constants of all error terms in ǫ depend on the manifold

M and on (at most) third derivatives of φ.

Existence of optimal geometric embeddings. Let us now

establish the existence of minimizers to E . First, we observe

that the energy E is well-defined on all of H2(M), where

the Sobolev space H2(M) is defined as the closure of all

smooth functions under the norm ∥φ∥H2(M) with

∥φ∥2H2(M) =
m

∑
j=1
∫
M
∣φj ∣2 + g(gradφj ,gradφj)
+ g(Hessφj ,Hessφj) dVg. (3)

For further details on Sobolev spaces on (compact) mani-

folds we refer to [9]. Due to the rigid motion invariance of

E we may without loss of generality restrict E to the sub-

space Ḣ2(M) of H2-functions with zero average.

Theorem 2 (existence of a minimizer). Let M be smooth,

compact. If there exists φ∈Ḣ2(M) with E(φ) < ∞, then E
has a minimizer in Ḣ2(M).

If l ≥ 2m the condition is always fulfilled since by Whit-

ney’s embedding theorem there exists a smooth embedding

which, due to the compactness of M , may be chosen such

that it has finite energy.

Proof. We apply the direct method in the calculus of

variations. By our assumption there exists a minimiz-

ing sequence (φk)k=1,2,... ⊂ Ḣ2(M), which we sup-

pose to converge monotonically to inf E < ∞. Since

Γ(gradφ) ≥ C ∣g(gradφ,gradφ)∣ − 2 and ∥Hessφ∥2F ≥
C ∣g(Hessφ,Hessφ)∣ for some constant C > 0, the sec-

ond and third summand of (3) are uniformly bounded

for all φk. By Poincaré’s inequality this implies uniform

boundedness of φk in Ḣ2(M). By reflexivity of Ḣ2(M),
there exists a weakly convergent subsequence (still indexed

by k) with limit φ in Ḣ2(M). Convexity of the map

A → ∥A∥2F then implies lim infk→∞ ⨏M ∥Hessφk∥2FdVg ≥
⨏M ∥Hessφ∥2FdVg . Furthermore, by Rellich embedding,

gradφk already converges strongly to gradφ in L2(M)
and up to selection of another subsequence even point-

wise almost everywhere. Fatou’s lemma then implies



⨏M Γ(gradφ)dVg ≤ lim infk→∞ ⨏M Γ(gradφk)dVg . Thus,

we obtain lower semi-continuity of the energy, i.e., E(φ) ≤
lim infk→∞ E(φk) = inf E , which establishes the claim.

Just as for Eǫ, the minimizer (modulo a rigid motion) is

in general not unique due to the isometry promoting term.

4. Numerical experiments

In what follows, similarly to [6], we consider image data

that implicitly represent three different manifolds:

(G) images of anisotropic Gaussians which are ro-

tated, scaled and translated, representing a cylinder

S1 × [a, b] × [c, d]2,

(S) shadows of a sundial with the sun or light source

shining from all possible directions, representing the

upper hemisphere S2 ∩ {x3 ≥ 0} (cf . [16]),

(R) orthogonal projections of a rotated 3D object, repre-

senting SO(3).
Datasets. We consider an image resolution of 64 × 64. The

images are generated as follows.

(G) Anisotropic Gaussians. We consider rotations, scal-

ings, and translations of a cut off Gaussian of fixed as-

pect ratio, with parameters (α, s, x) ∈ M = S1 × [a, b] ×
[c, d]2 with distance d((α, s, x1, x2), (α′, s′, x′1, x′2))2 =
dS1(α,α′)2 + ∣s − s′∣2 + ∣x1 − x′1∣2 + ∣x2 − x′2∣2, where dS1

is the geodesic distance on S1. The data is similar to the

DSprites dataset in [15].

(S) Sundials. Inspired by [16], we generate images

parametrized by the upper hemisphere M = S2 ∩ {x3 ≥ 0}
by casting a shadow of a vertical rod on a plane. Contrary

to [16] we do not render these images with a 3D engine,

but instead simply approximate the shadows by Gaussians

(cf . fig. 1): a point x ∈M is first mapped onto the plane by

drawing the line through x and the rod tip, intersecting the

plane at some y ∈ R2. We then use a Gaussian function with

variance ∣y∣ in direction y and a fixed small variance in the

orthogonal direction, centered at y/2. As distance on M we

use the geodesic distance on S2, d(x,x′) = arccos(xTx′).
(R) Rotated 3D objects. We generate images by rotat-

ing a camera pointing at a three-dimensional object, Spot

the cow. We use Pytorch3D [21] to render the images

during training. As distance on M = SO(3) we use the

geodesic distance computed via quaternions as d(q1, q2) =
arccos(∣q1 ⋅ q2∣) [11].

Autoencoder architecture. The used architecture is as in

[4], however, we used larger input images and a smaller la-

tent dimensionality. The encoder consists of a first layer

of 1 × 1 convolutions with 16 output channels, followed

by blocks consisting of two consecutive 3 × 3 convolutions

with unit stride, zero padded such that the input and out-

put width are equal, and 2 × 2 average pooling. Each of

the convolutional layers in the block is followed by a leaky
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Figure 1. Results for the sundial dataset (S). The top box shows

selected training data (image pairs, geodesic average, distance).

The middle box shows a sketch of the sundial configuration and

the latent manifold φ(M) projected into R
3 via PCA. The bottom

box shows decoder outputs for the orange points in latent space.

ReLU nonlinearity with slope −0.01. The first convolution

in each block doubles the output channels. The final con-

volution is not followed by a nonlinearity and has only 1

(4 for (R)) output channel(s). The number of convolutional

blocks determines the size of the latent code: we used 4

blocks with input images of size 64 × 64 (64 × 64 × 3 for

(R)), resulting in a latent code of size 16 (64 for (R)). The

decoder also consists of consecutive blocks of two 3×3 con-

volutions with leaky ReLU nonlinearities, where each block

is followed by 2 × 2 nearest neighbor upsampling. The fi-

nal convolutional layer is again not followed by a nonlin-

earity and has 1 output channel. We use Kaiming initial-

ization [8], i.e., all convolutional weights are initialized as

zero-mean Gaussian random variables with standard devi-

ation
√
2/√fan_in(1 + 0.012) for fan_in the layer in-

put dimension, and all biases are initialized with zeros. For

training, we use the Adam optimizer [13] with learning rate

0.0001 and default values for β1, β2 and ε. The training

data are triplets of images plus a distance value (cf . fig. 1

top), (x, y,avM(x, y), dM(x, y)) , with x, y ∈ Sǫ ⊂ M ,

avM(x, y) the geodesic average of x, y in M and dM(x, y)
their geodesic distance. This input allows to compute the in-

gredients ∂(x,y)φ and ∂2(x,y)φ of the loss functional ESǫ(φ)
defined in 2.

Smooth embedding and reliable reconstruction. Figure 1

summarizes our approach and its result at one glance for

dataset (S); the top box shows examples of training triplets

plus distances, the middle box visualizes the obtained mani-

fold embedding φ(M), and the bottom box displays recon-

structions of input images by the full autoencoder. Fig-
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Figure 2. Latent manifold φ(M) for sundial dataset (S), obtained

for different values of flatness weight λ (colored points as in fig. 1).

Due to rigid motion and symmetry invariance of ESǫ , the latent

manifold appears in orientations different from fig. 1.
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Figure 3. Temporal evolution of the three loss components for

dataset (R) of rotated objects (logarithmic y-axis, value of isome-

try loss scaled down by factor 10). Per optimization step a batch

of 128 images is processed.

ures 2, 5 and 6 show further obtained manifold embeddings

in latent space for different loss weights and for the datasets

(R) and (G). In all cases we observe smooth embeddings

that neatly reproduce the geometry and topology of the un-

derlying manifold M . For visualizing the manifold em-

beddings φ(M) we simply perform a principal component

analysis (PCA) in latent space and display the resulting top

three dimensions (in fig. 5 a second set of principal compo-

nents is shown in addition). To illustrate that our approach

allows separate training of encoder and decoder, for fig. 1

we first trained the encoder map φ on its own by minimiz-

ing ESǫ(φ) and subsequently trained the decoder map ψ by

minimizing, for fixed φ, the reconstruction loss

R(φ,ψ) = 1

∣Sǫ∣ ∑(x,y)∈Sǫ

∥ψ(φ(x))−x∥2L2+∥ψ(φ(y))−y∥2L2

with ∥ ⋅ ∥L2 the L2-norm on images. For the other datasets

we train en- and decoder simultaneously by jointly mini-

mizing ESǫ(φ) + κR(φ,ψ) for φ and ψ (where the weight

κ > 0 is not expected to have much influence since ψ will

try to minimize R(φ,ψ) anyhow). We use ǫ = π
2

for dataset

(S), ǫ = π
4

for (R). For (G), for simplicity we used a slightly

different sample Ŝǫ ⊂ {(y, y′) ∈ M ×M ∣dS1(α,α′) ≤ ǫ}
with ǫ = π

2
. During training the isometry, flatness, and re-

construction parts of the loss function are all observed to

decrease continuously and monotonically (up to the usual

stochastic variations) as shown in fig. 3 for dataset (R),
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Figure 4. Average error of linear interpolation in latent space for

dataset (R) and different flatness weights λ.

where the full autoencoder is trained simultaneously. Re-

sulting reconstructions ψ(φ(x)) for random x ∈M are ex-

emplarily shown in figs. 1 and 6 and are of good quality.

Figure 2 illustrates the effect of the flatness term: for zero

bending penalization λ one obtains a standard isometric em-

bedding of S2, while it gets flattened for higher values of λ

(fig. 1 shows an intermediate λ). Note that extrinsic bending

is obviously reduced this way, while nonlinear inplane dis-

tortion is increased (the normal component of the Hessian

apparently outweighs the inplane component).

Linear interpolation in latent space. Figure 5 illustrates

for dataset (R) that the bending term of our loss functional

strongly improves the usefulness of linear interpolation in

latent space across moderate distances. While for λ = 0 the

decoder output of linear interpolations in latent space does

not at all reproduce continuously rotating objects, it clearly

does for bending weight λ = 10. Let us emphasize that the

decoder was in no way regularized in these experiments, in

particular it was not trained on any points obtained via lin-

ear interpolation of codes in latent space! Still the rotated

cow is cleanly visible (in contrast to the case λ = 0), hav-

ing undergone merely some minor smoothing. Training the

decoder additionally on linear interpolants in latent space

will naturally improve the results. We purposely abstained

from this extra regularization since it would allow the de-

coder to compensate the deficiencies visible for λ = 0 so

that the regularizing properties of our encoder loss func-

tional ESǫ would be obscured. For λ = 10 the decoder has

to compensate much less and is therefore expected to be

more robustly trainable. We also quantitatively evaluated

the quality of linear interpolation in latent space by measur-

ing the L2-error to the ground truth, geodesic interpolation.

We calculate this on a test sample set S ′ǫ as

err(t)2 = 1

∣S ′ǫ∣ ∑(x,y)∈S′
ǫ

erri(x, y; t)2 − errb(x, y; t)2 for

erri(x, y; t) = ∥avM(x, y; t) −ψ(avRl(φ(x), φ(y); t))∥L2 ,

errb(x, y; t) = ∥avM(x, y; t) −ψ(φ(avM(x, y; t)))∥L2 ,

where avM(x, y; t) is the weighted geodesic average of

x, y ∈M with weights 1−t, t and avRl(a, b; t) = (1−t)a+tb.
Above, erri is the error due to linear interpolation, and errb

is the base reconstruction error which occurs independently
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Figure 5. Results of our method for the rotated objects dataset (R).

The middle boxes show projections of the obtained latent manifold

φ(M): a submanifold for fixed rotation angle around all possible

axes in S2 (left) and all of φ(M) with rotations around the same

axis in same color (right, once taking principal components 1, 2, 3,

once 1, 4, 5). The additional curve illustrates the standard devia-

tion along the principal components in latent space, indicating that

9 Euclidean dimensions are used for the embedding. The bottom

box shows decoder outputs for linear interpolation in latent space

between the codes of the first and last image. Such interpolation

becomes feasible for higher bending weight λ, even though the

decoder was not trained for such codes.

of interpolation. Figure 4 displays err(t) for different val-

ues of λ, showing a marked error reduction for increasing λ

up to a saturation around λ = 5.

Additional dimensions exploited by the embedding. In

our experiments, we set the latent space dimensionality l to

commonly used values. In particular, we take l substantially

larger than would minimally be required for a smooth em-

bedding. This is reasonable since in applications the intrin-

sic dimensionality m is generally unknown and since this

allows the encoder to improve on the flatness of the embed-
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Figure 6. Obtained results for anisotropic Gaussian dataset (G); the

shown latent manifold dimensions represent rotation (x-y-axis)

and scale (z-axis). The noise in the right experiment stems from

quantizing all input images to binary ones.

ding at the expense of using more dimensions. For example,

the flat torus should better be embedded as S1 × S1 ⊂ R
4

than as a torus in R
3. Figure 5 shows that the encoder

makes use of that freedom: even though l = 5 would be

enough (SO(3) ≅ RP 3, which embeds into R
5, but not R4

[10, 7]), the graph of the standard variation along the prin-

cipal components of latent space shows that 9 Euclidean di-

mensions are used for the embedding. For the experiments

with datasets (S) and (G), the embedding used 3 and 5 Eu-

clidean dimensions, respectively.

Noise in the embedding due to image quantization. To

illustrate the regularization properties of our loss functional

we avoided sources of noise in our experiments, as those

would require additional tailored regularization. For the

anisotropic Gaussian (G) we now illustrate what effect a

simple type of noise can have on the embedding φ with-

out additional regularization: we simply round all Gaussian

images to binary images. This quantization makes ellipses

in nearby positions, orientations and scalings harder to dis-

tinguish. Figure 6 right shows that a cylindrical structure

of the resulting latent manifold φ(M) is still observable,

though it is thickened and much less clean than on the left.
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