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Abstract

Registering functions (curves) using time warpings (re-

parameterizations) is central to many computer vision and

shape analysis solutions. While traditional registration

methods minimize penalized-L2 norm, the elastic Rieman-

nian metric and square-root velocity functions (SRVFs)

have resulted in significant improvements in terms of the-

ory and practical performance. This solution uses the dy-

namic programming algorithm to minimize the L2 norm be-

tween SRVFs of given functions. However, the computa-

tional cost of this elastic dynamic programming framework

– O(nT 2k) – where T is the number of time samples along

curves, n is the number of curves, and k < T is a param-

eter – limits its use in applications involving big data. This

paper introduces a deep-learning approach, named SRVF

Registration Net or SrvfRegNet to overcome these limita-

tions. SrvfRegNet architecture trains by optimizing the elas-

tic metric-based objective function on the training data and

then applies this trained network to the test data to perform

fast registration. In case the training and the test data are

from different classes, it generalizes to the test data using

transfer learning, i.e., retraining of only the last few layers

of the network. It achieves the state-of-the-art alignment

performance albeit at much reduced computational cost.

We demonstrate the efficiency and efficacy of this framework

using several standard curve datasets.

1. Introduction

The registration or temporal alignment of functional,

curve, shape, or activity data has been central to many

computer vision problems, including shape analysis, ac-

tivity recognition, and computational anatomy. Observa-

tions of multiple objects or actions, or multiple observa-

tions of the same object or action, may differ in the exe-

cution rates, causing a misalignment between observations.

When comparing such observations for clustering, classi-

fication, or modeling, one needs to temporally register or

align these curves to isolate this mis-registration variability

and reach more natural solutions. In functional data anal-

ysis, this problem is often referred to as phase-amplitude

separation [20].

While the importance and challenges of registration have

been recognized well in the past, with several theoreti-

cal and practical ideas proposed, a satisfactory solution re-

mains elusive, especially for massive datasets. Historically,

the main issue was theoretical – the most commonly-used

framework for registration relied on minimizing the classi-

cal Euclidean objective function (the L
2 norm between the

functions plus a regularization term) and that had funda-

mental theoretical flaws. The actual optimization is per-

formed using the dynamic programming algorithm (DPA)

or its adaptations. In recent years, the researchers have over-

come the theoretical limitations using elastic Riemannian

metrics and their excellent invariance properties. However,

the optimization tool continues to be DPA, which can be

computationally expensive for massive datasets. This paper

explores deep neural networks to reach an architecture that

can learn registration solutions from training data and then

efficiently transfer the solutions to the test datasets.

1.1. Relevant Past Literature

We start by summarizing the past salient literature on

function or curve registration, pointing out their strengths,

limitations, and bottlenecks.

Dynamic Time Warping (DTW) Solutions: The most

common approach for aligning functions, time-series, or

curves is based on minimizing the L
2 norm between ob-

servations. It is referred to by various names, including dy-

namic time warping or simply DTW [2, 28]. Given two

scalar functions f1, f2 : [0, T ] → R, this approach solves

for a time-warping function γ : [0, T ] → [0, T ], often a

boundary-preserving diffeomorphism, that minimizes the

objective function ‖f1 − f2 ◦ γ‖2, where ‖ · ‖ denotes the

L
2 norm. This optimization problem is degenerate in that

one can make the difference arbitrarily small using drastic

warpings. One handles that issue by imposing a roughness

penalty on γ and limiting the search space of γ, accord-

1



ing to minγ
(

‖f1 − f2 ◦ γ‖2 + λR(γ)
)

. The optimization

problem is commonly solved using the dynamic program-

ming algorithm or DPA [3]. However, this solution has sev-

eral flaws, including a lack of inverse consistency of the

solution and low registration performance. Despite these

flaws, this framework continues to be popular in the lit-

erature. Although several extensions of DTW have been

proposed to improve alignment quality or applicability, the

main limitations persist. Variations of DTW include Canon-

ical time warping to align multi-modal data [43, 37, 38] and

Soft-DTW to solve a simpler surrogate optimization prob-

lem [29].

An important theoretical advance in the field came from

a Riemannian perspective – the introduction of elastic Rie-

mannian metric and the Square-Root Velocity Function

(SRVF) representation. Developed over several papers, in-

cluding [42, 31, 32], this framework changed the objective

function from L
2 to an elastic distance. While this distance

had excellent invariance properties, which helped avoid de-

generacy and improve registration, its original form was still

too complex to be of practical use. This issue was resolved

by using SRVFs of functions rather than the functions them-

selves. The classical L2 norm between SRVFs of functions

equaled the elastic distance between the functions, allowing

for the dynamic programming solution to be readily applied.

Despite the superior theoretical properties and excellent

registration performance, the DPA-based methods suffer

from two significant issues. First, the computation cost

becomes prohibitive if the length of time series data or

the sample size increases dramatically [39]. Second, the

DTW-based solutions do not transfer easily to unseen data

– one has to apply the entire procedure to any data, old or

new, to obtain registration.

Deep learning based methods: In recent years, there has

been an exponential rise in the use of deep neural net-

works in various settings, including optimizations. Focus-

ing on the registration and alignments, Jaderberg et al. [9]

proposed the Spatial Transformer Network (STN), which

aims to learn spatial warps from the training data and ap-

ply these warps to image data to enhance classification.

Similarly, several papers proposed learning solutions to 2D

(or even 3D) registration [4, 21, 41, 5, 1] using deep net-

works. For instance, Lohit et al. [19] introduced a Tem-

poral Transformer Network (TTN) to learn time warpings

to help improve the classification. TTN generates warp-

ing functions in a non-parametric way but is a supervised

learning framework that requires labels for both training and

test data. To overcome the limited training data, Terefeet

et al. [35] introduced the semi-supervised multitasking au-

toencoder that requires class labels only during training.

Another approach, termed Diffeomorphic Temporal Align-

ment Net (DTAN) [40], seeks unsupervised registration and

estimates parametric warps using convolutional neural net-

works (CNNs). Although DTAN provides good results in

unsupervised learning, it requires large training data. Sim-

ilar to our goal here, Nunez and Joshi [24] used a deep-

learning approach to curve registration. However, their su-

pervised approach requires DTW to first generate training

data for the network. The network is first trained on this

data and then applied to the future data to reproduce DTW-

type registration.

1.2. Proposed Approach

This paper combines the strengths of the elastic Rie-

mannian framework and the deep neural networks, result-

ing in a fast and effective registration of massive functional

or curve data. Our approach, named Square Root Veloc-

ity Function Registration Net (SrvfRegNet), is an unsuper-

vised, learning-based registration approach that enjoys in-

variance properties and provides registration of unseen test

data. Another feature of SrvfRegNet is that registration is

”transferable”, in the sense of [6, 25, 36], and one does not

require large training data to train it.

2. Background: Elastic Function Registration

In this section, we summarize the main ideas from elastic

Riemannian framework for functional or curve registration.

Let F be the set of all smooth scalar functions on an in-

terval [0, T ]. (One can develop frameworks for vector- or

manifold-valued functions similarly.) Let Γ be the group of

boundary-preserving diffemoprhisms from [0, T ] to itself,

with the group operation being composition and the iden-

tity element being γid(t) = t. The right action of Γ on F is

given by the F ×Γ → F with (f, γ) = f ◦ γ, the composi-

tion of f by γ. Let the L
2 norm of a function f be denoted

by ‖f‖ =
√

∫ T

0
f(t)2 dt.

Given two functions f1, f2 ∈ F , one seeks a warping

function γ such that the composition f2 ◦ γ is aligned as

well as possible to f1. The question is: What should be

the objective function to define the optimality of γ? A con-

venient option is infγ∈Γ ‖f1 − f2 ◦ γ‖2, but this leads to

degenerate solutions (this phenomenon is called the pinch-

ing effect) resulting in extreme time warpings. In other

words, one can squeeze or pinch a large part of f2 and

make this cost function arbitrarily small. To avoid this situ-

ation, one frequently adds a penalty [18, 34, 16, 27, 13]:

infγ∈Γ

(

‖f1 − f2 ◦ γ‖2 + λR(γ)
)

, where R is a rough-

ness penalty and λ is a positive number. However this so-

lution is also not satisfactory. Firstly, the choice of λ is

an important issue. Secondly, and more importantly, this

solution is not symmetric. That is, if the roles of f1 and

f2 are reversed then the resulting registration is not con-

sistent with the previous registration. The shortcomings of

the L2 norm, or its penalized versions, as an objective func-
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Figure 1. SrvfRegNet’s architecture: The input data simultaneously passes through time-warping and SRVF-mapping blocks. The SRVF

mapping computes SRVFs of input functions, and the Diffeomorphism block generates warping functions. These two are combined in the

Group action block to output registered data.

tion for registering functions are more fundamental. It lacks

the invariance property that is critical for use in registration

tasks [33, 32]. In mathematical terms, for f1, f2 ∈ F and

γ ∈ Γ, we have ‖(f1 ◦ γ)− (f2 ◦ γ)‖ 6= ‖f1 − f2‖ in gen-

eral. This lack of isometry under the action of Γ is the root

cause of degeneracy and pinching during registration under

the L
2 norm.

A fundamentally better choice in this situation is to use

an elastic metric. This metric, in conjunction with a math-

ematical representation called square-root velocity function

(SRVF), provides a much better solution, in both theoret-

ical properties and practical performance. As described

in [10, 32], the SRVF of a function f is defined to be:

q(t) = sign(ḟ(t))
√

|ḟ(t)|. We can easily map the SRVF

q back to the original function f , up to a constant, using

f(t) = f(0) +
∫ t

0
|q(s)|q(s)ds. One can show that for

any f ∈ F , its SRVF is square-integrable: ‖q‖ < ∞ or

q ∈ L
2([0, T ],R). The SRVF of a time-warped function

f(γ(t)) is given by (q ⋆ γ)(t) ≡ q(γ(t))
√

γ̇(t).

The main motivation for using SRVF in registration

comes from the following invariance property: For any

SRVFs q1, q2 ∈ L
2 and γ ∈ Γ, we have that ‖q1 − q2‖ =

‖(q2⋆γ)−(q2⋆γ)‖. A corollary to that result is that for any

q ∈ L
2 and γ ∈ Γ, the norm ‖q ⋆ γ‖ = ‖q‖. In other words,

pinching is not possible under this metric. There are several

other useful properties of this representation, including that

adding a constant to a function does not change its SRVF.

We refer the reader to [32] for a detailed discussion.

This setup leads to the following registration solution.

Given two functions f1, f2 ∈ F , with corresponding SRVFs

q1, q2 ∈ L
2, solve the optimization:

γ∗ = inf
γ∈Γ

‖q1 − q2 ⋆ γ‖ (1)

One can show that if γ∗ is the optimal warping to align f2
to f1, then γ∗−1 is the optimal warping to align f1 to f2.

That is, this solution is inverse consistent. The infimum is

approximated on a discrete-time grid using DPA. If each of

the functions is sampled using T time points, then the com-

putational cost is O(T 2k), where k is typically a number

much smaller than T .

To simultaneously register multiple functions

f1, f2, . . . , fn, one first computes their mean under

the elastic metric and then aligns them individually to that

mean using Eqn. 1. Define the mean of given functions as

the quantity:

µ = argmin
q∈L2

n
∑

i=1

(

inf
γi

‖q − (qi ⋆ γi)‖2
)

. (2)

The computation of µ is an iterative process wherein each

iteration we: (1) Align the given functions to the current

mean estimate and (2) Update the mean estimate using

the arithmetic mean of the aligned functions (in the SRVF

space). On convergence, if {γ∗

i } denote the optimal time

warpings inside the summation on the right, then the func-

tions {fi ◦ γ∗

i } are said to be registered.

If the n given functions are sampled at T time points

each, then the computational cost of this registration process



is O(nT 2k). In case T is very large, this process becomes

computationally prohibitive.

3. SrvfRegNET:Elastic Registration Network

In this section, we introduce the architecture of the

SrvfRegNet network designed to find an approximate but

fast technique for alignment of large functional data. The

network is made of several blocks with each block con-

tributing a piece to the registration process.

3.1. Learnable Prewarping Block

The first block takes in the input functional data (as dis-

crete vectors) and generates latent features that are even-

tually mapped into warping functions. For this block,

we adapt and utilize the model architecture introduced in

[14, 30, 9, 40]. This block is composed of three 1-D tem-

poral convolutional layers with 16-32-64 filters per layer

(1D-CNN) [12]. Each convolutional layer is followed by

one rectified linear activation function (ReLU) [23], max-

pooling [22], and 1 dimensional-batch normalization (1D-

BatchNorm) layer [8]. There is also one global averag-

ing layer and a fully connected layer at the end of the

block [17, 14, 30]. The dimensions of input to this block

are (n × T ), where n is the batch size and T is number of

time points for each function.

This pre-warping block plays a role in the feature extrac-

tion mechanism using a hierarchical design. The 1D-CNN

layer extracts temporal information, the ReLU step imposes

a non-linear transformation on the latent features, the pool-

ing layer downsamples the inputs, and 1D-BatchNorm en-

hances the stability of the training process. The global av-

eraging layer further downsamples the features again and

smooths out the noise. The fully connected layer is used to

learn and form the warping functions from the latent fea-

tures. It ensures that the length of each output is equal to T .

Let the output of this block be denoted by {gi}, where the

length of each feature vector gi is T .

3.2. Diffeomorphism Block

The next block is the diffeomorphism block that takes

in the latent features extracted previously to form warping

functions for each function individually. In this sense, it is

simply a transformation block without any parameters to

tune. The diffeomorphism block ensures that the result-

ing warping functions satisfy the properties of boundary-

preserving diffemorphisms. There are two layers in this

block: the warping layer and the smoothing layer.

• Warping layer: The warping layer constructs predicted

warping functions using the formula

γ̂i(t) = T

∑t
s=0

g2i (s)
∑T

τ=0
g2i (τ)

, i = 1, 2, . . . , n . (3)

and t = 1, 2, . . . , T is the time index. This equation

guarantees that γ̂ is montomically increasing and sat-

isfies the boundary conditions (γ̂(0) = 0 and γ̂(T ) =
T ).

• Smoothing layer: The warping functions generated

thus far γ̂i can lack smoothness and may lead to rough-

ness in the output (warped) functions. Thus, we add a

smoothing layer to the previous output to help preserve

the geometric structure of the output. There are several

ways to smooth a function and we use integration here.

The smoothing layer reduces roughness of the warping

functions according to:

γi(t) = T

∑t
s=0

γ̂i(s)
∑T

τ=0
γ̂i(τ)

(4)

This layer results in smooth warping functions {γi} that can

now be applied to the input functional data, albeit in the

SRVF space. The dimensions of the output of this stage are

(n× T ).

3.3. Group Action Block

This block performs the time warping of input functions,

using the warping functions generated in the previous layer.

Once again, this is a transformation block and does not have

any parameters to optimize over in the learning stage. First

it computes the SRVF of the given functions and then ap-

plies time warping on them using the equation:

Qi(γi) = (qi ⋆ γi) = (qi ◦ γi)
√

γ̇i, i = 1, 2, . . . , n . (5)

3.4. Objective Function and Back Propagation

Next, we specify the objective function for training the

complete network. We simplify the objective function given

in Eqn. 2 to result in:

E(γ2, . . . , γn) =

n
∑

i=1

‖Qi(γi)− Q̄‖2, (6)

where Q̄ = 1

n

∑n
i=1

Qi(γid). Note that this cost function

represents a single iteration of the cost function specified

in Eqn. 2, the solution of SRVF registration with DPA and

where the solution required multiple iterations. While we

use only one iteration in this paper, one can easily in-

crease iterations by using multiple replicates of this set of

blocks in the overall pipeline. The search for optimal net-

work parameters in the learning step is performed through

a gradient-descent on the objective function, i.e., backprop-

agation. The parameters inside the pre-warping block are

optimized to generate data-specific warping functions. In

the pre-warping block, three 1D-CNN layers imply 7840



parameters, and the FC layer has (T ∗ Llatent + T ) pa-

rameters, where the Llatent is the length of latent fea-

tures generated by 1D-CNN layers and T is the time index.

Thus, the total number of parameters in the SrvfRegNet is

7840 + (T ∗ Llatent + T ).
We focus on the gradient flow from the cost function to

the pre-warping block, denoted by ∂E
∂γi

, and express it us-

ing the chain-rule: ∂E
∂γi

= ∂E
∂Qi

∂Qi

∂γi

. The term ∂E
∂Qi

denotes

the gradient of the cost function with respect to the warped

SRVF and ∂Qi

∂γi

is the gradient of the warped SRVF with re-

spect to the warping function. The expression for ∂E
∂Qi

is

simply ∂E
∂Qi

= 2Qi, and the term ∂Qi

∂γi

is given by:

∂(qi ◦ γi)
√
γ̇i

∂γi
= [

∂(qi ◦ γi)
∂γi

]
√

γ̇i + [
∂
√
γ̇i

∂γi
](qi ◦ γi)(7)

= (q̇i ◦ γi)
√

γ̇i + (qi ◦ γi)
γ̈i

2
√
γ̇i

. (8)

The downstream gradient of ∂Qi

∂γi

is composed of gradient of

integral operation, a FC layer, and 1D-CNN blocks [15, 26].

4. Experimental Results

Next we present results for registration of scalar func-

tional data using SrvfRegNet, on both simulated and popu-

lar real-world data. The SrvfRegNet was trained with Adam

optimization algorithm [11] and the learning rate was set to

be 0.001. These programs are implemented using Pytorch.

4.1. Alignment of Synthetic dataset

In the first experiment, we generate functional data ac-

cording to the equation:

fi(t) = zi,1e
−(t−1.5)2

2 + zi,2e
−(t+1.5)2

2 , t ∈ [−3, 3] , (9)

where zi,1, zi,2 ∼ N(0, (0.25)2). Each function fi is a bi-

modal function with variable peak locations and heights. A

standard averaging of these functions is not a good repre-

sentative of the data, and one needs registration of peaks

and valleys (through time warpings) to improve statistical

summaries. This model is used frequently to test functional

registration algorithms in the statistics literature. We gener-

ate a training sample of size n = 8, 000 and test data of size

2000, both from the same model. The length of each time

series data is set to T = 150.

Figure 2 shows change in E during training. It shows

that the training loss reduced significantly in 10 iterations.

The time for training the network for the data of size

(8000, 150) is 23 seconds.

Figure 3 shows results of functional alignment obtained

using the SrvfRegNet. The top row shows the results for

the training data, while the bottom row is for the unseen test

data. In each row, we display: (1) the original functions,

Figure 2. The training loss drops significantly in 10 iterations.

(2) their cross-sectional means, along with one-standard-

deviation bands, (3) the aligned functions, and (4) the cross-

sectional means of the aligned functions with one-standard-

deviation bands. As these results show, the network is

quite successful in aligning both training and test data. The

within-class variance drops significantly from the original

data to the warped data. Also, the time taken for registering

the test data of size (2000, 150) is only 0.42 seconds.

This experiment was conducted using an Nvidia GeForce

GTX 1660 Ti graphic card. Even though this data is of mod-

est size, the DTW method of Duncan et al. [7] takes around

3.25 hours to register the training data and needs a separate

run to register the test data. Thus, the gain in time spent for

alignment of test and training functions using SrvfRegNet

is enormous.

As mentioned earlier, the past DPA-based techniques for

functional alignment are not generalizable in the sense that

they do not perform registration as training and test tasks.

The registration code has to be rerun whenever new data are

added. In contrast, the SrvfRegNet is trained on a training

data and performs alignment on unseen data (although from

the same underlying class) without a new training process.

Furthermore, one can combine the idea of transfer learn-

ing with the SrvfRegNet to register functional data from a

different model altogether. The use of transfer learning in

SrvrfRegNet is explained in more detail later.

4.2. Alignment of RealLife data

This section utilizes data from a well-known pub-

lic repository – the UCR Time Series Classification

Archive – to evaluate SrvfRegNet. We choose four

datasets from different application domains, including

ECGFiveDays (ECG), GunPointOldVer-susYoung (Mo-

tion), StarLightCurves (Sensor), and Yoga (Image). The

computational environment and hyperparameter settings re-

main the same as synthetic data, but the epoch number in-

creases to 100.

Figure 4 displays registration results obtained using



Figure 3. The first row shows the training data, and the second row shows the test data. Each row contains unaligned data, aligned data,

and the corresponding functional means with one standard deviation bands.

Figure 4. The figure shows the result of alignment using SrvfRegNet on the test data GunPointOldVersusYoung and Yoga.

SrvfRegNet on GunPointOldVersusYoung (top row) and

Yoga datasets (bottom row). Each data has its training

and test parts. The training parts of GunPointOldVersusY-

oung and Yoga are of sizes (137 × 426) and (71 × 150),
respectively, while the test sizes are (1393 × 426) and

(165× 150), respectively. We trained SrvfRegNet with the

training datasets and applied the resulting networks to the

corresponding test sets. The first and third columns exhibit

the original and the registered test data. The second and

fourth columns show the mean functions along with a one-

standard-deviation band around the mean. We can easily see

that the registration improves significantly, and the with-in-

class variances drop a lot due to registration.

To help visualize registration performance differently,

we plot the t-SNE projections of the StarLightCurves

dataset with three class labels in Fig. 5. The three classes

are shown in different colors. The first column shows the

original training (top) and test data (bottom), and the sec-

ond column shows the aligned training (top) and test data

(bottom). This figure shows that SrvfRegNet registration

increases the inter-class dissimilarity and decreases the

with-in-class variance. Note that the data was fed to the



StarLightCurves dataset 
Original data Warped data

Figure 5. t-SNE visualization of the original and warped training

and test data of the 3-class StarLightCurves. The first row is un-

aligned training data and the second row is aligned test data. Class

1 and Class 3 mixed heavily in unaligned data. We can view that

how SrvfRegNet increases inter-class variance and decrease with-

in-class variance.

network class by class, and therefore we expect the classes

to separate further with the registration.

Transfer Learning (TL): Transfer learning is an approach

in which a network trained for one data domain is applied,

with some retraining, to data in a different domain. Specif-

ically, one only needs to retrain the last few layers of a pre-

trained model on the new data instead of training the whole

network from scratch. While the classic TL only retrains

the last few layers, it is sometimes beneficial to unfreeze

more layers and retrain additional parameters depending on

the training data’s size. The more data we have, the more

layers we can unfreeze and retrain.

The argument behind TL is that higher (or earlier) layers

usually learn more generic features, and later layers learn

specific task-related features. Thus, changing data domains

necessitates retraining only the later layers. TL has been

used widely for image labeling, natural language process-

ing, and object detection. We combine TL with SrvfRegNet

to improve performance in situations involving limited

data for functional or curve registration. We demonstrate

this approach using the ECGFiveDaysclass 1 data. The

reason for choosing this dataset is its limited sample size;

it has only five training samples. Fig. 6 shows how the

SrvfReg-Net TL model achieves improved registration

results despite small training data. Here one uses simulated

data (shown in the leftmost column) to train the network,

with the registration results shown in the second column.

Then, we retrain two CNN blocks and one fully connected

layer using the ECGFiveDaysclass 1 training data, as

shown in the third and fourth columns. Finally, we apply

this retrained network to the ECGFiveDaysclass 1 test data,

and the last column shows the results.

SrvfRegNet SrvfRegNet with TL DPA

Data

(TV)
TV

Time

(Tr.

/Ela. )
TV

Time

(Tr.

/Ela.)
TV

Time

(Ela. )

ECG c1

(0.4478)
0.2561

9.21s./

0.257s.
0.2566

7.2s./

0.22s.
0.0847 93.82s.

ECG c2

(0.4857)
0.2495

30.12s./

0.193s.
0.1995

24.53s./

0.22s.
0.0671 95.96s.

GP c1

(0.2877)
0.1178

47s./

0.20s.
0.1337

39s./

0.23s.
0.1543 103.351s.

GP c2

(0.3713)
0.0877

44s./

0.22s.
0.0927

39s./

0.23s.
0.0891 43.132s

SLC c1

(0.1847)
0.039

8m.34s/

2.54 s.
0.0385

3m.42s. /

2.94s.
0.0285 4.33 hr

SLC c2

(0.2237)
0.1722

13m.13s./

4.14s
0.1719

3m.36s./

4.76s.
** 18+ hr

SLC c3

(0.2685)
0.0665

24m.10s./

9.42s
0.0701

3m.50s./

9.41s.
** 18+ hr

Yg c1

(0.7436)
0.2564

2m.7s./

1.15s.
0.2603

1m.39s./

1.14s.
0.2182 1.24hr

Yg c2

(0.7362)
0.2165

2m.5s./

1.24s.
0.2285

1m.41s/

1.2s.
0.1715 1.41hr

Table 1. The table compares TVs of original datasets(underneath

the name of data) with losses of aligned datasets. The Tr. and Ela.

are training time and elapsed time. We list three alignment models

: SrvfRegNet, SrvfRegNet with TL, and DPA, and examine their

performances by measuring their losses and computational time.

** means unavailable.

Quantitative Evaulation: Next we apply SrvfRegNet to a

number of public datasets and compare their results with

the DPA-based registration. We evaluate the alignment per-

formance of SrvfRegNet in three ways: visualization of the

alignment, compare computational costs, and use a quan-

tifiable registration metric. The metric that we use to mea-

sure alignment is the total variance (TV) under the L2 norm:
1

n

∑n
i=1

‖(fi ◦ γi) − 1

n

∑n
i=1

(fi ◦ γi)‖2. Table 1 lists TVs

obtained from SrvfRegNet, SrvfRegNet with TL, and the

traditional Dynamic Programming Algorithm (DPA). These

algorithms are applied to the training and the test data, and

we calculate the total variance in each case. As the table

shows, the SrvfRegNet (with and without TL) is able to pro-

vide total variance that is comparable to the DPA solution

but an order of magnitude faster in execution. This is a re-

markable accomplishment for a fully automatic, pre-trained

solution to provide large-scale registrations at such efficient

rates.

To further investigate the utility of transfer learning in

function registration, we develop another model called the

adjusted-SrvrfRegNet. The adjusted-SrvfRegNet model is

composed of three additional CNN blocks and one FC layer

to the SrvfReg-Net. That is, the SrvfRegNet and SrvfReg-

Net with TL are made of three CNN blocks and one FC

layer, and the adjusted-SrvfRegNet TL model contains five

CNN blocks and two FC layers. Table 2 presents registra-

tion results for the StarLightCureves dataset for SrvfReg-

Net, SrvfRegNet with TL, and adjusted-SrvfRegNet with

TL. The SrvfRegNet is trained on the SLC training data

and performs the registration on the test data. SrvfRegNet



Figure 6. The first column is simulated data used to train SrvfRegNet, the second is warped training data, the third is the original

ECGFiveDays retraining data, the fourth is registered retraining data and the fifth is registered test data.

Unaligned

data loss
SrvfRegNet

SrvfRegNet

with TL

(Unfreeze

2 CNN blocks

& 1 FC layer)

Adjusted

SrvfRegNet

with TL

(Unfreeze

2 FC layers)

SLC c1 0.1847 0.0390 0.0387 0.0385

SLC c2 0.2237 0.1722 0.1719 0.1689

SLC c3 0.2687 0.0665 0.0701 0.0648

Table 2. The adjusted SrvfRegNet with TL model outperforms the

SrvfRegNet and SrvfRegNet with TL. The result highlights that

we can obtain better alignment by only retrain two layers from the

pre-trained adjusted SrvfRegNet.

with TL is retrained in the last two CNN blocks and one

FC layer. The adjusted-SrvfRegNet wih TL is retrained in

only the last two FC layers. We can see that the adjusted-

SrvfRegNet with TL outperforms the other two models in

the registration performance across all SLC classes.

We summarize results from Tables 1 and 2 as follows:

Total Variance: In terms of the total variance of the

registered data, the DPA method performed better on

ECG (ECGFiveDays) and Yg (Yoga) while SrvfRegNet

did better on GP (GunPointOldVersusYoung) and SLC

(StarLightCurves). Both these methods reduce total vari-

ance by a lot when compared to the original data. Note that

the DPA could not handle SLC c2 and SLC c3 datasets due

to their large sample size and lengths.

Computational Efficiency: The biggest advantage of

SrvfRegNet over DP is in computational efficiency. The

time difference between the two methods is less for smaller

datasets, such as ECG c1, ECG c2, GP c1 and, GP c2 as

their sizes are (428 × 136), (433 × 136), (150 × 150),
and (165 × 150) respectively. However, the times differ-

ences are substantial in medium-size datasets, such as Yg

c1, Yg c2, SLC c1, SLC c2, and SLC c3, where the sizes are

(1393×426), (1607×426), (1177×1024), (2305×1024),
(4754 × 1024), respectively. The SrvfRegNet is around 42
times faster than DPA on Yg dataset. The DP could not

even be applied to the SLC c2 and c3 datasets due to their

length and sample size. Overall, SrvfRegNet runs much

faster than the DP model; and The SrvfRegNet model with

TL ran faster than the SrvfRegNet model.

Generalization and transfer learning: The SrvfRegNet

has the ability to train on one data and apply it on unseen

test data. The DPA method does not have this property. The

transfer learning with SrvfRegNet can be a key to the situa-

tion where the datasets are small and one needs registration

on large unseen future data.

5. Summary

This paper develops the SrvfRegNet – a deep learning-

based method – that combines the strengths of the elastic

Riemannian framework with the efficiency of neural net-

works. The SrvfRegNet performs fast, registration on large

test data and provides a good generalization to unseen fu-

ture data. Additionally, the paper introduces transfer learn-

ing that integrates domain transfer with the SrvfRegNet to

improve registration performances when the training data

are limited.
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