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Abstract

The problem of reconstructing three-dimensional (3D)

scene geometry and radiometry from images is an important

problem in computer vision and has applications in a

variety of fields such as medicine and artifact preservation.

However, state-of-the-art multiview algorithms assume a

pinhole camera that incorrectly models defocus blur as

a property of the scene instead of a property of the

imaging process. We address the problem of dense 3D

shape reconstruction from multiple viewpoints in situations

where the image data exhibits noticeable defocus. We

develop a mathematical framework for a fully generative

variational algorithm that iteratively deforms an estimate

of the foreground surface shapes and scene radiance such

that irradiance estimates given by the thin lens forward

model are photometrically consistent with the actual image

data. This framework is founded on novel geometric

computations of flux differentials across an evolving surface

as well as gradients along occluding boundaries and their

projections. While more work is needed to make them fit for

practical use, the future potential of methods based on these

computations is shown with experiments reconstructing

simple object shapes from both synthetically generated

and real defocused images. While our reconstruction

algorithm has a higher computational cost than pinhole-

based methods due to the more general optical model,

it better reconstructs object proportions as well as sharp

features that are blurred due to image defocus. As such,

our geometry-based method provides a unified framework

that extends the applicability of multiview reconstruction

techniques to the poorly supported domain of defocused

images where state-of-the-art pinhole-based methods fail.

1. Introduction

The problem of acquiring knowledge about the 3D

geometry of a scene from images has been a central pillar

in computer vision research for decades, and techniques for

solving this problem have been applied to a variety of fields

including medicine, security, and artifact preservation.

The literature regarding this problem has largely been

segmented into the one-cue “Shape-from-X” classes of

methods, including multiview stereo and depth-from-

defocus. While there have been many successful algorithms

developed in both of these fields, they often suffer decreased

performance when the assumption of one varying parameter

is not met, which can easily happen outside of controlled

laboratory conditions.

We propose here a novel variational framework for

the dense reconstruction of scene shapes and radiances

from a collection of defocused and calibrated images

from multiple viewpoints. This framework provides the

foundation for a class of unifying methods that allow for

arbitrary combinations of different imaging cues. The

vast majority of existing multiview reconstruction methods

assume a pinhole which allows imaging to be modeled via

perspective projection. However, pinholes cannot account

for the limited depth of field of real lenses and can fail

to accurately model the scene. In contrast, methods for

depth-from-defocus use a more general optical kernel, but

their fixed viewpoint does not allow them to model the

scene in its entirety nor to exploit the information obtained

from parallax. We propose a multiview stereo method

that unifies these two approaches by utilizing a thin lens

as the underlying camera model, allowing it to obtain

information from both parallax and defocus. Our approach

also includes novel solutions to difficult mathematical

problems not well-addressed in the literature but that

underscore the geometric nature of the reconstruction

problem; these include computations of flux differentials

across an evolving surface as well as gradients of occluding

boundaries and their projections in the presence of defocus.

1.1. Related Work

Two primary approaches dominate the literature for

multiview stereo: feature correspondence methods and

variational methods. Correspondence methods utilize



epipolar geometry to find matching sets of image features

and backtrace them to extract a 3D point cloud of the

scene which must be further processed to form a connected

shape [11, 32]. The quality of this point-matching is the

main factor in the accuracy of the final reconstruction, and

probabilistic methods have been employed in [4, 9, 10, 34]

as well as iterative refinement in [33] to ensure optimal

correspondences are obtained. However, correspondence

methods work best for well-focused scenes due to their

use of the pinhole model. When images exhibit noticeable

defocus, the resulting homogeneous regions cause the

correspondence problem to become ill-posed, resulting in

a poor reconstruction.

In contrast, variational methods iteratively deform an

initial surface estimate until it is photometrically consistent

with the input images. The cost for the earliest

variational methods for stereo by Faugeras and Keriven

was the reprojection error, and later the cross-correlation,

between different images at a collection of paired image

points, wrapping correspondence methods in a variational

framework [12, 13]. This was taken further by Yezzi

and Soatto with the fully generative variational method

developed in [51] where estimates of the scene radiance

are used to generate synthetic images that can be directly

compared to the corresponding image data, prompting

greater numerical stability and robustness to specularities.

Variational methods complement correspondence methods

and work well for smooth objects and even high noise

densities, but like correspondence methods they fail when

the image data are out of focus. In addition to falsely

treating defocus blur as a scene property due to the assumed

pinhole model, these methods require (sometimes heavy)

regularization on the surface area, causing them to be

unable to reconstruct sharp corners and edges. In contrast,

our method explicitly models defocus blur by assuming a

thin lens model instead of a pinhole and allows for good

reconstruction of non-smooth features without artificial

regularization for sufficiently defocused imagery.

Depth-from-defocus steps out from the limitations of the

pinhole model, either by using a thin lens model [1, 43]

or a Gaussian or other estimated optical kernel [8, 38].

However, the limitation to a single viewpoint prevents

depth-from-defocus methods from reconstructing the full

scene, a limitation overcome by our multiview method. Our

use of the thin lens model is inspired by these depth-from-

defocus methods, and our work here can be seen as an

extension of the variational methods in [14, 23] to the case

of multiple viewpoints.

Some attempts have been made at applying deep learning

to both multiview stereo [20, 42, 48, 50] and depth-from-

defocus [5, 18], and a review of various deep learning-

based reconstruction methods can be found in [19]. While

effective, these methods still require ample training data and

extensive training periods in order to perform well, whereas

our proposed method only requires the images for the scene

in question and can be used immediately.

There have been some previous attempts to integrate

both stereo and defocus cues, but many of these methods

either use point correspondence [47, 49] and thus share

the same limitations as previous correspondence methods,

or they require specialized equipment [39, 44, 45, 47]

that prohibit general use. Also, most previous cue-fusion

methods assume only one stereo image pair with short

baseline, so only a single depth map is computed [3, 6, 31,

37, 39, 40, 44]. In contrast, our method works with off-

the-shelf cameras and can process an arbitrary number of

images and thus can fully recover object shape up to the

field-of-view coverage given in the images.

The method proposed here is motivated by the generative

variational methodology of Yezzi and Soatto in [51] and its

many sequels [2, 7, 21, 22, 24, 25, 28, 26, 27, 29, 41, 46, 52,

53], and we attempt to relax their assumption of focused

imagery by assuming a thin lens to account for image

defocus, whose forward model is derived by Friedlander

and Yezzi in [17]. It is akin to a generalized (with respect

to imaging model) version of space carving [30] under a

variational framework, with a key difference being that in

our method voxels can be both added to and removed from

the surface estimate whereas in space carving voxels can

only be removed.

Finally, the implementation used to obtain the results

herein utilized the level set methods of Osher and Sethian,

which are well-known to be effective in numerically

implementing evolving interfaces [35, 36]. It is also worth

noting that flux differentials are briefly discussed in [15],

but only for the specific case of rigid body motion, not

deforming surfaces.

2. Variational Formulation

Following the philosophy from [51] and its sequels, we

model the scene as a set of surfaces in space that each

support a Lambertian radiance function. What differentiates

our method is that instead of modeling the camera as the

traditional pinhole, we model the camera using a thin lens,

allowing us to account for defocus blur in images. We

then apply the thin lens forward model to estimates of

the surface shapes and radiances to produce corresponding

image estimates to be compared to the input images. It

is desired for the image estimates to be as close to the

input images as possible, so we construct a cost functional

that is minimized when the estimated surface shapes and

radiances produce photometrically consistent images. This

minimization is done using a gradient descent procedure.



Figure 1. Visual depiction of thin lens imaging geometry and notation. The gray rectangle represents the tangent plane to the surface, and

the dashed line represents the optical axis. While the ray shown here goes through the center of the lens O, there is a whole cone of rays

that pass through both P (X) and the lens as denoted by the dotted lines, and the size of this cone is determined by the focus depth z and

lens diameter d. Adapted with permission from [16] © 2017 IEEE

2.1. Preliminaries and Notation

We denote by S a surface in R
3 parameterized by

coordinates (u, v) with area element dS, outward unit

normal N , and supported radiance function L : R2 → R.

The background of the scene is modeled as a second surface

B that occupies the entire field of view under the “blue

sky” assumption; we model B as a sphere parameterized

by angular coordinates (η, γ) and supporting a radiance

function K : R2 → R.

As previously mentioned, we model the camera as a

circular thin lens whose center O is the origin of our

coordinate system. The lens has focal length f and aperture

diameter d. Given an image plane at (negative) depth z′

behind the lens, all light emitted from a point on the focal

plane at (positive) depth z in front of the lens and passing

through the lens is perfectly focused to a point in the image

plane. According to the thin lens model, the quantities f ,

z′, and z are related according to

1

f
=

1

z
−

1

z′
(1)

Additionally, let M = z′

z
denote the lens magnification.

Then a generic point on the focal plane P (X) = (X, z)
with planar coordinatesX = (x1, x2) and its corresponding

point on the image plane P ′(X ′) = (X ′, z′) with planar

coordinates X ′ = (x′1, x
′

2) are related by X ′ = MX .

Similarly, the area elements of the focal and image planes,

dX and dX ′ respectively, are related by dX ′ = M2dX .

Image irradiance E′, which is our estimate of image pixel

intensity, is related to conjugate irradiance E in the focal

plane by E′(X) = M−2E(X) [17]. Because of this one-

to-one mapping of points and irradiances between the focal

and image planes, we can model the imaging process as

first forming a conjugate image in the focal plane (defined

on the conjugate image domain Ω) and then mapping this

image onto the image plane (defined on the corresponding

image domain Ω′).

A ray between a surface point S(u, v) and focal plane

point P (X) is characterized by its length r = ‖S −P‖ and

direction er = (S−P )/r. These rays can be parameterized

using either surface coordinates (u, v, θ, φ) or focal plane

coordinates (x1, x2, α, β), where θ is the angle er makes

with respect to N , ψ is the rotation angle of er about N ,

and α and β are the analogous ray angles with respect to

the focal plane unit normal ez . When integrating over sets

of rays, it will be especially convenient to use solid angle

elements dθ = sin θ dθ dψ and dα = sinαdα dβ. Only

light rays that pass through the lens contribute to the image,

so we consider only this set of detected light rays, denoted

by Γ. A visual depiction of this ray geometry is shown in

Figure 1.

It is possible to rewrite integrals in surface coordinates as

integrals in focal plane coordinates or mixed coordinates,

and vice versa, using the following change of variables

formulae:

dα =
cos θ

r2
dS (2a)

dθ =
cosα

r2
dX (2b)

Finally, given a focal plane point P (X), we denote

by S∗

(ΓS(X)) (or more compactly S∗) the surface curve

bounding the subpatch of S visible from P (X). In general,

the ∗ superscript is used to denote the corresponding

quantity at such a visibility boundary.



2.2. Thin Lens Forward Model

The conjugate irradiance E can be computed from the

surface radiance L and background radiance K as

E(X) =

∫

ΓS(X)

L(u, v) cosαdα+

∫

ΓB(X)

K(η, γ) cosαdα (3)

where Γ(X) ⊂ Γ is the set of detected rays that pass

through P (X) in the focal plane, and ΓS(X) ⊆ Γ(X) and

ΓB(X) ⊆ Γ(X) are the ray subsets emitted from only the

surface and only the background respectively [17]. Here,

the irradiance is computed by integrating the scene radiance

over the entire cone of incident rays, rather than projecting

the radiance down to the image along a single ray as done

in pinhole-based stereo methods.

2.3. Cost function

Since we will be estimating the surface shape and

the surface and background radiance functions using an

iterative procedure, we can augment them to be time-

varying so that they represent a class of evolving functions

S(u, v) → S(u, v, t), L(u, v) → L(u, v, t), and

K(η, γ) → K(η, γ, t), where t is an artificial gradient

descent time parameter. Letting C be the total number of

images and comparing the modeled image irradiance E′

c

and the actual measured intensity Ic of the c-th image, we

may construct the image error function

E ′

c(X
′

c) = E′

c(X
′

c)− Ic(X
′

c) (4)

where the subscript onX ′ is used to denote that these planar

coordinates are with respect to the coordinate system of the

c-th image. This same error function can be mapped to the

conjugate domain Ωc to produce an equivalent conjugate

error function

Ec(Xc) =M−2
c Ec(Xc)− Ic(McXc) (5)

We then can set up the total squared-error cost function

J for the full image collection as

J =
1

2

C
∑

c=1

∫

Ω′

c

(E ′

c)
2 dX ′

c =
1

2

C
∑

c=1

∫

Ωc

M2
c E

2
c dXc (6)

whose time derivative is

dJ

dt
=

C
∑

c=1

∫

Ωc

Ec
dEc

dt
dXc (7)

Note that unlike in [51] our cost function (6) contains

no artificial regularizers and only measures the image

matching-error. If images are sufficiently defocused, there

should be natural regularization that occurs through the use

of the thin lens model. This is already hinted at in the form

of (3), where the irradiance is a weighted average over all

scene points that contribute to a respective image point, and

will be even more evident in the evolution equation that is

derived in Section 3.

We want to minimize our cost (6) with respect to S,

L, and K, and this is done using an alternating gradient

descent procedure. First, we fix an initial estimate for the

surface shape S and find the optimal radiance functions

L and K for this estimate. Then, we fix L and K and

update S according to the gradient descent flow of J with

respect to S. These two steps are then repeated until

convergence. From (7) we can see that in order to find the

sensitivity of J to perturbations in the surface shape and

scene radiance, and thus obtain the desired gradient descent

evolution equations, we need to find the corresponding

sensitivities of the irradiance E.

3. Surface Evolution Equation

Here we develop the equation governing the desired

evolution of S that minimizes our cost (6). In order to

obtain this evolution, it is necessary to compute the flux

differential across a deforming surface as well as specific

gradients along the occluding surface boundary and its

projection in the presence of defocus. The former gives the

sensitivity of the image irradiance to perturbations of the

surface while the latter allows for the order of integration in

the cost derivative to be reversed. The derivation of these

novel geometric equations is lengthy, so for the sake of

space and clarity of notation only the final results of these

computations are shown here and only with respect to a

single image. However, it is straightforward to apply these

results to the entire image collection.

3.1. Irradiance sensitivity

Using a change of variables (2a) and noting that cos θ =
−er ·N , ΓS(X)∪ΓB(X) = Γ(X), and ΓS(X)∩ΓB(X) =
Ø, we may rewrite the first term of (3) as a flux integral:

E(X) = −

∫

S(ΓS(X))

Q̂ cosα

r2
er ·N dS +

∫

Γ(X)

K cosαdα

(8)

where Q̂
.
= L̂− K̂, and L̂ : R3 → R and K̂ : R3 → R are

volumetric extensions of L and K such that L̂(S) = L(S)
and K̂(B) = K(B). If we assume that L̂ and K̂ are fixed

and that only S evolves, then the time derivative of (8), after

simplification, is



dE

dt
(X)=

∫

S∗

(ΓS(X))

(

Q̂∗ cosα∗κ∗r

(r∗)2
√

(κ∗r)
2 + (τ∗r )

2

)

(S∗

t ·N∗)ds∗

−

∫

S(ΓS(X))

∇Q̂ · er
cosα

r2
(St ·N) dS (9)

where ds∗ denotes the arclength element along the

integration boundary S∗, and κ∗r and τ∗r are the normal

curvature and geodesic torsion of S in the direction e∗r ,

respectively. Note that the second term of (8) is independent

of S and thus vanishes when taking the derivative. Also,

only points on S∗ that lie on an occluding boundary (e.g.

at least one detected ray emitted from that point satisfies

e∗r ·N
∗ = 0) contribute to the contour integral in (9).

3.2. Total matching error sensitivity

Inserting the irradiance sensitivity (9) into the cost

derivative (7) and swapping the order of integration allows

us to extract the gradient descent flow for S as

St =

[

−
Q̂

√

1− (ez ·N)2

(

∫

Ω∗

(ΓS(S))

E∗κ∗r cosα
∗

r∗
dsX

)

+∇Q̂ ·

(

∫

ΓS(S)

E cos θ er dθ

)]

N (10)

where Ω∗

(ΓS(S)) is the line of points in the focal plane that

make rays satisfying the occluding boundary condition with

the surface point S, and dsX is the arclength element in the

focal plane.

Notice that each surface point is updated by a weighted

averaging of the pointwise error E over the region of

the image contributed to by that surface point. This is

the key that leads to the natural regularization mentioned

previously, as the impact of noise or other outlying

measurements in the data will be averaged out, with the

size of the averaging window correlating with the amount

of defocus present in the images. Also, in the special case

of modeling L andK as constant functions, the second term

vanishes, meaning that only surface points on the occluding

boundary need to be considered.

One final thing to note is that the first integral of (10)

represents a diffusion term due to the presence of the radial

curvature κr. Since both Q̂ and E can have either positive

or negative sign, this diffusion can be in the backwards

direction and thus be numerically unstable. If the curvature

term were outside the integral, we could simply set κr =
−1, which would at least guarantee the update at each point

is in the right direction since we know that κr is negative at

occluding boundary points (since we are using an outward

normal). But since κr is inside the integral, doing this

normalization could potentially change the overall sign of

the integral and thus the direction of the update. This

can be avoided by keeping track of the sign of the actual

gradient and flipping the sign of the normalized update

if necessary, as the computation of the radial curvature

is relatively inexpensive. However, in doing so we are

no longer descending down the exact gradient of the cost

function J , though we are traversing a shallower trajectory

that will still lead to its minimum. Such a modification turns

the diffusion into an advection, which can be stabilized with

the proper choice of time step.

4. Scene Radiance Estimation

Once the surface has been updated according to (10), we

need to update L and K as to be optimal with this new

shape. In the general case of smooth radiance functions,

this can be done by solving an optimization problem on

the manifolds S and B, the specifics of which will be

explored in future work. In the special case that the surface

and background radiance functions are separately modeled

as constant functions, which is the case considered in the

experiments presented here, then the optimal values of L
and K individually can be found by finding where the

derivative of J vanishes, yielding

Lopt =

C
∑

c=1

(

∫

Ωc

IcW
′

S,c −KW ′

B,cW
′

S,c dX
′

c

)

C
∑

c=1

∫

Ωc

W
′2
S,c dX

′

c

(11a)

Kopt =

C
∑

c=1

(

∫

Ωc

IcW
′

B,c − LW ′

B,cW
′

S,c dX
′

c

)

C
∑

c=1

∫

Ωc

W
′2
B,c dX

′

c

(11b)

where W ′

i,c

.
= M−2

∫

Γi(Xc)
cosαdα for i ∈ {S,B}.

Note that (11a) and (11b) are coupled, so they need to

be applied in an alternating fashion until steady state is

reached. However, it was seen in practice that a good steady

state approximation is usually reached after one application

despite the coupling. It should be noted that this piecewise-

constant radiance case assumes that the images themselves

can be well-approximated as piecewise-constant, with well-

defined foreground and background regions, reminiscent of

Chan-Vese image segmentation but with the addition of a

blurred transition region.

5. Experimental Results

There are few publically available datasets for combined

stereo and depth-from-defocus, and these rarely contain the

needed camera parameters for our algorithm, so custom

datasets were acquired. Here we show the results of



Figure 2. Lightly defocused (top left), heavily defocused (top

right), and focused (bottom) images from the tetrahedron data set

(2 of 30 views). Defocus blur makes sharp corners appear rounded

and causes the tetrahedron to appear larger as the level of defocus

increases

testing our method on three different image sets, two photo-

realistic sets obtained using Blender and one set obtained

with a real camera. Due to space constraints, only a

small selection of these images are displayed here. All

experiments were run using an Intel i7-4790 processor

with multi-threading, assumed that the radiance functions

L and K were constant functions, and used a level set

implementation with a 128 × 128 × 128 voxel grid. The

dimensions of the Blender-generated and real images were

480 × 480 and 576 × 384 respectively. For comparison

purposes, we also applied the pinhole-based method of [51]

to these data sets.

The first data set consisted of a tetrahedron imaged by 30

cameras placed in a 20m diameter ring around and slightly

above the tetrahedron. The first 15 cameras were lightly

defocused with f = 50mm, d = f/1.4, and z = 2m,

and the remaining 15 cameras were heavily defocused with

f = 50mm, d = f/1, and z = 500mm. Such a

situation could occur in an application combining stereo

and depth-from-defocus. The top row of Figure 2 shows

two of the images produced by these cameras while the

bottom row shows focused versions of these views. As

would be expected, the tetrahedron appears larger in all

the defocused images due to defocus blur, and the edges

and corners appear rounded instead of sharp; these effects

are significantly more apparent in the heavily defocused

images. The initial surface used was an ellipsoid containing

the tetrahedron.

Figure 3 shows two viewpoints of the reconstructed

models obtained using both the thin lens method and

pinhole method. The pinhole method was unsuccessful

and reconstructs the shape as a conglomeration of

two tetrahedra of different thicknesses. This failure

occurred because the pinhole model cannot reconcile

the discrepancies between the two apparent sizes of the

Figure 3. Two viewpoints of the thin lens-based reconstruction

(top) and the pinhole-based reconstruction (bottom) for the

tetrahedron data set. The thin lens method successfully

reconstructed the single tetrahedron while the pinhole method

could not reconcile the two different thicknesses visible in the

images

tetrahedron that can be seen in the images due to its implicit

assumption of perfect focus. In contrast, our thin lens

method treats defocus as an imaging property, so it was

able to account for the different levels of defocus blur and

reconstruct the tetrahedron as a single coherent shape.

To test our method’s performance on rounded and

partially concave shapes, the second data set consisted of

a slanted dumbbell, with the cameras situated as before but

this time all with identical focal parameters of f = 50mm,

d = f/1.4, and z = 500mm. Such a situation could arise in

a multiview application where the cameras are misfocused.

The imaged scene is illustrated in Figure 4, with the left

and right images corresponding to a focused image of the

dumbbell and a defocused image actually used for the

reconstruction. Again, the initial surface was an ellipsoid

containing the dumbbell, and the resulting reconstructions

from each method are shown in the left column of Figure

5. The thin lens reconstruction more accurately models the

sharp edges of and the actual thickness of the disks and

rod compared to the pinhole reconstruction. However, the

pinhole reconstruction has a more appealing, though less

accurate in terms of proportions, shape as it was able to

fully carve out the area where the rod and disks intersect.

The experiment was repeated with noisy versions of the

dumbbell images, and the resulting reconstructions can be

seen in the right column of Figure 5. While the noise barely

affected the quality of the thin lens reconstruction, it caused

a noticeable decrease in the smoothness of the pinhole

reconstruction even with a heavy smoothness penalty. This

was due to the averaging that takes place in the surface

update for the thin lens method but which is not present in

the pinhole method.

To test our method’s potential on real images, the third

data set consisted of 32 images of a cube placed upon a thin



Figure 4. Focused (left) and defocused (right images from the

dumbbell data set (1 of 30 views). Defocus blur makes the entire

object appear wider, with less of a gap between the disks

trapezoidal-prism; a circle pattern was used for calibration,

with the pattern being covered for the images used in the

actual reconstruction. The camera (Nikon D3100 with

included lens) was fixed on a tripod with the object on a

turntable that was rotated to generate images at different

viewpoints. One of these viewpoints can be seen in the top

row Figure 7, with a focused view on the left and defocused

view on the right. As with the Blender images, the sharp

edges of the model appear rounded and elongated, and these

blurred edges make the model’s proportions appear larger.

For the defocused images, the camera had f = 32mm,

d = f/5, and z = 173mm. The initial surface was a box

containing the model.

The obtained reconstructions in Figure 8 show that the

thin lens method was able to reconstruct the model’s shape

and size more accurately than the pinhole method. The

pinhole method resulted in a too-thick reconstruction where

the cavity under the cube is only partially carved out; in

contrast, the proper sizes of the model’s shapes and the

cavity can be seen in the thin lens reconstruction. The size

difference is also seen in the silhouettes shown in the bottom

of Figure 7. In addition, the thin lens reconstruction is

smoother in several areas than the pinhole reconstruction,

like the cube face shown in Figure 8, despite not having

any explicit smoothness penalty. Four snapshots of the

evolution process are shown in Figure 9.

Quantitative results for these experiments are

summarized in Table 1. Due to the increased number

of pixels needed to process for every updated surface point,

from the line integral in the computation of St (10), the

thin lens method is significantly more computationally

expensive than the pinhole method. The above experiments

Figure 5. One viewpoint (left) of the thin lens-based reconstruction

(top) and the pinhole-based reconstruction (bottom) for the

dumbbell data set. The thin lens method more accurately

reconstructs the sharp edges and actual thickness of the object

compared to the pinhole method, but it gives a lower visual quality

from its inability to fully carve out the rod-disk intersection. When

noise was added (right), the thin lens reconstruction was barely

affected while the pinhole reconstruction was noticeably more

noisy and less smooth

had iteration times ranging from 1 to 3.5 minutes for the

thin lens method while the pinhole method ran consistently

at 100ms or less per iteration. However, the thin lens

method converged faster (in terms of the number of

iterations) than the pinhole method for the tetrahedron and

model data sets. Also, the relative increase in necessary

iterations between the noiseless and noisy dumbbell images

was significantly less for the thin lens method (80) than for

the pinhole method (200). To measure the quantitative error

of the final reconstructions relative to the input images,

we used the total squared-error between the predicted

(calculated using the thin lens forward model) and the

actual pixel intensity. For comparison purposes, error for

the noisy dumbbell reconstructions were computed with

respect to the noiseless images. The thin lens method gave

a noticeably lower error for all data sets.

6. Conclusion

We have developed a mathematical framework, based on

novel geometric computations, for multiview reconstruction

Figure 6. Four snapshots of the evolving surface for the dumbbell data set using the thin lens method after 0, 160, 240, and 400 iterations



Figure 7. Focused (top left) and defocused (top right) images from

the model data set (1 of 32 views). Sharp features like occluding

edges are blurred outward, making the model appear larger and

more rounded. The blurred silhouette of the pinhole reconstruction

(bottom left) spreads out into the background while that of the thin

lens reconstruction (bottom right) better matches the foreground

region of the defocused images

of dense surfaces that is effective when the input images

are defocused, a situation where current pinhole-based

methods fail. It combines stereo with depth-from-defocus

as the camera is modeled as a thin lens instead of a

pinhole; this allows for the successful reconstruction of

sharp edges and corners that appear rounded in images

due to defocus blur, as a thin lens appropriately models

defocus blur as a property of the imaging process and not

of the scene. However, this performance comes at the cost

of increased computation time with the need to integrate

over a sizable number of pixels for every updated surface

point each iteration. Even so, this very same integration

grants our method a form of natural regularization that

Figure 8. Two viewpoints of the thin lens-based (left) and pinhole-

based reconstructions (right) for the model data set. Even in its

current form, the thin lens method is able to more accurately

reconstruct the size of the model than the pinhole method. Greater

improvement is expected once more work has been done to fully

develop this method for the more general smooth radiance case

decreases the need for artificial regularizers, and this
benefit is proportional to the level of defocus. Once fully

developed, our thin lens-based method has the potential to

be an effective complement to existing methods that can

be applied to a large number of previously unsupported

situations where the images are not well-focused or the one-

cue assumptions of stereo and depth-from-defocus are not

met.
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Figure 9. Four snapshots of the evolving surface for the model data set using the thin lens method after 0, 20, 40, and 74 iterations

Table 1. Performance Comparison of Thin Lens and Pinhole Reconstruction Methods

Data Set Error # Iterations Max. Iter. Time (s)

Thin Lens Pinhole Thin Lens Pinhole Thin Lens Pinhole

Tetrahedron 9.10× 109 1.03× 1010 120 160 65 0.05

Dumbbell 1.91× 109 7.11× 109 400 200 217 0.1

Noisy Dumbbell 1.87× 109 7.18× 109 480 400 217 0.1

Model 4.34× 109 1.17× 1010 74 170 51 0.1

The thin lens reconstructions were more photometrically consistent than the pinhole reconstructions,

requiring fewer iterations to converge for half the datasets, including the real image one, even though

each iteration itself was more costly
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