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Abstract

Motivated by applications from computer vision to bioin-

formatics, the field of shape analysis deals with problems

where one wants to analyze geometric objects, such as

curves, while ignoring actions that preserve their shape,

such as translations, rotations, scalings, or reparametriza-

tions. Mathematical tools have been developed to define

notions of distances, averages, and optimal deformations

for geometric objects. One such framework, which has

proven to be successful in many applications, is based

on the square root velocity (SRV) transform, which al-

lows one to define a computable distance between spatial

curves regardless of how they are parametrized. This pa-

per introduces a supervised deep learning framework for

the direct computation of SRV distances between curves,

which usually requires an optimization over the group of

reparametrizations that act on the curves. The benefits of

our approach in terms of computational speed and accu-

racy are illustrated via several numerical experiments on

both synthetic and real data.

1. Introduction

Motivated by applications from computer vision to

bioinformatics, the field of elastic shape analysis deals with

problems where one needs to analyze the variability of ge-

ometric objects [17], [1], [18], [12], [5]. In this arti-

cle, we address the computation of elastic geodesic dis-

tances between geometric curves in one and higher di-

mensions. By geometric curves, we mean curves modulo

shape-preserving transformations, i.e., curves whose im-

ages are equal up to translations, rotations, scalings and

reparametrizations. Mathematically, we model the space of

all geometric curves as a quotient space of the set of ab-

solutely continuous curves. In Section 2, we discuss the

construction of this space, and how the square root velocity

*M. Bauer and E. Hartman were supported by NSF grants 1953244

and 1912037. Y. Sukurdeep and N. Charon were supported by NSF grants
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(SRV) transform allows us to define the so-called SRV dis-

tance between geometric curves. For additional details, we

refer interested readers to the the vast literature on elastic

metrics [17], [13], [19], [16], [2].

1.1. Background & Related Work

The SRV distance [17] quantifies dissimilarity between

geometric curves, and can be used for averaging, classify-

ing and clustering datasets of functions or curves, which

are prevalent tasks in fields such as computer vision and

medical imaging. However, computing SRV distances be-

tween pairs of geometric curves is a nontrivial endeavor, as

it typically necessitates solving an infinite dimensional opti-

mization problem over the set of reparametrizations that act

on the curves. These optimal reparametrizations are guar-

anteed to exist for certain classes of curves, such as C1-

curves [4], and piecewise linear curves [10]. The beauty of

the result in [10] lies in the fact that it not only provides an

existence result, but also describes an algorithm to explic-

itly construct optimal reparametrizations for piecewise lin-

ear curves. Although this algorithm allows one to compute

exact SRV distances, it has a high polynomial complexity,

rendering it impractical for large datasets that are typically

encountered in applications.

Consequently, faster approaches have emerged to com-

pute SRV distances in practical contexts [7], [17]. Several

such algorithms rely on dynamic programming (DP) to ap-

proximate optimal reparametrizations, operating by search-

ing over subsets of all possible reparametrizations. The

different DP-based approaches achieve runtimes of O(n)
to O(n3), where n is the number of samples used to dis-

cretize the curves, thus providing fast over-estimates of the

true SRV distance [3], [6], [17]. Nevertheless, DP also in-

curs a significant computational cost when working with

very large datasets, implying that there is a need to de-

velop increasingly efficient approaches for handling modern

datasets of shapes. Towards that end, deep learning (DL)

approaches have recently been introduced to estimate opti-

mal reparametrizations for functions and curves, including

supervised [11], [14] and unsupervised [9], [15] methods.
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In particular, Nunez and Joshi train a convolutional neu-

ral network (CNN) on approximate reparametrizations ob-

tained from DP in order to estimate optimal reparametriza-

tions for functions and curves [14].

1.2. Contributions

In this paper, we propose a supervised DL framework for

directly estimating SRV distances between functions and

between spatial curves, without the need to estimate opti-

mal reparametrizations. More specifically, we train a deep

CNN to learn SRV distances, using training data consisting

of pairs of discretized functions or curves, together with the

SRV distance between them as labels.

As a theoretical contribution that is of interest on its own,

we extend the existence results for optimal reparametriza-

tions of [10, 4] to the space of closed curves, and to the

spaces of (open or closed) curves modulo rotations. These

results were previously only known for open curves, and

also did not consider the action of the rotation group. This

in turn allows us to directly generalize the algorithm of [10]

for calculating exact SRV distances for open or closed

curves modulo rotations.

Consequently, and in contrast to e.g. [14], we use these

exact SRV distances as training labels for our network,

rather than SRV distance over-estimates computed via DP.

This reduces bias in the network’s predictions. Another dis-

tinct feature of our framework is that unlike the aforemen-

tioned DP and DL approaches, we bypass the need to es-

timate optimal reparametrizations, instead directly estimat-

ing SRV distances. This is especially convenient for certain

unsupervised learning tasks involving datasets of shapes,

such as clustering applications with curves, where one only

needs rapidly-computed pairwise distances rather than op-

timal reparametrization maps between the shapes.

Moreover, using a neural network to predict a single

number (the SRV distance) rather than a full reparametriza-

tion map is an obviously less complex learning problem,

and can thus be achieved with a smaller training set, which

is advantageous in the context of shape analysis where vast

amounts of publicly available data are not as readily avail-

able as in e.g., the imaging sciences. Furthermore, a fun-

damental property of the SRV distance is its invariance to

parametrizations, which we leverage to introduce a shape-

preserving data augmentation training strategy, outlined in

Section 3. This training strategy allows us to augment the

size of our training set while also improving the variability

within training samples, which ultimately allows the trained

network to produce robust, parametrization-invariant SRV

distance estimates.

We are also providing an open-source version of

the code for our DL framework, which is pub-

licly available on github at https://github.com/emmanuel-

hartman/supervisedDL-SRVFdistances.

To illustrate our DL framework’s benefits, we show that

our trained CNN’s SRV distance estimates are comparable

to or even more accurate than DP distances, while also be-

ing orders of magnitude faster in terms of computation time.

2. The Shape Space and SRV Distance

We begin with a brief overview of the square root ve-

locity (SRV) framework for defining a computable elastic

distance between geometric curves. In this framework, we

start with parametrized curves, modelled as elements of the

space of vector-valued absolutely continuous functions, de-

noted AC(M,Rd). We have open curves if the parameter

space M is the unit interval [0, 1] ⊂ R, and closed curves

if M is the unit circle S1. When d = 1, we have one-

dimensional curves, which we call functions.

In shape analysis for curves, one is interested in the

space of all geometric curves, i.e., parametrized curves

whose images are equal up to translations, rotations and

reparametrizations. Note that the SRV framework, and thus

our DL approach, can easily be extended to handle curves

modulo scalings as well. We now briefly outline the con-

struction of the space of all geometric curves.

To identify parametrized curves that only differ by a

translation, we work with the space of absolutely contin-

uous curves such that c(0) = 0, denoted by AC0(M,Rd).
We will later see that the SRV distance is naturally defined

on this linear subspace of all absolutely continuous curves.

Identifying curves that only differ by a reparametrization

or rotation is a more delicate matter and the main source

of complication in shape analysis. This is accomplished by

defining the following equivalence relation for parametrized

curves c1, c2 ∈ AC0(M,Rd). For open curves, we de-

fine c1 ∼ c2 if and only if they have the same unit speed

parametrization after the application of an appropriate rota-

tion. For closed curves, we define c1 ∼ c2 if and only if they

have the same unit speed parametrization after an appropri-

ate choice of “starting point” and an appropriate rotation.1

We denote the equivalence class of a curve c under this rela-

tion by [c]. We then define the space of all geometric curves

as the quotient space:

S(M,Rd) = AC0(M,Rd)/ ∼ ,

and will refer to it as the shape space of curves, or simply

as the shape space for brevity when there is no ambiguity.

We now outline how the SRV transform allows us to de-

fine a distance function on this shape space. The SRV trans-

form is the mapping Q : AC0(M,Rd) → L2(M,Rd), de-

1For functions, i.e., d = 1, the rotation group is trivial and thus the

equivalence relation reduces to factoring out the reparametrization action

only.
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fined by:

c(·) 7→ Q(c)(·) :=





c′(·)√
|c′(·)|

if |c′(·)| > 0,

0 otherwise.

Here, c′ denotes the first derivative of the parametrized

curve c ∈ AC0(M,Rd). This transform allows us to de-

fine the SRV distance between parametrized curves c1, c2 ∈
AC0(M,Rd) by pulling back the L2 metric on L2(M,Rd)
as follows:

dQ(c1, c2)
2 := ‖Q(c1)−Q(c2)‖2L2

=

∫

M

∣∣∣∣∣
c′1(t)√
|c′1(t)|

− c′2(t)√
|c′2(t)|

∣∣∣∣∣

2

dt.

It is worth noting that in the case of open curves, this

distance can be interpreted as the geodesic distance induced

by a Riemannian metric. For closed curves, it is only a first

order approximation of a geodesic distance. The key prop-

erty of this distance is its invariance under both the action

of the group of rotations SO(d), and that of the group of

diffeomorphisms of the parameter space Diff(M). The lat-

ter can be seen by a simple change of variables in the above

integral. Thus, the SRV distance descends to a distance on

the quotient shape space S(M,Rd), given by:

dS([c1], [c2]) = inf
γ∈Diff(M)
O∈SO(d)

dQ
(
c1,O ⋆

(
c2 ◦ γ

))
. (1)

With a slight abuse of terminology, we henceforth refer

to the quotient space distance, namely dS(·, ·), as the SRV

distance. It follows that computing the SRV distance be-

tween geometric curves involves solving a joint optimiza-

tion problem over the finite dimensional group SO(d) and

the infinite dimensional reparametrization group Diff(M).
The main challenge is the minimization over Diff(M),
which is usually accomplished by discretizing the group

into a finite dimensional approximation space, and solv-

ing the discretized problem via a dynamic programming ap-

proach.

It is important to note that in general, the existence of a

reparametrization γ ∈ Diff(M) attaining the infimum in (1)

is not guaranteed. However, under some additional regular-

ity assumptions on the curves c1, c2, one can recover such

existence results. In the following, we discuss the existence

of optimal reparametrizations and rotations in (1), both for

the case of open curves (i.e., M = [0, 1]) as well as closed

curves (i.e., M = S1).

We first introduce the semi-group of generalized

reparametrizations for open curves:

Γ̄([0, 1]) = {γ ∈ AC([0, 1], [0, 1]) : γ is onto; γ′ ≥ 0 a.e.} .

To introduce the analogous construction for the case of

closed curves, we view S1 as R/Z. We then define the shift

operator on S1 via:

Sθ : S1 → S1; λ 7→ λ+ θ.

This allows us to define the semi-group of generalized

reparametrizations on S1 via:

Γ̄(S1) =
{
Sθ ◦ γ∗ : θ ∈ S1 and γ∗ ∈ Γ̄([0, 1])

}
.

This allows us to formulate the following existence result,

which is the main theoretical contribution of the present ar-

ticle:

Theorem 1. Let c1, c2 ∈ AC(M,Rd) such that either both

are of class C1, or at least one of them is piecewise linear.

Assume also that c′1 and c′2 are both nonzero a.e. on M .

Then there exists a pair of generalized reparametrization

functions (γ1, γ2) ∈ Γ̄(M) × Γ̄(M) and a rotation O ∈
SO(d) such that:

dS([c1], [c2]) = dQ(c1 ◦ γ1, O ⋆ (c2 ◦ γ2)).

Previously this result was only known for the space of

open curves and did not consider the action of the rotation

group, see [10, 4]. The proof of Theorem 1, which builds

up on these results, is postponed to the appendix.

For piecewise linear curves c1, c2 ∈ AC0(M,Rd),
the results of [10] and Theorem 1 even lead to an al-

gorithm that allows us to explicitly construct these opti-

mal reparametrizations for calculating the precise quotient

space distance, see [10]. This algorithm plays a fundamen-

tal role in our proposed DL framework, as we use it to calcu-

late exact quotient SRV distances in order to generate labels

for our training data, as will be outlined in the next section.

3. Deep Learning of SRV Distances

While the algorithm in [10] allows us to compute exact

SRV distances, it is computationally expensive, making it

impractical for working with large datasets of shapes. Con-

sequently, there is a need to develop approaches that are

more computationally efficient in order to calculate SRV

distances. We address this need by introducing a supervised

DL framework that provides fast, accurate and robust SRV

distance estimates.

3.1. Network Architecture

We train a Siamese convolutional neural network (CNN)

to learn the SRV distance between geometric curves. We

use training data consisting of pairs of discretized R
d val-

ued curves, together with their SRV distance as labels. Each

individual curve is sampled at n vertices and represented as

a flattened vector of length n × d, before being fed as in-

put to the network. Our Siamese CNN has a twin structure,
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Figure 1. Training step and network structure diagram for Shape Preserving Data Augmentation based training: Weights contained in the

red blocks are trainable and the Siamese convolutional nodes have shared weights. Specific parameter details of the network architecture

can be found in Section 3.1. The green blocks perform shape preserving data augmentation as described in Section 3.2.

consisting of two components which have identical archi-

tectures and use the same weights. To be more specific,

each component of the CNN operates on an individual dis-

cretized curve, which is passed through a series of convo-

lutional layers with kernels of size 5, followed each time

by batch normalization, a rectified linear unit (ReLU) ac-

tivation, and a max-pooling layer with pool size 2. This

produces two outputs, which are concatenated and passed

through four dense layers whose widths are proportional to

d, with ReLU activations being used in each dense layer.

The network then outputs a single real number: the SRV

distance between the two curves. We provide a schematic

description of the network architecture in Fig. 1.

3.2. Training Method

We create training and testing sets for our network by

randomly generating pairs of functions or curves, or by

picking them from an existing dataset, and labelling them

with their SRV distance. We use exact distances computed

with the algorithm of [10] as labels for functions and 2D

curves, but due to this algorithm’s high complexity, we in-

stead use DP distances as labels for 3D curves.

Computing these SRV distance labels using the exact al-

gorithm or DP may be very time consuming, which could

limit the size of our training set in practice. Thankfully,

from a base training set, one can easily generate more train-

ing samples at no extra cost by applying shape-preserving

transformations, such as resampling and rotations, to both

curves. Indeed, the quotient SRV distance is invariant to

reparametrizations (i.e., to resampling in the discrete situa-

Figure 2. Example of Shape Preserving Data Augmentation: The

top curve is an example of a parameterization of a curve from the

Swedish Leaf II dataset, see Section 4 for a description of this

dataset. The three curves on the bottom represent parameteriza-

tions and rotations of this curve as produced by the shape preserv-

ing data augmentation described in Section 3.2.

tion) and to rotations, implying that the distance between re-

sampled and/or rotated curves remains unchanged and need

not be recomputed. This data augmentation strategy allows

the network to see a wider variety of sampling patterns and
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rotations for the same curve during training, which helps

it to learn and predict distances that are truly invariant to

reparametrizations and rotations. Moreover, since resam-

pling and rotating curves is computationally inexpensive,

this procedure can be performed at each iteration of the

training step, without incurring any additional storage for

new training samples. We empirically observed that this

shape-preserving data augmentation-based training method

reduced overfitting in the distance learned by the network.

The training itself is performed using an Adam op-

timization procedure [8]. We observed relatively fast

convergence in all cases, with convergence curves shown

in Fig. 3. We refer readers to the code documentation

on https://github.com/emmanuel-hartman/supervisedDL-

SRVFdistances for further training details, including

information on the exact training parameters such as the

batchsize for each epoch of training, and the parameters

involved in the shape-preserving data augmentation training

step.

Figure 3. On both figures, the x-axis represents epochs, and on

the y-axis, we plot the mean squared error of the network on the

training data (blue), as well as on unseen testing data (red). Con-

vergence curves for network trained on open, real-valued functions

discretized at 90 points from our Synthetic I data set, trained for

500 epochs (left figure). Convergence curves for network trained

on closed, 2-dimensional curves discretized at 100 points from the

Kimia dataset, trained for 50 epochs (right figure). Descriptions of

the datasets are given in Section 4.

4. Numerical Experiments

We now present empirical results demonstrating the per-

formance of our DL approach for estimating SRV distances

on real-valued functions, and on curves in R
2 and R

3. As

we shall see, the experiments show that when compared to

DP, our approach produces SRV distance estimates at a sig-

nificantly lower numerical cost, while being comparable,

and sometimes superior, in terms of accuracy.

4.1. Computation Method

To compute SRV distances using the exact algorithm and

DP, we used Martins Bruveris’ package2, which builds on

the DP code of FSU’s Statistical Shape Analysis and Model-

ing Group. Our network was implemented on TensorFlow.

All computation times using the different algorithms were

recorded on an Intel Xeon X5650 2.66 GHz CPU with a Gi-

gabyte GeForce GTX 1060 1582 MHz GPU. A comparision

of the computation times for the various algorithms can be

found in Table 1. One can clearly see that the trained net-

work is several orders of magnitude faster than both DP and

the exact algorithm.

Exact DP DL (CPU) DL (GPU)

1D 2× 103 5× 102 5× 10−2 2× 10−2

2D 2× 105 8× 102 2× 10−1 3× 10−2

Table 1. Computation time for one SRV distance using several differ-

ent algorithms, in milliseconds.

4.2. Evaluation Method

For functions and 2D curves: To evaluate the trained

network’s accuracy for functions and 2D curves, we use the

mean relative error (MRE) between its output and the true

SRV distances on a test set, computed via the exact algo-

rithm. As a secondary measure of estimation quality, we

use the Pearson correlation coefficient

ρyŷ =

N∑
i=1

(yi − y)(ŷi − ŷ)

√
N∑
i=1

(yi − y)2

√
N∑
i=1

(ŷi − ŷ)2

between the network’s output and exact distances on a test

set of functions or 2D curves. Here N is the number of

training samples, {yi}Ni=1 are the exact distances, {ŷi}Ni=1

are the outputs of the network, with y = 1
N

∑N
i=1 yi and

ŷ = 1
N

∑N
i=1 ŷi being their respective sample means. A low

MRE and a strong positive correlation coefficient indicates

a good performance of the network.

For 3D curves: In addition to the results for functions

and planar curves, we present preliminary results for curves

in R
3. As the computational complexity of the exact algo-

rithm is orders of magnitude higher for curves in R
3 when

compared to the case of functions and curves in R
2, we only

label 3D curves with DP distances. Consequently we can

only evaluate the CNN’s performance for 3D curves via the

correlation coefficient between its output and DP distances.

To avoid bias in our results, elements of the test set are

never contained in the training set, which is used solely

2https://github.com/martinsbruveris/libsrvf
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for the purpose of calibrating the network. Furthermore, to

assess our network’s generalization capabilities, we make

sure that the trained network is tested on data that is sig-

nificantly different compared to the data used for train-

ing, c.f. Figures 4 and 5.

4.3. Experiments with functions

Datasets: First, we tested our network’s ability to pre-

dict SRV distances for functions, using both synthetic and

real data. The synthetic data was created by generating

functions sampled at 90 evenly spaced points on the unit

interval with random arc length. We note that the shape

class of a function modulo reparametrizations is entirely

determined by its local maxima and minima, as it is de-

termined by its constant speed parameterization which is

a linear interpolation between the local maxima and min-

ima. Thus, the synthetic function data is generated by

drawing the number of extrema for our function from a

N (µ, σ) distribution, randomly assigning values for these

extrema, and then randomly choosing a function with 90
breakpoints from the shape class determined by the gener-

ated extrema. We created two different synthetic datasets:

the first one with parameters (µ, σ) = (18, 6), and the sec-

ond with (µ, σ) = (30, 10). These datasets, dubbed Syn-

thetic I and Synthetic II respectively, each contain 100,000

pairs of functions labelled with their exact distances, par-

titioned into 99,000 training cases and 1,000 testing cases.

For the real dataset, we use CPC Global Unified Precipita-

tion data from the NOAA/OAR/ESRL PSL, Boulder, Col-

orado, USA3, from which we extracted 90 days of precipi-

tation data across several locations and years. We randomly

selected 400 samples from this database, computed exact

pairwise distances, and partitioned them into a set of 89700

distances for training, and 9,900 for testing. See Fig. 4 for

examples from the different datasets.

Results: First, we highlight the difference in perfor-

mance between our trained network and DP, see Table 2

and Fig. 4. When trained and validated on the same type

of data, the network significantly outperforms DP across all

three datasets, both in terms of the MRE and correlation

coefficient with respect to the exact distances, see Table 2.

To demonstrate our network’s generalization capabili-

ties, we trained it on one type of data and tested it on a dif-

ferent dataset, e.g., we trained on synthetic data but tested

on CPC precipitation data. While this leads to a slight in-

crease in prediction error, the network still outperforms DP

on both measures by a large margin, see Table 3.

3https://psl.noaa.gov/

Figure 4. Five examples from Synthetic I (top-left) and the CPC

Precipitation dataset (top-right). Third and fourth figure: Com-

parison of DP (red) and Trained Network (blue). Scatter plot of

relative errors for 1000 testing cases from the CPC Precipitation

dataset, using a network trained on Synthetic I (bottom-left). Cor-

responding correlation plot for both methods, with exact distances

on the y-axis, and estimated distances on the x-axis, and the line

y = x in green (bottom-right).

Dataset
MRE Corr.

DP DL DP DL

Synthetic I 0.44551 0.04346 0.84307 0.96770

Synthetic II 0.45949 0.03806 0.87123 0.97053

CPC Precip. 0.45853 0.03722 0.85452 0.96090

Table 2. Comparison between DP and DL

Training Set Testing Set MRE Corr.

Synthetic I Synthetic II 0.05520 0.96782

Synthetic I CPC Precip. 0.08088 0.95264

Synthetic II Synthetic I 0.05206 0.96110

Synthetic II CPC Precip. 0.07093 0.94888

Table 3. Generalization results across several testing sets

4.4. Experiments with curves in R
2

Datasets: We used data from the MPEG-74 and Swedish

leaf datasets5, which contain images of objects whose

boundaries were extracted and treated as 2D curves, dis-

cretized with 100 points, see Fig. 5. To extract discretized

boundary curves from these datasets, we binarized each

image via Otsu’s algorithm, then extracted vertices on the

boundary using the Moore-Neighbor tracing algorithm, be-

4https://dabi.temple.edu/external/shape/MPEG7/dataset.html
5https://www.cvl.isy.liu.se/en/research/datasets/swedish-leaf/
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fore downsampling to 100 points.

We trained the network on 229162 distinct pairs of

curves labelled with exact distances from the MPEG-7

dataset, which contains a diverse array of 2D shapes from

many different shape classes, see Fig. 5. We tested the net-

work on two versions of the Swedish leaf dataset, called

Swedish Leaf I and II respectively. Swedish Leaf I contains

curves with arc length parametrizations, i.e., discretized

with n points that are uniformly distributed across the curve.

Swedish Leaf II contains “adversarial parametrizations”,

i.e., curves with n points that are far from uniformly dis-

tributed across the curve, with many points concentrated on

a small portion of the curve, see Fig. 6.

Figure 5. Five examples from the MPEG-7 dataset (left). Five

examples from the Swedish leaf dataset (right).

Figure 6. Example of a curve from the Swedish Leaf I dataset,

where curves have arc length parametrization (left), and from the

Swedish Leaf II dataset with adversarial parametrizations (right).

Results: Due to the higher dimensionality and complex-

ity of the data, the network’s performance drops compared

to the case of functions. However, we still obtain a high

correlation coefficient with the exact distance across both

datasets, namely 0.924 for Swedish Leaf I, and 0.917 for

Swedish Leaf II. Meanwhile, the corresponding correlation

coefficient for DP distances is 0.996 for Swedish Leaf I, but

drops significantly to 0.899 for Swedish Leaf II. These ob-

servations show comparable performance between our DL

framework and DP, with DP being more accurate for curves

that are already well-aligned (e.g., for those in Swedish

Leaf I), and DL being superior in terms of accuracy for

data requiring larger reparametrizations (e.g., for curves in

Swedish Leaf II).

As yet another proof of concept for our DL approach,

we perform an unsupervised clustering experiment using 40
curves taken from the Swedish Leaf I dataset. These curves

are evenly distributed across four categories of leaves. To

cluster the curves, we compute all pairwise SRV distances

using both our DL framework and the exact algorithm, and

apply classical multidimensional scaling (CMDS) to the re-

sulting pairwise distance matrices in order to obtain a 2D

projection of the dataset, see Fig. 7. While the resulting 2D

visualizations are slightly different, the clusters produced

are comparable.

Figure 7. CMDS clusters of 40 curves selected from the Swedish

leaf dataset using exact distances (left) and DL distances (right).

4.5. Preliminary experiments for curves in R
3

Datasets: Finally we present preliminary results for

curves in R
3. We use two distinct datasets of open 3D

curves for the experiments: hurricane paths from the Na-

tional Hurricane Center Data Archive6 and plant roots7

from which we only keep the taproots (i.e. main stem of

the roots). All curves were discretized with 100 points. We

trained the network on 284622 distinct pairs of hurricane

paths, labelled with distances computed with the DP algo-

rithm. We validated the network on either a different testing

set of hurricane paths, or on the dataset of taproots. The rea-

son for choosing DP distances instead of exact distances for

training the network is the high computational cost of cal-

culating exact distances in the situation of 3D curves.

Results: The correlation coefficient between the pre-

dicted DL and the DP distances on the test set of hurricane

paths is 0.977, but drops significantly to 0.823 when tested

on taproots. This drop-off in prediction quality can be most

likely explained by the lack of sufficiently diverse sam-

ples in the training set, which limits the network’s gener-

alization capabilities. We expect that enriching the training

set with 3D curves displaying more varied geometries will

help to improve the network’s performance. However, due

to the scarcity of publicly available datasets of 3D curves,

we leave it as future work to build a better training set for

3D curves and invest the required computational resources

to train our network using SRV distance labels computed

6https://www.nhc.noaa.gov/data/
7https://github.com/RSA-benchmarks/collaborative-comparison
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via the exact algorithm, as was done for functions and 2D

curves.

5. Conclusion

We have introduced a supervised DL framework to com-

pute SRV distances for curves in R
d. The main advan-

tage of our approach is that our trained CNN provides

fast and accurate estimates of the SRV distance between

pairs of geometric curves, without the need to find optimal

reparametrizations. Moreover, we exploited the invariance

of the SRV distance to shape-preserving actions in order to

propose a shape-preserving data-augmentation based train-

ing strategy, which is a flexible and efficient procedure for

creating and augmenting our training set. Empirical obser-

vations show that this training strategy allows our network

to estimate SRV distances which are truly invariant to ro-

tations and reparametrizations, while also reducing overfit-

ting. Moreover, our experiments show that when compared

to DP, our approach produces SRV distance estimates at a

significantly lower numerical cost, while also being compa-

rable, and sometimes superior, in terms of accuracy.
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Appendix

Proof of Theorem 1. Not taking into account the action of

the group of rotations and considering only open curves,

this result was shown in [10], assuming that one of the

curves is piecewise linear, and in [4] under the assumptions

that both curves are of class C1.

In the case where M = S1, by the definition of Γ̄(S1),
the existence of a pair of optimal (γ1, γ2) ∈ Γ̄(S1)× Γ̄(S1)
is equivalent to the existence of an optimal τ ∈ S1, an op-

timal O ∈ SO(d) and a pair of optimal γ∗
1 , γ

∗
2 ∈ Γ([0, 1]).

Consider the function F : S1 × SO(d) → R given by

F (λ,O) = inf
γ∗

1
,γ∗

2
∈Γ([0,1])

dQ(c1 ◦ γ∗
1 , O ⋆ (c2 ◦ Sλ ◦ γ∗

2 )).

We will first show that F is continuous. Let τ ∈ S1, O ∈
SO(d) and ǫ > 0. Since C(S1,Rd) is dense in L2(S1,Rd),
let g ∈ C(S1,Rd) such that ||Q(c2)− g||L2 < ǫ/4. As g is

continuous on a compact domain it follows, by the Heine-

Cantor theorem, that it is uniformly continuous. Thus, there

exists δ > 0 such that for each θ ∈ S1 and each λ ∈ S1

such that |λ| ≤ δ, we have |g(θ)− g(Sλ(θ))| < ǫ/4. Thus,

for each λ such that |λ| ≤ δ, we have

||g − g ◦ Sλ||2L2 =

∫

S1

|g(θ)− g(Sλ(θ))|2dθ

<

∫

S1

(ǫ/4)2dθ = (ǫ/4)2.

Pick this δ and let λ ∈ S1 such that |τ − λ| < δ. Thus,

||g ◦ Sτ − g ◦ Sλ||L2 = ||g − g ◦ Sλ−τ ||L2 < ǫ/4.

By a change of variable argument, we can show for any

g1, g2 ∈ C(S1,R) and θ ∈ S1, we have

||g1 ◦ Sθ − g2 ◦ Sθ||L2 = ||g1 − g2||L2 .

Furthermore, it is easy to show that for any c ∈ AC(S1,Rd)
and any θ ∈ S1, we have Q(c ◦ Sθ) = Q(c) ◦ Sθ. On the

other hand, the action of the rotation group on curves in-

duces a corresponding action on their SRV transform which

we write for any O ∈ SO(d) as Q(O⋆c) = O ·Q(c), where

we have specifically that O ·Q(c)(·) = 1√
|c′(·)|

Oc′(·). Note

that this action on SRV transforms is by isometry for ‖·‖L2 .

Now, for any (λ,O′) ∈ S1 × SO(d) with |τ − λ| < δ
and ||O − O′|| < ǫ/(4||Q(c2)||L2) (for the operator norm

on matrices), we can write

|F (λ,O)− F (τ,O′)|
≤||O ·Q(c2 ◦ Sλ)−O′ ·Q(c2 ◦ Sτ )||L2

=||O ·Q(c2) ◦ Sλ −O′ ·Q(c2) ◦ Sτ ||L2

≤||O ·Q(c2) ◦ Sλ −O′ ·Q(c2) ◦ Sλ||L2

+ ||O′ ·Q(c2) ◦ Sλ −O′ ·Q(c2) ◦ Sτ ||L2 .

For the first term on the right hand side, we can see that

||O·Q(c2)◦Sλ−O′·Q(c2)◦Sλ||L2 ≤ ||O−O′||.||Q(c2)◦Sλ||L2 ,

and since ||Q(c2)◦Sλ||L2 = ||Q(c2)||L2 , we can bound this

term by ǫ/4. On the other hand, we have

||O′ ·Q(c2) ◦ Sλ −O′ ·Q(c2) ◦ Sτ ||L2

= ||Q(c2) ◦ Sλ −Q(c2) ◦ Sτ ||L2

≤ ||Q(c2) ◦ Sλ − g ◦ Sλ||L2 + ||g ◦ Sλ − g ◦ Sτ ||L2

+ ||g ◦ Sτ −Q(c2) ◦ Sτ ||L2

= ||Q(c2)− g||L2 + ||g ◦ Sλ − g ◦ Sτ ||L2 + ||g −Q(c2)||L2

< ǫ/4 + ǫ/4 + ǫ/4 = 3ǫ/4,

which finally leads to |F (λ,O) − F (τ,O′)| < ǫ. Now,

since F is continuous on the compact set S1×SO(d), there

exists an optimal τ ∈ S1 and an optimal O ∈ SO(d) such

that F (τ,O) = infS1×SO(d) F . Note that the curves c1 and

O ⋆ (c2 ◦ Sτ ) belong to AC(S1,Rd) and thus in particular

to AC([0, 1],Rd), and that by assumption, they are either

both of class C1 or one of them is piecewise linear. By the

results of [4, 10], there exist optimal γ∗
1 , γ

∗
2 ∈ Γ([0, 1]) such

that

dS([c1], [c2]) = dQ(c1 ◦ γ∗
1 , O ⋆ (c2 ◦ Sτ ◦ γ∗

2 )),

which concludes the proof for the case of closed curves.

The proof for open curves modulo reparametrizations and

rotations can be done exactly as above, by considering a

function F̃ that only depends on rotations.
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