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Abstract

This paper concerns a theoretical approach that com-

bines topological data analysis (TDA) and sheaf theory.

Topological data analysis, a rising field in mathematics and

computer science, concerns the shape of the data and has

been proven effective in many scientific disciplines. Sheaf

theory, a mathematics subject in algebraic geometry, pro-

vides a framework for describing the local consistency in

geometric objects. Persistent homology (PH) is one of the

main driving forces in TDA, and the idea is to track changes

in geometric objects at different scales. The persistence di-

agram (PD) summarizes the information of PH in the form

of a multi-set. While PD provides useful information about

the underlying objects, it lacks fine relations about the local

consistency of specific pairs of generators in PD, such as

the merging relation between two connected components in

the PH. The sheaf structure provides a novel point of view

for describing the merging relation of local objects in PH. It

is the goal of this paper to establish a theoretic framework

that utilizes the sheaf theory to uncover finer information

from the PH. We also show that the proposed theory can be

applied to identify the merging relations of local objects in

digital images.

1. Introduction

Topological data analysis (TDA) is a branch of applied

mathematics that aims to quantify topological characteris-

tics, especially the q-dimensional Betti numbers denoted by

βq . For instance, β0, β1, and β2 represent the number of

components, holes, or voids, respectively. Persistent ho-

mology (PH), one of the main tools in TDA, tracks changes

of towered topological spaces induced by the original ob-

jects [27, 21, 15, 25, 49, 6]. Figure 2 (a) shows two exam-

ples of included spaces (also known as filtrations) of black

regions. The q-dimensional PH of filtration1 of topological

spaces is a sequence of vector spaces that are connected by

linear transformations2. The non-negative integer q denotes

the dimension of objects which are captured by the PH. For

instance, the PH of q = 0 captures the changes of connected

components and q = 1 for holes in a filtration.

Persistence barcodes (or simply barcodes) are a typical

way to summarize the information of PH. A barcode of a

q-dimensional object/generator in PH is a pair of numbers

(b, d) where the object/generator is born at the value b and

dies at the value of d. One often refers to b, and d to the

birth and death, respectively, values. For instance, in Fig-

ure 1, a 1-dimensional hole of the character “A” was born

at g2 and disappeared at g4, and hence the hole has the bar-

code (2, 4). Barcodes in PH can be defined rigorously as

the algebraic structure of PH [27, 21, 15, 25] (cf. Lemma

2.2.1). The collection of all barcodes of q-dimensional ob-

jects is called the persistence diagram (PD) [27, 21, 15, 25].

PD plays an essential role in the application and has widely

applied and studied in computer vision [66, 9, 61], machine

learning [14, 1, 44, 53], image/signal processing [67, 11],

medical science [50, 46, 22, 7, 10], and physics [62, 5].

Although PD contains information about the changes of

local objects, the reduction algorithm for obtaining Smith

normal forms [26] of the connecting linear transformations

would omit the merging relations of elements in PH. In

other words, the PD is not enough for researchers who are

interested in the merging behaviors of certain local objects.

For example, the top and bottom panels of Figure 2 (a) show

two different filtrations of binary images, but they share

the same persistence diagram P0 as shown in Figure 2 (b).

The merging relation between connected components in the

third image is different: one connects diagonally while the

other connects horizontally.

1A filtration of topological spaces is an inclusions X1 ⊆ X2 ⊆ · · · ⊆
Xn of topological spaces.

2In algebraic topology, one may also consider PH of modules and mod-

ule homomorphisms.
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Figure 1. (a) ∼ (d) is a filtration of black pixels of binary images.

(c) Binary image “AI”, which has β0 = 2 (connected components)

and β1 = 1 (1-dimensional holes). (e) and (f) are persistence

diagrams P0 = {(1,∞), (3, 4)}, P1 = {(2, 4)} in dimension 0
and 1 of the filtration respectively.

There are some works related to the behaviors of lo-

cal objects in PH, such as Mapper [42, 59] and local

(co)homology [30, 29]. In particular, Vandaele et al. [64]

investigated the local Vietoris-Rips complexes of point

clouds. By computing the branch numbers b and the first

Betti numbers β1 of the induced graph structures, the pairs

(b, β1) correspond to the branch numbers and holes of lo-

cal objects. The local pairs provide a heat map of branch

numbers and loop structures. Comparing to the global Betti

numbers, it is additional geometric information for the ob-

ject. The proposed work bases on a similar idea and pro-

vides a sheaf theoretical approach to describe the local be-

haviors of a geometric object. Comparison of these two

methods will be discussed at the end of Section 2.3.

Historically, sheaves were first developed as a tool for

researching the nerve theory and fixed-point theorems [2,

28, 13], while the recent trend is to study algebraic geome-

try [36]. Sheaf theory and algebraic geometry provide fruit-

ful results and tools in analyzing local/global properties of

geometric objects, while the research of the combination of

sheaves and TDA is still in its infancy. A sheaf F over a

topological space X is a rule which assigns each open sub-

set U of X to an algebraic object F (U). Except objects,

a sheaf F also assigns each pair V ⊆ U of open sets to a

homomorphism ρUV : F (U) → F (V ) as an connection

between two algebraic objects. The assignments of U and

V ⊆ U are analogous to the space of functions on U and

restriction of functions on V .

Recently, the combination of the sheaf theory and TDA

has been found its potential in modeling and analyzing real

data [31, 54, 56, 55, 8, 34, 24]. For example, Robinson [54]

proved the Nyquist sampling theorem by computing cel-

lular sheaf cohomologies on abstract simplicial complexes

of real signals and their samplings. In the work, the con-

cept of global and local sections on posets equipped with

the Alexandrov topology [3, 4] is crucial for constructing

the sheaf structures on digital/analog signals. Our work

is also motivated by the multi-parameter persistent homol-

ogy [20, 57, 35] and zigzag homology [16, 19, 18, 17].

The extension of barcodes to multi-parameter persistent ho-

mology is an active research area in TDA. As discussed in

[39, 40, 24], sheaf theory may be an appropriate tool to-

wards that goals. The cellular sheaves considered in the pa-

per can be viewed as a form of zigzag homology and multi-

parameter persistent homology. The proposed work aims

to capture local sections of certain local objects and their

geometric meaning in digital images.

Our main contributions can be summarized in the fol-

lowing.

• We propose the coincidence of pairs in the filtration of

binary images. The coincidence can be identified as

global/local sections of a sheaf of the form (6). When

q = 0, the coincidence in a short filtration can be used

to define local merging numbers as a heat map of each

binary image.

• In the paper, we propose an approximation of local sec-

tions in a PH by its PD. The result allows practitioners

to estimate the representatives of local objects in PH.

The organization of the paper is as follows. We present our

main results in Section 2. The demonstration of generating

local merging numbers of binary images is shown in Sec-

tion 3. The discussions, future works, and the conclusion

are in Section 4.

2. Cellular Sheaves Modeling

This section is separated into three parts. In Sec-

tion 2.1, we briefly introduce the formal definition of cel-

lular sheaves over posets. To define the local sections on

cellular sheaves, the Alexandrov Topology and the B-sheaf

are also mentioned. In order to be self-contained, we pro-

vide necessary notations and definitions. For further details

on these topics, we refer readers to [24, 3, 4] and [47]. The-

orem 2.2.2 in Section 2.2 approximates the local sections

via barcodes. Finally, in Section 2.3, we apply our results

to analyze local information of binary images.

2.1. Cellular Sheaves and Coincidence in PH

A poset (or partially ordered set) (P,≤) is a non-empty

set P equipped with a relation ≤ on P which satisfies the

following properties: Whenever x, y, z ∈ P , (1) x ≤ x (2)

x ≤ y and y ≤ z implies x ≤ z, and (3) x ≤ y and y ≤ x
implies x = y.
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(b) The persistence diagram P0

Figure 2. An example of two filtrations of black pixels that share the same persistence diagram.

Figure 3. An example of inclusions separated from a filtration of

binary images (cf. Figure 1 (a) ∼ (d)). These inclusion relations

lead to the simplest cellular sheaf structure as in Equation (6)).

Example 2.1.1. (1) Suppose X is a non-empty set and 2X

denotes its power set. Then the inclusion relation ⊆ on 2X

is a partial order on 2X . In this paper, we mainly consider

⊆ on 2S , where S is a subset of Z2.

(2) Let (x1, x2, ..., xn), (y1, y2, ..., yn) ∈ Z
n be n-tuples

over Z. Define (x1, x2, ..., xn) ≤ (y1, y2, ..., yn) if and only

if xi ≤ yi for all i ∈ {1, 2, ..., n}. Then (Zn,≤) is a poset.

A cellular sheaf over a poset (P,≤) is a rule which as-

signs each element in P to a vector space over a fixed field

F (e.g. Z2 or R) and preserves the ordering of elements in

P via linear transformations. Here is the formal definition:

Definition ([55, 23]). Let (P,≤) be a poset. A celluar

sheaf of vector spaces (over a fixed field F) on P is a rule

F which consists of the following data:

• For each p ∈ P , F associates a vector space F (p)
over F.

• For p ≤ q in P , there is an F-linear transformation

ρp,q : F (p) → F (q) such that ρp,p is the identity map

on F (p) and ρq,r ◦ ρp,q = ρp,r for every p ≤ q ≤ r.

In category theory, a cellular sheaf of vector spaces on a

poset (P,≤) is a functor from the category of elements and

partial relations in P to the category of vector spaces over

a certain field [55, 23, 24]. By considering the Alexandrov

topology [3, 4] A on the poset P generated by the sets Up’s

of forms

Up = {q ∈ P : p ≤ q} (1)

as an open basis B for the topology A, the assignment

Up 7→ F (Up) := F (p) forms a B-sheaf structure on

the topological space (P,A) [47]. The B-sheaf can be ex-

tended as a sheaf of vector spaces over (P,A), which is the

real meaning of “sheaves on topological spaces”—from the

aspect of traditional sheaf theory [13] or algebraic geome-

try [36, 47].

Because B = {Up : p ∈ P} is an open basis for A,

every open subset U in (P,A) can be expressed by U =⋃
p∈U Up. To extend F as a sheaf on (P,A), the F (U) is

defined as the vector space

F (U) = {(sp)p∈U : sq = ρp,q(sp) ∀ p ≤ q} , (2)

where every (sp)p∈U denotes an element in the Cartesian

product
∏

p∈U F (p) of vector spaces [32, 54, 56, 24]. El-

ements in F (U) are called local sections on U , which are

the most important targets for observing the coincidence of

elements from different F (p)’s. Here is an example:

Example 2.1.2. Let P = {(0, 0), (0, 1), (1, 0), (1, 1)} be

a set of tuples in Z
2. Then (P,≤) is a poset, where ≤ is

defined as in Example 2.1.1 (2). Any cellular sheaf F on P
can be represented as the commutative diagram

F (0, 1)
ρ(0,1),(1,1)

// F (1, 1)

F (0, 0)

ρ(0,0),(0,1)

OO

ρ(0,0),(1,0)
// F (1, 0)

ρ(1,0),(1,1)

OO
(3)

of vector spaces and linear transformations.

The local sections on U := U(0,1) ∪ U(1,0) =
{(0, 1), (1, 0), (1, 1)} are pairs (s, t) in F (0, 1)× F (1, 0)
such that ρ(0,1),(1,1)(s) = ρ(1,0),(1,1)(t) in F (1, 1).



The concept of local sections described in Example

2.1.2 provides a bridge to investigate the relation between

F (0, 1) and F (1, 0). A local section records elements s, t
in F (0, 1),F (1, 0) respectively, which would be identified

as the same element in F (1, 1) via ρ•,•’s. More concrete

examples for digital images and their sheaf structures are

discussed in Section 2.3.

The cellular sheaf can be viewed as a generalization

of persistent homology. For example, F in (3) is a 2-

parameter persistent homology over the poset P . An one-

parameter PH

Hq(X0)
ρ0,1
−−→ Hq(X1)

ρ1,2
−−→ · · · −→ Hq(Xn) (4)

of topological spaces ∅ = X0 ⊆ X1 ⊆ · · · ⊆ Xn is a cellu-

lar sheaf over P = {0, 1, 2, ..., n} of homologies and linear

transformations3 ρi,i+1 : Hq(Xi) → Hq(Xi+1) induced by

the inclusions Xi →֒ Xi+1 [33], where

ρi,j := ρj−1,j ◦ · · · ◦ ρi,i+1 (5)

and ρi,i are the identity maps on Hq(Xi) for 0 ≤ i < j ≤ n.

Next we define the coincidence of pair (si, sj) ∈
Hq(Xi)⊕Hq(Xj)

4 to Hq(Xk) with i ≤ j ≤ k in (4). The

motivation of the definition is to capture the merging rela-

tion between certain si and sj in the filtration which can be

viewed as a local version of the definition of barcodes (cf.

Lemma 2.2.1).

Definition. Let ∅ = X0 ⊆ X1 ⊆ X2 ⊆ · · · ⊆ Xn be

a filtration of topological spaces and 0 → Hq(X1) −→
Hq(X2) −→ · · · −→ Hq(Xn) be its PH. For q ≥ 0,

i, j ∈ {1, 2, ..., n}, si ∈ Hq(Xi), sj ∈ Hq(Xj), and

max{i, j} ≤ k ≤ n, we say si and sj coincide at k if

ρi,k(si) = ρj,k(sj).

In other words, if we extract Hq(Xi), Hq(Xj), and

Hq(Xk) from the PH, and consider natural linear transfor-

mations Hq(Xi) → Hq(Xk), Hq(Xj) → Hq(Xk)
5, then

the coincidence of pairs (si, sj) can be regarded as the local

sections in Hq(Xi) ⊕ Hq(Xj) with respect to the sheaf of

form (3). This can be formulated as the following theorem.

Theorem 2.1.3. Let ∅ = X0 ⊆ X1 ⊆ X2 ⊆ · · · ⊆ Xn be

a filtration of topological spaces, q ≥ 0, si ∈ Hq(Xi), and

sj ∈ Hq(Xj). Then si and sj coincide at k ≥ max{i, j} if

and only if (si, sj) ∈ Hq(Xi) ⊕Hq(Xj) is a local section

with respect to the cellular sheaf (6).

Hq(Xi)
ρi,k

// Hq(Xk)

Hq(Xj)

ρj,k

OO
(6)

3In the paper, we consider Hq(Xi)’s and ρi,i+1’s as vector spaces and

linear transformations over the binary field Z2.
4For finitely many homologies, we use the notation ⊕ to replace ×.
5To emphasis the merging relation between si and sj , here we ignore

the linear transformation Hq(Xi) → Hq(Xj) for i ≤ j.

Proof. By the same arguments as in Example 2.1.2, an el-

ement (si, sj) ∈ Hq(Xi) ⊕ Hq(Xj) is a local section of

the cellular sheaf (6) if and only if ρi,k(si) = ρj,k(sj), as

desired.

For example, in the filtration (a) ∼ (d) in Figure 1, the

component “I” has barcode (3, 4) since it was born at g3
and finally be merged into “A”. However, the persistence di-

agram (Figure 1 (e)) only shows that “I” has barcode (3, 4)
while the merging information of “I” and “A” could not be

concluded in the diagram.

As in Theorem 2.1.3, this local behavior between “A”

and “I” is encoded as a local section of the cellular sheaf (7),

by separating image g3 into two parts g3,1 = “A” and

g3,2 = “I”. The inclusions g−1
3,1(0) →֒ g−1

4 (0) and

g−1
3,2(0) →֒ g−1

4 (0) in Figure 3 lead the diagram

H0(g
−1
3,1(0))

ρ1
// H0(g

−1
4 (0))

H0(g
−1
3,2(0))

ρ2

OO
(7)

of 0-dimensional homologies where ρ1 and ρ2 are linear

transformations induced by inclusions. Note that

H0(g
−1
3,1(0)) = span

Z2
{“A”},

H0(g
−1
3,2(0)) = span

Z2
{“I”}

(8)

and ρ1(“A”) = ρ2(“I”) in H0(g
−1
4 (0)). That is, the pair

(“A”, “I”) is a local section which records that “A” and “I”

finally merged into the unique connected component of g4.

2.2. Approximation for Local Sections

Although elements in homology H•(X) can be defined

precisely (even discretely with Z2 as the field of coeffi-

cients), it is still difficult to represent elements in H•(X)
by comparing all representatives. To tackle this, we pro-

pose a method that uses barcodes of PH to approximate the

local sections.

Here we recall the definition of barcodes of elements in

PH [26]: let ∅ = X0 ⊆ X1 ⊆ · · · ⊆ Xn be a filtration of

topological spaces and {0} → Hq(X1) → · · · → Hq(Xn)
be its PH, an element si ∈ Hq(Xi) (i ≥ 1) is said to have

barcodes (i, j) with i < j if it satisfies the following two

properties:

• si /∈ im(ρi−1,i);

• ρi,j−1(si) /∈ im(ρi−1,j−1) and ρi,j(si) ∈ im(ρi−1,j),

where the death j may be ∞ if si is still alive at n.

As Edelsbrunner and Harer mentioned in [26], the si has

death j if it merges with an older class in Hq(Xj−1). The

following approximation lemma can be viewed as a local



version of barcodes of elements, which approximates the

upper bound of deaths for any si, sj who are coinciding at

some k.

Lemma 2.2.1 (Approximation Lemma). Let ∅ = X0 ⊆
X1 ⊆ · · · ⊆ Xn be a filtration of topological spaces, q ≥ 0,

0 ≤ i < j, si ∈ Hq(Xi), and sj ∈ Hq(Xj) which has

barcode (j, d). If si, sj coincide at k ≥ j, then d ≤ k.

Proof. We first note that k must be strictly larger than j:

If k = j, then sj = ρj,j(sj) = ρi,j(si) = (ρj−1,j ◦
ρi,j−1)(si), this shows that sj ∈ im(ρj−1,j) and contra-

dicts to sj is born at j. Hence we have k > j.

Suppose d > k, then i < j < k ≤ d−1. In particular, sj
doesn’t die at k. By definition of death, either ρj,k−1(sj) ∈
im(ρj−1,k−1) or ρj,k(sj) /∈ im(ρj−1,k). Because

ρj,k(sj) = ρi,k(si) = ρj−1,k(ρi,j−1(si)) ∈ im(ρj−1,k),

we must have ρj,k−1(sj) ∈ im(ρj−1,k−1). Because j ≤
k − 1 ≤ d− 1, we have

ρj,d−1(sj) = (ρk−1,d−1 ◦ ρj,k−1)(sj) ∈ im(ρj−1,d−1)
(9)

since ρk−1,d−1(im(ρj−1,k−1)) = im(ρj−1,d−1). However,

sj /∈ im(ρj−1,d−1) since sj dies at d, a contradiction. This

shows that d ≤ k.

The approximation lemma can be used for estimating

whether a certain pair (si, sj) coincides at some k ≥
max{i, j} or not. To adapt the lemma, we say a filtration

which is short if it has the form ∅ = X0 ⊆ X1 ⊆ X2 ⊆ X3.

Theorem 2.2.2. Let F : ∅ = X0 ⊆ X1 ⊆ · · · ⊆ Xn be a

filtration of topological spaces, q ≥ 0, 0 ≤ i < j < k, and

sj ∈ Hq(Xj) which is born at j. Define short filtration

G : ∅ = Y0 ⊆ Y1 ⊆ Y2 ⊆ Y3 (10)

where Y0 = X0, Y1 = Xi, Y2 = Xj , and Y3 = Xk, then

sj coincides to some si ∈ Hq(Xi) at k in F if and only if

sj ∈ Hq(Y2) has barcode (2, 3) in G.

Proof. We first assume there is an si ∈ Hq(Xi) such that

si and sj coincide at k in F . Because sj is born at j in F ,

ρi,j(si) 6= sj . Hence sj is also born at 2 in G. In G, si
and sj also coincide at 3, by the approximation lemma, the

death of sj in must ≤ 3, and it forces that sj has barcode

(2, 3) in G.

Conversely, suppose sj ∈ Hq(Y2) has barcode (2, 3) in

G, then ρG2,3(sj) ∈ im(ρG1,3) where ρG•,•’s are the induced

linear transformations from ρ•,• in F . This shows that

there is an si ∈ Hq(Y1) = Hq(Xi) such that ρi,k(si) =
ρG1,3(si) = ρG2,3(sj) = ρj,k(sj) i.e., si and sj coincide at k
in F .

2.3. Sheaf Structures on Binary Images

The subsection is separated into two parts. We first intro-

duce some notations and terminologies for binary images,

and then introduce the short filtrations for a single binary

image and apply its sheaves to compute the local merging

numbers.

Binary Images

A 2-dimensional digital image can be regarded as a function

f : S → R≥0, where S is a subset of the 2-dimensional grid

Z
2. Typically, S = ([a, b]× [c, d])∩Z

2 is a rectangle, called

the set of pixels of image f [58, 60, 51]. A digital image is

said to be binary if it has range {0, 1} where 0 and 1 usually

denote the pixel values of black and white respectively. The

set of all black pixels in S is the pre-image set f−1(0).
By viewing every set of black pixels f−1(0) ⊆ Z

2 of a

binary image f : S → {0, 1} as a collection of squares in

R
2 i.e., a cubical complex embedded in R

2 [65, 38, 48, 63].

Because the union of squares can be viewed as a subspace

of R2, the computation of homologies are valid.

For a 2-dimensional image f , the homology of f−1(0)
detects the numbers (β0, β1) of connected components and

1-dimensioanl holes form by black pixels of f respectively,

which are called the Betti numbers [33, 26]. More precisely,

βq = dimZ2
Hq(f

−1(0)), q = 0, 1. For example, as (c) in

Figure 1, if f = g3 is the image “AI”, then

H0(f
−1(0)) = span

Z2
{“A”, “I”},

H1(f
−1(0)) = span

Z2
{“A”}.

(11)

because “A” and “I” represent different connected compo-

nents of “AI” and “A” contains a 1-dimensional hole. In

particular, β0 = 2 and β1 = 1.

Cellular Sheaves on Single Binary Image

We propose a method for analyzing connecting relations be-

tween local objects in a binary image by using sheaf struc-

ture. Let X be a topological space and X1, X2 be subspaces

of X . We imitate the idea in Theorem 2.1.3 to construct the

natural cellular sheaf structure

Hq(X1)
ρ1

// Hq(X)

Hq(X2)

ρ2

OO
(12)

where ρ1, ρ2 are induced by the inclusion maps. Now we

have two short filtrations

G1 : ∅ ⊆ X1 ⊆ X1 ∪X2 ⊆ X,

G2 : ∅ ⊆ X2 ⊆ X1 ∪X2 ⊆ X.
(13)



and persistent homologies

0 −→ Hq(X1)
ω1−→ Hq(X1 ∪X2)

γ
−→ Hq(X),

0 −→ Hq(X2)
ω2−→ Hq(X1 ∪X2)

γ
−→ Hq(X),

(14)

whenever q ≥ 0, where ω1, ω2 and γ are induced by the

inclusion maps and γ ◦ ωi = ρi for i = 1, 2.

In addition, when clX(X1) and clX(X2) are disjoint6,

the canonical mapping

ω1 + ω2 : Hq(X1)⊕Hq(X2) → Hq(X1 ∪X2) (15)

defined by (ξ1, ξ2) 7−→ ξ1 + ξ2 is an isomorphism ([33]

Proposition (9.5)). In this case, ω1 and ω2 in (14) are one-

to-one. Because ω1 + ω2 is bijective, every element s in

Hq(X1∪X2) can be uniquely represented by s1+s2, where

si = ωi(s̃i) for some s̃i ∈ Hq(Xi), i = 1, 2. In particular,

we have the following theorem.

Theorem 2.3.1. Let X,X1, X2, q ≥ 0 and ρi, ωi, γ, i =
1, 2 be defined as above. If clX(X1) ∩ clX(X2) = ∅, then

the following hold:

(a) The persistence diagram Pq(G1) has no barcodes of

birth = 2 if and only if Hq(X2) = {0}.

(b) For s2 = ω2(s̃2) ∈ Hq(X1 ∪X2), s2 6= 0 if and only

if it is born at 2 in G1.

(c) For non-zero s̃2 ∈ Hq(X2), (s̃1, s̃2) ∈ Hq(X1) ⊕
Hq(X2) is a local section in (12) for some s̃1 ∈
Hq(X1) if and only if s2 := ω2(s̃2) has barcode (2, 3)
in G1.

Proof. (a) Because ω1 +ω2 is an isomorphism, Pq(G1) has

not barcodes of birth = 2 if and only if im(ω1) = Hq(X1 ∪
X2) = im(ω1 +ω2) if and only if ω2 is the zero map if and

only if Hq(X2) = {0} (since w2 is one-to-one).

(b) The converse direction is trivial. If s2 = ω2(s̃2) =
(ω1+ω2)(0, s̃2) is non-zero, then s2 /∈ im(ω1) = im(ω1+
ω2) since ω1 + ω2 is one-to-one.

(c) By (b), s2 is born at 2 since s̃2 6= 0 and ω2 is one-

to-one. To adapt Theorem 2.2.2, it is sufficient to note that

ρ1(s̃1) = s2 if and only if γ(ω1(s̃1)) = s2 i.e., s̃1 and s2
coincide at 3 in G1. Now (c) follows from Theorem 2.2.2

immediately.

As in Figure 5, the 0-dimensional PD P0(G1) of G1

is the multiset {(1,+∞), (2, 3), (2, 3)} while P0(G2) =
{(1,+∞), (2, 3)}. It indicates that the space X1 has two

merging parts in X . From the X2’s point of view, it has

single merging part since X1 is the unique component in X
which connects to X2. Now the following definitions can

be established:

6If X is a topological space and A is a subset of X , clX(A) denotes

the closure of A in X .

(a) X1 (b) A1 (c) X1 \A1

(d) X2 (e) A2 (f) X2 \A2

Figure 4. Examples of spaces X1, X2 ⊆ R
2 and their subspaces

A1, A2. Then β0(X1 \A1)−β0(X1)+β0(A1) = 3−1+1 = 3
and β0(X2 \A2)− β0(X2) + β0(A2) = 2− 1 + 4 = 5.

Definition. Let X,X1, X2, and G1,G2, i = 1, 2 be de-

fined as in Theorem 2.3.1, then the qth local merging num-

ber of X1 with respect to X2 in X is defined as the num-

ber of barcodes (2, 3) in the multiset Pq(G1), denoted by

mq(X1;X2).

We describe the main differences between local merging

and local branch numbers ([64]). Take Figure 4 as an illus-

trative example. Based on [64], the local branch number of

A1 in Figure 4 is 4 since the graph which fits A1 has four

vertices in degree 1. On the other hand, the local merging

number of A1 in Figure 4 is 3 as demonstrated in Figure 7

(g)-(i). As shown in Figure 4 (c), there are three connected

components of X1 \A1 that connect to A1. Another differ-

ence is that the local branch numbers are constructed from

Vietoris-Rips complexes on the point cloud data. There-

fore, tuning parameters such as sampling the points, and

choosing the radius would be a critical step [64]. On the

other hand, our local merging numbers are purely depen-

dent on the choices of X1, X2 ⊆ X and can be exactly

computed by the cellular sheaf structures. Branches and

merging relations base on different geometric aspects, we

thought both features are important for describing the con-

nection between global and local objects.

Definition. A system of patches of a topological space X

is a (finite) collection of pairs (X
(i)
1 , X

(i)
2 )’s of subspaces

of X such that clX(X
(i)
1 ) ∩ clX(X

(i)
2 ) = ∅ for every i.

Remark. As shown in Figure 4 (a)-(c), it may suggest that

the 0th local merging number of A ⊆ X as

β0(X \A)− β0(X) + β0(A). (16)

This is the special case when β0(A) = 1. In general, this

formula (16) would not hold. For example, in Figure 4 (d)-

(f), β0(X2\A2)−β0(X2)+β0(A2) equals 5 while the local



(a) X (b) X1 (c) X2 (d) X1∪X2

Figure 5. An example of spaces X in R
2 and its subspaces X1, X2,

which satisfy clX(X1) ∩ clX(X2) = ∅.

(a) Input image (b) Windows (c) {X
(i)
1 }9i=1 (d) Merging

numbers

Figure 6. An example of windows, patches and merging numbers.

merging number of A2 is 2. It shows that there are exactly

two connected components in X2 that connect to A2 and

gives us more explainable information than the number 5.

3. Demonstration

In the section, we demonstrate how do we use the pro-

posed method to automatically detect local merging num-

bers of a binary image. The demonstration aims to au-

tomatically generated a heat map m0(f) for representing

local merging numbers of local regions of a binary im-

age f : S → {0, 1} where S = ([a, b] × [c, d]) ∩ Z
2.

Clearly, the m0(f) depends on how do we define patches

{(X
(i)
1 , X

(i)
2 )}ni=1 of f−1(0), hence m0(f) is not unique.

To construct a system of patches of a binary image, for

each local window S′ := ([a′, b′] × [c′, d′]) ∩ Z
2 with a ≤

a′ ≤ b′ ≤ b and c ≤ c′ ≤ d′ ≤ d, we define X̂1 =
f−1(0) ∩ S′ and X2 = f−1(0) \ X̂1. Next, we define

X1 = X̂1 \ {(x, y) ∈ X̂1 : x = a′ or y = b′}. (17)

In other words, we obtain X1 by removing all black pix-

els which belong to the boundary of S′. Because finite cu-

bic complexes in R
2 are finite unions of closed R

2-squares,

they are closed in R
2 (and so do X). Hence we must have

clX(X1) ∩ clX(X2) = ∅.

For example, as in Figure 6, if we consider local win-

dows in (b), then for image (a), the family {X
(i)
1 }9i=1

of black pixels in (c) induces a system of patches

{(X
(i)
1 , X

(i)
2 )}9i=1, and (d) is the corresponding heat map

of local merging numbers. The heat map (d) corresponds to

(a) Input image (b) Heat map (c) Matrix

(d) Input image (e) Heat map (f) Matrix

(g) Input image (h) Heat map (i) Matrix

Figure 7. More examples of images, heat maps, and matrices.

(a) Input image (b) Heat map

Figure 8. Image and its heat map of local merging numbers. Local

parts with more complicated structures may have higher merging

numbers (e.g. cross parts, corners or cusps).

the matrix
1 1 1
1 8 1
1 1 1

(18)

of local merging numbers. The black pixels separated by

the central window have a merging number 8 since there

are 8 fans connect to the central object. Other fans have the

same merging number 1 since only one connected object

connects to each fan. With the same windows in Figure 6

(b), we provide more heat maps and corresponding matrices

of squared images as examples for explaining our method.

Every image was resized into 100× 100 pixels, and its heat

map can be generated in nearly 5 seconds7.

Alternatively, we can also apply the sliding window al-

7Local merging numbers are invariant under the transformation of sim-

ilar objects in R
2.



(a) Selected Images in UIUC

(b) Heat maps of merging numbers of selected Images

Figure 9. Images in UIUC dataset and their heat maps.

gorithm [12] to compute the local merging numbers of local

windows. In the demonstration, we unify each binary image

f to have size of 100× 100 pixels, and consider three local

windows of sizes 10 × 10, 20 × 20, and 30 × 30. For each

local window we obtain heat map mn
0 (f), n = 10, 20, 30,

and finally output m0(f) as the sum of all mn
0 (f)’s. Fig-

ure 8 and Figure 9 are examples. The codes of the demon-

stration were run by Matlab 2020b based on Windows

10, and the PDs were computed by the software Perseus

[52].

4. Discussion and Conclusion

Based on our investigation, the proposed work is the first

one that combines sheaf structures and persistence diagrams

to capture the local merging numbers of binary images. We

use the simplest sheaf structure (6) to derive the merging

relation between pairs of local objects. One future direc-

tion is to investigate the meaning and applications of local

sections of homologies in q ≥ 1, and consider more compli-

cated sheaf structures, such as the coincidence of n-tuples

(s1, ..., sn) and their topological insights behind the alge-

braic coincidence.

Although the form of the diagram (6) is the simplest form

of the zigzag homology [20, 57], multi-parameter persis-

tent homology [20, 57], and cellular sheaf [24, 55, 54], the

fruitful tools developed in the theories were not considered

in the work, such as cellular sheaf cohomology and multi-

persistence. Analyzing digital images by combining these

advanced tools is also a future direction.

We also demonstrate our method on UIUC dataset [45]

in Figure 9, which is a well-known dataset in texture classi-

fication task [41]. The UIUC dataset provides 25 classes of

images in different textures. We select one image per class

and compute its heat map, where we transform each image

to a binary one by setting its average pixel value as a thresh-

old. The result shows that images in different classes have

different characteristics of heat maps. For example, heat

maps of textures with regular patterns may distribute more

uniformly, and heat maps of natural textures (e.g. wood sur-

faces) may contain small and non-regular pieces that have

high m0(f). As a low-level feature, the local merging num-

bers may provide useful information in certain image clas-

sification tasks.

Lastly, since the local merging numbers provide a heat

map of an image, it can be viewed as a natural attention

map. Local parts that have higher local merging values

show that they are the joint areas crossed by different ob-

jects, and might be important in some image analysis tasks

(e.g. medical images). Because every image and its heat

map have the same size, the latter one can be viewed as

an additional channel of an image input in neural network

models (e.g. AlexNet [43] or ResNet [37]). We also plan to

integrate this geometrically explainable feature into current

DNN models for some computer vision tasks.

To conclude this paper, we highlight our contribution.

We proposed a new theory to generate the local merging

numbers in a binary image by using cellular sheaves on

short persistent homology. Moreover, the approximation

theorem shows that local sections in cellular sheaves can

be computed via barcodes in persistence diagrams of short

filtrations. Because the local merging numbers are purely

provided by the intrinsic geometry of the given image, no

learning procedures needed in the method. We also im-

plemented the code for generating local merging numbers,

which has the potential to be integrated into DNN models.
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