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Abstract

Functional data analysis (FDA) is focused on various

statistical tasks, including inference, for observations that

vary over a continuum, which are not effectively addressed

by multivariate methods. A feature of these functional ob-

servations is the presence of two distinct forms of variabil-

ity: amplitude that describes differences in magnitudes of

features, e.g., extrema, and phase that describes differences

in timings of amplitude features. One area of focus in FDA

is the classification of new observations based on previ-

ously observed training data that has been split into pre-

defined classes. Existing methods fail to directly account

for both phase and amplitude variability, and work under

the restrictive assumption that functional observations are

measured on a common, fine grid over the input domain.

In this work, we address these issues directly by formu-

lating a Bayesian hierarchical model for irregular, frag-

mented or sparsely sampled functional observations, where

training data from different classes are available. Our ap-

proach builds on a recently developed inferential frame-

work for incomplete functional observations and the elas-

tic FDA framework for characterizing amplitude and phase

variability. The approach operates by inferring individ-

ual parameters that separately track amplitude and phase,

which can be combined to infer complete functions under-

lying each observation, and a class parameter, which can

be used to discern the class membership of an observation

based on the training data. We validate the proposed frame-

work using simulation studies and real data applications,

and showcase the advantages of this perspective when both

amplitude and phase variability are present in the data.

1. Introduction

Functional data analysis (FDA) is a branch of statistics

where entire functions recorded over an input domain are

considered as the units of observation. One particular area

of focus in FDA is the analysis of functional observations

that are grouped into predefined classes, with the goal of

inference on class-specific parameters, testing hypotheses

about group differences, and assigning a new observation to

a predefined class. The work of [1] offers a review of super-

vised classification methods used to address the latter prob-

lem. The authors describe the need for methods specific to

functional data, because multivariate statistical approaches

do not effectively account for the infinite-dimensional na-

ture of functional observations. Classification is further

complicated when the observations exhibit multiple forms

of variability inherent in a functional dataset [22]. Specifi-

cally, failing to account for amplitude and phase variability,

which reflect differences in vertical features and the loca-

tions at which these features occur along the input domain,

respectively, can lead to misleading estimates [9].

In practice, many FDA methods require functional data

consisting of densely sampled function evaluations that are

measured on a common observation grid across the input

domain [15, 18]. However, it is not always the case that

function evaluations are available at the same input loca-

tions for all observations in a dataset. Consider the data in

Figure 1. The data in panel (a) consist of functional ob-

servations from three different classes, where all functions

are recorded on a common observation grid. These obser-

vations could be, for the most part, described by smooth

unimodal functions that exhibit amplitude and phase vari-

ability, which describe the differences in magnitude and

location of peaks within and between classes. The points



(a) (b)
Figure 1. (a) Functional observations recorded over the same observation grid. Colors indicate class membership. (b) A sparse/fragmented

observation generated by the same data mechanism as the functions in panel (a).

shown in panel (b) represent a functional observation from

the same data-generating process as the functions in panel

(a), except this data is sparsely sampled. Methods that as-

sume the same input grid for all observations are not able

to answer questions pertaining to class membership, or pro-

vide a reasonable estimate of an underlying smooth function

that represents each observation in panel (b).

The issues raised by the data in Figure 1 have moti-

vated classification methods tailored to functional data that

are recorded on irregular, fragmented or sparse observa-

tion grids. These observation regimes are used to describe

grids for functional datasets that are not common for all

observations, that correspond to subsets of the input do-

main on which individual observations are recorded, or that

correspond to grids with a relatively low number of ob-

servation points with respect to the size of the domain.

For classification within this context, [8] formulated lin-

ear discriminant analysis, [13] formulated a Bayes classi-

fier based on functional mixed effects models, [4] discussed

several methods related to quadratic discriminant analysis,

and [11] formulated a kernel method. Additionally, for ir-

regular and sparsely observed functional data, the princi-

pal analysis through conditional expectation (PACE) frame-

work [25] can be used to perform functional principal com-

ponent analysis of sparse functions (FPCA), which enables

a finite-dimensional representation that has been used in

tandem with multivariate classification methods, including

quadratic discriminant analysis [20] and support vector ma-

chines [23].

None of the aforementioned approaches directly account

for amplitude and phase variability, and consequently, the

methods may be hindered by confounding of these vari-

abilities [9]. The only related approach that accounts for

different sources of variability in observed, noisy data un-

der a Bayesian framework is presented in [17]. There, the

authors are interested in a different problem of identifying

classes of 2D shapes based on cluttered point clouds ex-

tracted from images. In this work, we formulate a Bayesian

hierarchical model to address the problem of inference for

irregular, fragmented or sparsely sampled functional obser-

vations, where training data from different classes are avail-

able. The work is based on the inferential framework for

functional observations described in [10], and the elastic

Functional Data Analysis (EFDA) framework for analyz-

ing amplitude and phase variability [18]. Individual model

components that separately track amplitude and phase can

be combined to infer a complete function that underlies an

observation, and a class parameter can be used to discern the

class membership of this observation. The Bayesian mod-

elling paradigm allows for uncertainty quantification for all

components of the model.

The rest of this paper is organized as follows. In Section

2, we formulate our model and review the EFDA frame-

work, which is used to study amplitude and phase variabil-

ity. In Section 3, we validate our model using simulation

experiments and present real data applications. In Section

4, we summarize our approach and discuss directions for

future work.

2. Model Formulation

In this section, we review the EFDA framework [18] and

formulate the proposed Bayesian hierarchical model.

2.1. Amplitude Principal Component Analysis

The proposed Bayesian model relies on FPCA of ampli-

tude variability to efficiently represent amplitude features of

functional datasets with empirical bases. This is achieved

through the EFDA framework.

The primary goal of EFDA is to separate phase and am-

plitude variability present in a functional dataset so that

they can be analyzed individually [18]. This is an impor-

tant task, since these variabilities provide complementary

information, and failing to take these into account leads to

misleading analyses [9]. The separation of amplitude and

phase variabilities is achieved through a registration pro-

cedure, which decomposes a functional dataset into ampli-



tude components and phase components, so that their com-

position yields the original dataset; after registration, func-

tion features, e.g., extrema, are captured by the amplitude

components and occur at the same locations along the in-

put domain. The registration procedure is formalized in

[19], which defines an optimality criterion based on the

extended Fisher-Rao Riemannian (eFR) metric. This for-

mulation has desirable properties for the registration prob-

lem, i.e., invariance to simultaneous warping of functions.

Furthermore, the complicated eFR metric can be simplified

to the standard L
2 metric through the square-root veloc-

ity function (SRVF) representation. Without loss of gen-

erality, we restrict our attention to absolutely continuous

functions on [0, 1]. Then, for a function f ∈ F = {f :
[0, 1] → R | f is absolutely continuous}, its SRVF q is de-

fined through the bijective map Q : F → L
2([0, 1]) =: Q,

q(t) = Q(f)(t) :=
ḟ(t)

√

|ḟ(t)|
, (1)

where ḟ denotes the derivative of the function f ; if ḟ(t) =
0, then q(t) = 0. Since Q is bijective given a function’s

initial point, Q−1 is given by:

f(t) = Q−1(q, f(0))(t) := f(0) +

∫ t

0

q(s)|q(s)|ds. (2)

EFDA defines sample statistics, e.g., averages and co-

variance functions, under the eFR metric through the

SRVF representation as follows. For a functional dataset

f1, . . . , fn, the mean amplitude SRVF is defined as

µ̂q := argmin
q∈Q

n
∑

i=1

inf
γ∈Γ

dL2(q,Q(fi ◦ γ))
2, (3)

where dL2(·, ·) denotes the L
2 distance between its argu-

ments and γ ∈ Γ = {γ : [0, 1] → [0, 1] | γ(0) =
0, γ(1) = 1 and γ̇ > 0} represents the set of warping

(phase) functions of [0, 1]. The minimizers inside the sum-

mation are constrained so that their average is the iden-

tity warping function, γid(t) = t, to ensure identifiability

of the amplitude mean [19]. The set of phase functions,

γ̂i = arginf
γi∈Γ

dL2(µ̂q, Q(fi ◦ γ)), i = 1 . . . , n, and the set

of amplitude SRVFs, q̃i = Q(fi ◦ γ̂i), i = 1, . . . , n, serve

as the phase and amplitude components of the original data,

respectively.

The work of [22] describes implementations of FPCA

for amplitude and phase variabilities based on function reg-

istration. For the amplitude component, which is of interest

in the current work, the sample amplitude SRVF covariance

function is defined as,

K̂(s, t) =
1

n− 1

n
∑

i=1

(q̃i(s)− µ̂q(s))(q̃i(t)− µ̂q(t)). (4)

Amplitude FPCA is enabled through the Karhuenen-Loève

expansion and eigendecomposition of the sample covari-

ance function,

K̂(s, t) =

∞
∑

b=1

λ̂bφ̂b(s)φ̂b(t), (5)

where the principal components, φ̂b, b = 1, . . . are orthog-

onal functions that represent dominant modes of amplitude

SRVF variability, and λ̂b, b = 1, . . . are the variances along

these modes of variability (arranged in descending order).

The principal components serve as an efficient dimension

reduction tool, since an amplitude SRVF can be approxi-

mated by a B-dimensional vector of coefficients, for some

finite B, through

q̃i(t) ≈ µ̂q(t) +

B
∑

b=1

β̂biφ̂b(t), (6)

where β̂bi =
∫ 1

0
(q̃i(s)− µ̂q(s))φ̂b(s)ds, b = 1, . . . , B. We

leverage this efficient representation of amplitude SRVFs in

the Bayesian model formulation in the next section.

2.2. Proposed Bayesian Model Formulation

We extend the modelling framework specified in [10]

for a noisy observation, y, measured on an irregular, frag-

mented or sparse observation grid, t = (t1, . . . , tm)⊤, to

the case where densely sampled training data are available

from C classes, f c
i , i = 1, . . . , nc, c = 1, . . . , C. We use

the EFDA framework, Equations 3-5, to summarize the am-

plitude variability for the functions in each class, and use

µc
q, φ̂c

1, ..., φ̂
c
B , λ̂c

1, ..., λ̂
c
B , c = 1, . . . , C to denote class

specific amplitude means, principal directions, and vari-

ances associated with the directions, respectively. We fix

a number of components, B, that explains a large portion of

variability across all of the classes. Throughout this section,

we use f(t) = (f(t1), . . . , f(tm))⊤ to denote a vector of

function evaluations.

In the proposed model, a smooth functional parameter

that underlies the noisy and irregular observation is decom-

posed into amplitude and phase components. A latent class

parameter determines the class membership for the obser-

vation as well as its amplitude features, through Equation

6. Our model for the phase component is based on a re-

cently developed model for warping functions [2] that is

consistent with the goal of modelling phase for irregular,

fragmented or sparsely sampled observations. The phase

prior is specified by discretizing the phase parameter, γ,

on a coarse observation grid on (0, 1), tγ , and modelling

differences between adjacent components, p(γ(tγ)) :=
(γ(t1,γ), . . . , γ(tj+1,γ)−γ(tj,γ), . . . , 1−γ(tmγ ,γ)

⊤; here,

mγ specifies the fineness of the discretization for γ.



Using Nm(µ,Σ) to denote an m-dimensional Gaussian

density with mean vector µ and covariance Σ, we spec-

ify the following empirical amplitude Bayesian hierarchical

model for an observation y:

y|c, β, γ, T, σ2 ∼ Nm

(

(Q−1(q̃c, T ) ◦ γ)(t), σ2Im
)

,

q̃c = µ̂c +

B
∑

b=1

βbφ̂
c
b,

β|c ∼ NB(0B , diag(λ̂c
1, . . . , λ̂

c
B)),

T |c ∼ N(µ̂c
T , τ̂

c
T ),

p(γ(tγ))|c ∼ Dirichlet(θ̂cγ1mγ+1),

c ∼ Discrete-Uniform({1, . . . , C}),

σ2 ∼ Inverse-Gamma(ασ, βσ). (7)

In this formulation, the smooth function Q−1(q̃c, T )◦γ that

underlies the observation y is decomposed into components

that describe amplitude, q̃c, phase, γ, and translation, T .

The amplitude, phase and translation components depend

on the parameter c, which determines the class that most

appropriately describes the underlying function; marginal

posterior inference on this parameter quantifies the uncer-

tainty in class membership.

The priors for the amplitude, phase and translation

parameters are consistent with those described in [10].

The hyperparameters are estimated using the training data

within each class. For amplitude, the variance components,

λ̂c
1, . . . , λ̂

c
B , of the basis coefficient vector, β, correspond to

the variability described by the B leading amplitude prin-

cipal components of a given class. For translation, the

mean and variance of the prior correspond to the mean and

variance of the initial points, f c
1 (0), . . . , f

c
nc
(0), of training

data in a given class. For phase, the concentration parame-

ter, θ̂c, is determined through maximum likelihood estima-

tion based on the following model for phase functions es-

timated via registration of training data from a given class,

p(γ̂c
1(tγ)), . . . , p(γ̂

c
nc
(tγ))

iid
∼ Dirichlet(θcγ1mγ+1). We do

not favor any particular value for the class parameter c a-

priori, and specify a discrete-uniform prior on the class la-

bels. As in [10], the prior for σ2 is chosen to be diffuse and

conjugate.

We base posterior inference on Markov chain Monte

Carlo samples over the unknown parameters. Because am-

plitude, phase and translation are all relative with respect to

the underlying class parameter, their marginal posterior dis-

tributions are potentially multimodal when there is consid-

erable uncertainty in the underlying class of an observation.

Consequently, we use an adaptive parallel tempering algo-

rithm, similar to that of [21], where the temperature scheme

[6] and the proposal parameters of the Metropolis-within-

Gibbs algorithm [16] are automatically tuned for efficiency.

We have found that this is a flexible sampling technique that

is able circumvent these potential multimodality issues.

3. Applications

In this section, we assess our model on simulated and

real datasets. In all examples, we show our inferential re-

sults for functions that underlie irregularly sampled obser-

vations. Additionally, we base a probabilistic classifier on

the marginal posterior distribution over the class parameter.

When comparing results to other classification methods, we

use the initials EA to denote the classification results based

on the proposed empirical amplitude Bayesian hierarchical

model.

As a benchmark, we use the approach of [8], where lin-

ear discriminant analysis is defined for irregularly sampled

functional data. In this formulation, class-specific mean

functions and a covariance function are estimated based on

training data to define a discriminant function that assigns

a new observation to one of the classes. For implementa-

tion, we use publicly available MATLAB code under de-

fault settings, which is available at http://faculty.

marshall.usc.edu/gareth-james/Research/

Research.html. We refer to results from this method

using LD.

Additional methods used for comparison are based on

the PACE framework designed to analyze sparse and irreg-

ularly sampled functional data [25]. The PACE procedure

estimates a mean function and functional principal compo-

nent basis functions, and is implemented in the PACE MAT-

LAB toolbox [24]. The training data is first projected onto

the estimated basis to compute a finite dimensional repre-

sentation. Then, the resulting training data and associated

class labels are used to train different classifiers. In this

work, we consider the k-nearest neighbors classifier (KN),

random forests (RF), and support vector machines (SV). All

of these approaches are implemented in the Python package

scikit-learn [14], where corresponding hyperparameters are

tuned based on k-fold cross validation. To classify a new

observation, it is first projected onto the basis estimated via

PACE; the class assignment is determined according to the

trained classifier rule.

For all simulated examples, datasets are first split into

training and testing sets, and the classification methods are

compared using two different measures: classification accu-

racy (proportion of testing data that was assigned to the cor-

rect class) and the multi-category Brier score [3] (squared

difference between predicted probability of class member-

ship and the actual class of an observation); we aim for high

classification accuracy and low Brier scores.

3.1. Simulated Example

This simulated example was designed to understand the

effects of phase variability and severity of fragmentation



Figure 2. Example with high warping variability and severe fragmentation. Bottom: Model fit for three different observations from the

testing data (one from each class). The black points represent the observations, and the lines represent posterior draws of a complete

function, i.e., the composition of posterior draws of amplitude and phase, colored by the corresponding posterior draw of the class label.

Figure 3. Example with low warping variability and mild fragmentation. Top: Training data from each class. Bottom: Model fit for three

different observations from the testing data (one from each class). The black points represent the observations, and the lines represent

posterior draws of a complete function, i.e., the composition of posterior draws of amplitude and phase, colored by the corresponding

posterior draw of the class label.

on modelling results. Training data were generated from

three different classes corresponding to functions that have

one, two or three peaks; the amplitude components of func-

tions within the same class only vary according to the

height of the peaks. For each simulation setting, the am-

plitude components are randomly warped by phase func-

tions generated from the probability model p(γ(tγ)) ∼
Dirichlet(θγ1mγ+1). We consider three different values of

θγ = 5, 25, 125, corresponding to varying degrees of warp-

ing. Testing data are generated in the same way, except that

they are fragmented so that only 10%, 25%, 50% or 75%
of each function is observed. In total, there are 12 settings in

this simulation that correspond to different pairings of phase

variability and portion of testing data observed. For these 12

different simulation settings, 50 testing and 50 training ob-

servations are simulated in each class. The top row in Fig-

ure 2 shows an example training dataset with high warping

variability. The black points in the bottom row correspond

to testing observations with severe fragmentation. On the

other hand, the top row in Figure 3 shows an example train-

ing dataset with low warping variability; the black points in

the bottom row correspond to testing data with mild frag-

mentation. In the bottom panel in each of these two figures,

we also display the posterior samples of the complete func-

tion generated from the proposed model (each function is a

posterior amplitude sample composed with the correspond-



(a) (b) (c)
Figure 4. Boxplots of the Brier score (top) and correct classification rate (bottom) based on 20 replicates of the simulations described in

Section 3.1. Each plot shows the result for different levels of fragmentation in the testing data (10% corresponds to severe fragmentation

and 75% corresponds to mild fragmentation). (a) High phase variability (θγ = 5). (b) Moderate phase variability (θγ = 25). (c) Low

phase variability (θγ = 125).

ing posterior phase sample); each posterior sampled is col-

ored according to the corresponding posterior sample of the

class label. In the bottom row of Figure 2, we see that there

is a lot of uncertainty in the estimated function and its class

membership. This is due to the severe fragmentation of the

observation. On the other hand, in the bottom row of Figure

3, the uncertainty is extremely small, both in the structure of

the function and its class label. Each of the 12 different sim-

ulation scenarios was replicated 20 times. The classification

results based on the proposed Bayesian model and the other

four methods are compared in Figure 4. Each row in this

figure corresponds to the two measures of classification per-

formance, with Brier score in the top row and accuracy in

the bottom row. In these simulated examples, the proposed

Bayesian model is better at accounting for phase variabil-

ity and different levels of fragmentation as suggested by the

low Brier scores and high correct classification rates.

3.2. Phoneme Data with Simulated Fragmentation

To further study the effects of fragmentation on mod-

elling results, we consider the phoneme training and test-

ing datasets available at https://www.math.univ-

toulouse.fr/˜ferraty/SOFTWARES/NPFDA/

index.html. As described in [5], the data correspond

to log-periodograms of recordings of phonemes, which are

units of sound that combine to form words, from five dif-

ferent classes “sh” as in “she”, “dcl” as in “dark”, “iy” as

in “she”, “aa” as the vowel in “dark” and “ao” as the first

vowel in “water”. Again, we simulated fragmentation so

that only 10%, 25%, 50% or 75% of the testing functions

were observed in different simulation settings. Figure 5 dis-

plays the training phoneme data in the top panel; the thick

function is the amplitude mean in each class. In the mid-

dle panel, we show five different observations (black points)

under severe fragmentation (10% observed); we also show

the posterior samples of the complete function (each func-

tion is a posterior amplitude sample composed with the cor-

responding posterior phase sample) colored by the corre-

sponding posterior sample of the class label along with the

pointwise posterior mean estimated by conditioning on the

class parameter. In the bottom panel, we show similar re-

sults when 75% of the testing function is observed. In the

middle panel, when only small portions of the testing data

are observed, there is considerable uncertainty regarding the

structure of the complete function and its class assignment.

In the bottom panel, both sources of uncertainty are much

smaller. The four fragmentation scenarios were replicated

20 times where we used 250 complete functions as training

data (50 per class) and 250 fragmented functions as testing

data (50 per class). As in the previous simulated example,

we compared the performance of the proposed model to the

four competing methods. The results are shown in Figure

6 with Brier scores in the left panel and correct classifica-

tion rates in the right panel. In terms of the Brier score,



Figure 5. Top: Example phoneme training data. Middle and Bottom: Model fit for five different observations from the testing data

(one from each class) under severe (10% observed) and mild (75% observed) fragmentation, respectively. The black points represent the

observations, and the lines represent posterior draws of a complete function, i.e., the composition of posterior draws of amplitude and

phase, colored by the corresponding posterior draw of the class label.

Figure 6. Boxplots of the Brier score (left) and correct classification rate (right) based on 20 replicates of the simulations described in

Section 3.2. Each plot shows the result for different levels of fragmentation in the testing data (10% corresponds to severe fragmentation

and 75% corresponds to mild fragmentation).

our approach significantly outperforms the other methods

under the high and moderate fragmentation scenarios; the

performance of our model and the PACE-based approaches

is comparable when 75% of each testing function is ob-

served. This suggests that the proposed model appropriately

accounts for the uncertainty in the class label and thus leads

to lower Brier scores when small portions of the testing data

are observed. The overall correct classification rates are

similar across all methods. It appears that the LD approach

is inferior to the other four methods under most settings.

3.3. Conidial Discharge of Fungi Data

Finally, we return to the motivating example in Figure

1. This data comes from [7], and has been used to study

environmental factors related to conidial spore discharge of

fungi. In this work, 15 experimental units were incubated

at different temperatures: cold (12◦C), warm (18.5◦C) and

hot (25◦C). Then, in eight hour intervals, the intensity of

conidial discharge was measured in each of the experimen-

tal units over the span of 120 hours. In [12], functional data

analysis methods were used to discern if there were any sig-

nificant differences among experimental conditions in the

timing of peak discharge and the rate of decay following the

peak. There were five, four and four complete experimen-

tal units for the cold, warm and hot conditions, respectively.

Two of the experimental units, one warm and the other hot,

stopped discharging conidia at 48 and 40 hours, and were

recorded only partially. These experimental units were dis-



(a) (b) (c)
Figure 7. (a) Model fit for the two incomplete observations (black points). The lines represent posterior draws of a complete function,

i.e., the composition of posterior amplitude and phase components, colored by the corresponding posterior draw of the class label. (b)

Histogram of marginal posterior draws of the class labels (1 = cold, 2 = mild, 3 = hot). (c) Model fit conditioned on the mode of the

marginal posterior of the class label.

regarded in the original study.

For this work, we considered complete experiments

as training data, and the incomplete experiments as frag-

mented observations. As such, we wish to infer the exper-

imental condition (i.e., class) and the remaining portion of

the function that describes the discharge for the incomplete

experiments. Figure 7(a) presents posterior samples from

the proposed model for the two incomplete observations

(black points). Each posterior sample is a composition of

a posterior draw of amplitude and phase components, and

is colored according to the corresponding class label. Panel

(b) shows a histogram of marginal posterior draws of the

class labels for each of the two observations, where 1 corre-

sponds to cold, 2 corresponds to warm, and 3 corresponds

to hot. Finally, in panel (c), we show the model fit con-

ditioned on the mode of the marginal posterior distribution

for the class label. In both cases, the proposed model fa-

vors the experimental condition that generated the incom-

plete data and offers reasonable estimates of the complete

function. We are also able to assess the uncertainty asso-

ciated with the intensity of conidial discharge for the entire

measurement period. It appears that the proposed model has

fairly high confidence that the first observation came from

the warm experimental condition; for the second observa-

tion, the marginal posterior probabilities of the warm and

hot conditions are very similar.

4. Discussion and Future Work

In this paper, we propose a Bayesian model for infer-

ence on incomplete functional data, when training data from

multiple classes are available. In particular, we model the

amplitude and phase components of the underlying func-

tions separately. Based on simulated and real data exam-

ples, the proposed model outperforms other methods in

classification tasks based on irregularly sampled functional

data, especially when a relatively small part of the observa-

tion is recorded or high phase variability is present.

One shortcoming of the presented model is the need for

densely-observed training data. In future work, we plan

to incorporate more hierarchical layers into the model, so

that the training data can possibly be irregularly sampled

as well. This would allow for uncertainty propagation

from the training stage of the model to the inferential

stage. We also plan to reformulate the model to apply

to higher-dimensional functional data, and in particular,

shapes.
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