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Abstract

Spatially resolved transcriptomic imaging is a family of

promising new technologies that can produce a series of im-

ages that quantify gene expression at every pixel. These

technologies, such as multiplex error-robust fluorescence

in situ hybridization (MERFISH) which is the focus of this

work, produce data that is inherently multi scale. They de-

scribe molecules at nanometer resolution, cell types at mi-

cron resolution, and tissue types at millimeter resolution.

To harness the potential of these techniques, new mathe-

matical and computational tools are required to quantify

similarities and differences between images across exper-

imental conditions. In this work we demonstrate the ap-

plication of multi scale diffeomorphic metric mapping to

MERFISH images. This recently developed framework uses

varifold measures on reproducing kernel Hilbert spaces to

describe shape and signal across spatial scales, and com-

putes distances between samples in a Riemannian setting.

Using experimental data from serial sections of the mouse

preoptic hypothalamus, we use this technique to compute

optimal nonrigid alignments between neighboring sections.

This approach will ultimately be extended to 3D reconstruc-

tion and alignment to common coordinates of a brain atlas.

1. Introduction

Neuroimage analysis is a field that has strongly benefit-

ted from computer vision techniques. Stereology practices

including cell detection and tissue-type annotation that were

once performed manually [24] are now being replaced by

automatic methods. Many such tools rely on the Rieman-

nian structure of shape data, such as the Large Deformation

Diffeomorphic Metric Mapping (LDDMM) [2] framework

upon which our work is built. This framework has been

leveraged by many groups to study and compare anatomical

form from imaging data, including Riemannian averaging

[17, 10] and regression [11, 9, 28], applications in sparse

representations [8, 27, 36], and deep learning [33, 29].

These techniques have largely been applied at the millime-

ter scale of human magnetic resonance imaging (MRI). To-

day, initiatives such as the Brain Research through Advanc-

ing Innovative Neurotechnologies (BRAIN), are leading to

terabytes of neuroimaging data, typically acquired at sub-

cellular resolution, publicly accessible through databases

like the Brain Image Library (BIL) [6]. New mathemati-

cal and computational techniques are required to extract in-

sight from the unprecedented scale of these neuroimaging

datasets at micron resolution.

Multiplex error-robust fluorescence in situ hybridiza-

tion (MERFISH) is one of several spatially resolved tran-

scriptomic imaging technologies [32] that has been ap-

plied to characterize the transcriptomic profile and spa-

tial location of cells within fixed brain tissues [5, 21, 31,

35]. Briefly, MERFISH uses massively multiplexed single-

molecule FISH, error-robust barcoding, combinatorial la-

beling, and sequential imaging, to map the subcellular dis-

tributions of up to 10,000 RNA species (Fig. 1). Cells can

be then segmented and the number of each RNA species

1



Figure 1. Example of MERFISH imaging of 10,050 genes in in-

dividual U-2 OS cells. (A) A high-pass-filtered, single-z slice im-

age of a U-2 OS sample stained with encoding probes for a single

imaging round. (Scale bar: 10 m.) (B) A zoomed-in image of the

region marked with the red box in A. (Scale bar: 1 m.) (C) All

identified RNA molecules (colored markers) detected from all im-

aged z slices in the region depicted in A. (Scale bar: 10 m.) (D) A

zoomed-in image of all identified RNA molecules detected from

all imaged z slices in the region marked with the red box in C.

(Scale bar: 1 m.) In C and D, different colored dots mark distinct

genes. Data from [31], images reproduced with permission.

within each cell quantified to achieve spatially resolved

single-cell transcriptome profiling. Additional downstream

single-cell clustering analysis may be applied to identify

transcriptionally distinct cell-types and cell-states.

Our goal is to build a quantitative description of similar-

ities and differences between these MERFISH datasets, in

terms of their signal pattern and spatial distribution. In do-

ing so we compute optimal spatial alignments in the form

of diffeomorphic maps. These will be essential to 3D re-

construction of slices within a sample, alignment to well

characterized atlases such as the Allen Institute Common

Coordinate Framework [30], and for comparisons between

samples acquired under different experimental conditions.

Establishing a spatial alignment between images, and thus

a distance between them, is natural at the 1mm macro-

scopic scale. For example, white matter and gray mat-

ter appear consistently in MRI scans of different subjects,

and alignment of images can be computed by aligning the

same tissue types. Even when images are acquired with

different modalities, tissue types can be aligned based on

their boundaries using approaches including mutual infor-

mation [18, 22], local correlation [1], or image synthesis

[13, 14, 26]. The challenge in extending these approaches

to microscopic data is the lack of correspondence between

particle type data in different images. For example, no two

brains have the “same cells” and so aligning one to another

at this scale is not as simple as aligning the image intensity

of cells. This task requires an approach representing dis-

crete cells and continuous tissues in a common framework.

Here we address this challenge through a multi scale so-

lution, implementing methods described in [19]. We model

MERFISH data using varifolds [4], which store the position

and signal of particles using Dirac measures. We transi-

tion from fine to coarse scale using nonlinear descriptions

of local statistical ensembles. And we model spatial pat-

terns using flows of diffeomorphisms interacting at each

scale, which extends the Riemannian setting of [2] to mul-

tiple scales.

2. Results

In this section we describe our MERFISH dataset and its

representation at multiple scales using varifold measures.

We follow with a review of the classic LDDMM method,

and a description our diffeomorphic mapping approach. We

then demonstrate its application to establishing a spatial

correspondence between tissue sections.

2.1. MERFISH Data

The dataset we used was generated and made available

publicly as part of the work described in [35]. To summa-

rize, 7 to 8 week old mice were euthenized, and their brain

was extracted and dissected into 3 millimeter cubes contain-

ing the entire preoptic region and surrounding nuclei. 12

slices, 10 microns thick and 50 microns apart were extracted

and imaged with a high magnification, high-numerical aper-

ture objective (Olympus, PlanApo 60/1.3 NA, silicon oil).

For each slice 155 genes were imaged, cells were seg-

mented, and counts per cell were converted to normalized

z scores. Dimensionality was reduced with principal com-

ponent analaysis, and clustering into cell types was per-

formed with Jaccard-Louvain community-based detection

with a bootstrap analysis to both identify stable clusters and

select the optimal value of the nearest neighborhood size

[16].

In Fig. 2 (top) we show a representation of 6443 detected

cells, clustered into their 8 major types. The empty regions

correspond to the ventricle (top) and ventral boundary of

the brain (bottom). This sample consists of 5 slices, which

are shown slightly smaller in the bottom two rows. As the

slices move in the anterior to posterior direction, we can see

the ventricle gradually disappear.



Figure 2. Top: One slice is shown near the preoptic hypothalamus.

The 8 different major cell types are shown using a color key. In

this figure only, the size of each dot corresponds to the size of the

cell. Bottom: several other slices from this dataset are shown.

2.2. Multiscale varifold representation

In this work we focus on two spatial scales. At the fine

scale (scale 0, indicated by a superscript 0) we have a set

of cells with a spatial position, and a signal describing their

type (a “one hot” encoded M = 8 dimensional vector). An

example slice is shown on the top row of Fig. 2. We let each

cell have position x0

i , feature vector f0

i , and weight w0

i = 1
for i ∈ {1, ..., N0} (N0 = 6443 for this slice). We express

this distribution as a weighted sum of Dirac measures:

µ0 =
∑
i

w0

i δx0

i
⊗ δf0

i
(1)

The first Dirac describes a measure over spatial position,

and the second describes one over feature values.

At the coarse scale (scale 1, indicated by a superscript

1) we model tissues as mixtures of cell types. Spatial posi-

tions are described by a regular pixel grid at locations x1

i for

i ∈ 1, ..., N1 (N1 = 576 for this slice, corresponding to a

24 × 24 pixel grid spaced at 92 microns). We transition be-

tween scales using a kernel, k, to identify locally weighted

neighborhoods, and a set of summary statistics that describe

these local ensembles. Here we used a 2D Gaussian kernel

k. The weights are defined by

w1

j =
∑
i

k(x1

j , x
0

i )w
0

i . (2)

For each coarse scale particle, these weights are normal-

ized to give a probability density, which is used to compute

local statistics for new features,

pj =
1

w1

j

∑
i

k(x1

j , x
0

i )w
0

i δf0

i
. (3)

Note that for each j, this corresponds to a probability mass

function over the 8 cell types.

We describe our data using two local statistics: a linear

statistic (mean) and a nonlinear statistic (entropy) of the cell

type distribution, giving 9 dimensions. This gives our vari-

fold representation at coarse scale:

µ1 =
∑
j

w1

j δx1

j
⊗ δf1

j
. (4)

These coarse scale representations are illustrated in Fig.

3 for the same section as Fig. 2 (top). The left hand side

shows local mean using the same color key as Fig. 2, and

the right side shows local entropy. The color scale is set so

that entropy of 0 bits is shown in black, and entropy of 3 bits

(maximum possible for 8 cell types) is shown in bright red.

Most of our data lies between 1.5 and 2.5 bits of entropy.

Weights are shown using opacity, so that regions near the

boundary or inside the ventricle appear transparent and are

colored white.

In Fig. 4 we show the same fine and coarse scale repre-

sentations for one slice in three other specimens.

2.3. Review of LDDMM

Image registration generally seeks to compute a smooth

invertible transformation to deform one dataset to become

similar to a second dataset. These transformations are maps

between a subset of R3 to itself, ϕ : X ⊂ R
3 → X . Point



Figure 3. For the slice shown in Fig. 2 top, left shows local pro-

portions of cell type, using the same color key. Right shows local

entropy, with black 0 bits and red 3 bits. In both cases weights

are mapped to opacity, such that regions appearing white have low

weights.

Figure 4. Fine and coarse scale representation of MERFISH data

for 3 other specimens. Left column shows cell types at fine scale.

Center column shows mean cell types at coarse scale, and right

shows entropy in cell type distribution at coarse scale. Color is

represented as in Fig. 2 and 3

.

based data (such as landmarks or discrete curves and sur-

faces) can be deformed by evaluating the map: xi 7→ ϕ(xi)
directly, whereas imaging data can be deformed by compos-

ing images, I : X → R, with the inverse I 7→ I ◦ ϕ−1.

In the LDDMM formalism for constructing diffeomor-

phic mappings between datasets, transformations are pa-

rameterized through a time varying velocity vector field, vt
for t ∈ [0, 1]. The transformation is generated by solving
d
dt
ϕt = vt(ϕt) with initial condition ϕ0 = identity. One

can also consider points or images evolving dynamically

under the flow vt, with

d

dt
xi = vt(xi) (5)

d

dt
I = −DIvt (6)

for D placing components of partial derivatives across a

row, and (6) being the optical flow equation.

This approach has a geometric interpretation, where vt
is a vector in the tangent space to the diffeomorphism group

at ϕt. This tangent space is modeled as a reproducing ker-

nel Hilbert space V . Relatively simple conditions on vt can

guarantee that ϕ be smooth and invertible [7]. Namely, an

inner product is defined that penalizes quickly varying com-

ponents through stationary highpass filter L, and the norm

of vt is used to regularize the deformation.

In the original implementation [2], optimal transforma-

tions were computed to align an image I to an image J

(both functions from X to R) by minimizing the objective

function:

1

2

∫
1

0

‖Lvt‖
2

L2
dt+

1

2σ2
‖I ◦ ϕ−1

1
− J‖2L2

. (7)

The first term imposes regularization through the norm

squared in V , and the second corresponds to similarity

through an L2 norm. Optimal solutions are geodesic curves

through the space of diffeomorphisms, and the regulariza-

tion term is equal to the squared Riemannian distance be-

tween identity and ϕ1. This problem is traditionally solved

through gradient descent. Below we discuss our extension

of this method to multi scale flows and multi scale datasets.

2.4. Multiscale diffeomorphic mapping

Given two multi scale representations of MERFISH

datasets, a template and a target, we align one to an-

other using geodesic trajectories in the space of diffeomor-

phisms. These diffeomorphisms are generated from flows

(time varying velocity fields) at each scale: v0t at fine scale

and v1t at coarse scale, for t ∈ [0, 1].
These flows act on our varifold representation in two

ways. First the position of particles is displaced by the ve-

locity field:

d

dt
x0

i = v0(x0

i ) + v1(x0

i ) (8)

d

dt
x1

i = v1(x1

i ) . (9)

Second, the weight of particles is modified by the velocity

field’s divergence.

d

dt
log(w0

i ) = div[v0](x0

i ) + div[v1](x0

i ) (10)

d

dt
log(w1

i ) = div[v1](x1

i ) (11)



Figure 5. Top row: velocity vector fields at coarse (v1, left) and

fine (v0, right) scale. Bottom row: v
1 is integrated to give ϕ

1

(left), and v
0
+ v

1 is integrated to give ϕ
0 (right).

The feature values are not affected by this flow. Note that

scales are coupled together, with v0 interpreted as a refine-

ment to v1. These dynamic equations should be compared

to their classic counterparts, with (8) and (9) directly com-

parable to (5), and (10) and (11) being comparable to (6).

We also generate dense diffeomorphisms sampled on a

regular lattice at each scale (ϕ0, ϕ1):

d

dt
ϕ0 = v0(ϕ0) + v1(ϕ0) (12)

d

dt
ϕ1 = v1(ϕ1) , (13)

and their inverses:

d

dt
(ϕ0)−1 = −D[(ϕ0)−1](v0 + v1) (14)

d

dt
(ϕ1)−1 = −D[(ϕ1)−1]v1 . (15)

These are used for creating visualizations of deformed grids

in Figs. 5,7,8. The black horizontal and vertical curves in

these figures correspond to isocontours of the y and x com-

ponents of ϕ−1 (respectively). The inverses involve the

optical flow equation, which is computed using semi La-

grangian integration [7] (the method of characteristics). The

idea of diffeomorphic flows at two different scales is illus-

trated in Fig. 5. Notice that the grid on the right maintains

the same coarse scale trends as that on the left, but includes

additional fine scale features.

The particle weights grow and shrink in proportion to

the determinant of Jacobian of the diffeomorphism. This is

Figure 6. A set of particles sitting on an undeformed grid on

the left, are transformed by a diffeomorphism represented by the

deformed grid on the right. In regions where the grid is expan-

sive (toward the −x direction) the particle weights (represented as

sizes) increase. In regions where the grid is compressive (toward

the +x direction) the particle weights decrease.

illustrated in Fig. 6 and is equivalent to the equations (10)

and (11).

In our mapping method we minimize an objective func-

tion that penalizes the energy of the flows at each scale, en-

suring the solution is a geodesic, as well as a matching cost

at t = 1, which uses the varifold norm at each scale. The

first term includes the regularization of [2] summed over

each scale,

Reg =

∫
1

0

∫
1

2σ2

R0

|L0v0t (x)|
2 +

1

2σ2

R1

|L1v1t (x)|
2dxdt .

(16)

Here Li is a differential operator of the form (1 − a2i∆)2,

with ∆ the Laplacian, which is sufficient to ensure that any

finite energy flow is smooth enough to generate a diffeomor-

phism [7]. The constants σ2

R0 , σ
2

R1 are user defined scalar

weightings.

Data matching accuracy is evaluated at the endpoint of

the flow (t = 1) using a varifold norm. This is an operator

norm defined on a reproducing kernel Hilbert space with

two kernels at each scale, one for spatial proximity (h0

x,h1

x)

and one for features (h0

f , h
1

f ). We use Gaussians in both

cases. At scale zero the norm of a varifold is defined by

‖µ0‖2
0
=

∑
i

∑
i′

wiwi′h
0

x(xi − xi′)h
0

f (fi − fi′) , (17)

and at scale 1 by

‖µ1‖2
1
=

∑
j

∑
j′

wjwj′h
1

x(xj − xj′)h
1

f (fj − fj′) . (18)

This gives us a total cost to minimize

Cost = Reg +
1

2σ2

M0

‖µ0

t=1
− µ0

target‖
2

0

+
1

2σ2

M1

‖µ1

t=1
− µ1

target‖
2

1
. (19)



Parameter Equation Fine Coarse

Gaussian scaling k (µm) (2),(3) 100.0 -

a (µm) (16) 30 100

σR (16) 5e3 1e3

σM (19) 1.0 1.0

Gaussian position hx (µm) (17),(18) 50 200

Gaussian feature hf (17),(18) 1.0 1.0

Gradient descent step size - 1e2 5e0

Optimization iterations - 2000 -

Table 1. Parameter values used in our mapping algorithm. Quan-

tities with units of length are expressed in microns. First and last

line apply to both scales.

Note the negative of a varifold is found by negating its

weights w.

Trajectories corresponding to minimizing solutions are

constant speed geodesics in the space of multi-scale dif-

feomorphisms. Equations that characterize these solutions

were derived in other work [19, 20].

2.5. Slice to slice alignment

We implement a minimization algorithm using automatic

differentiation in pytorch. Velocity fields are discretized on

fixed 35 × 34 grids with 75 micron spacing (note this does

not use the “exact” reproducing kernel Hilbert space dis-

cretization described in [19]), and flows integrated with 5

timesteps using Euler’s method. At fine scale, we deci-

mated the number of cells by a factor of three so that our

code would run an NVIDIA GeForce RTX 2080 Ti Rev. A

(TU102) GPU with 11GB of memory. Other parameters

used are described in Table 1.

In Fig. 7 we show the result of mapping one slice

to its neighbor as a flow over time at coarse scale.

From left to right the data is sampled at time t ∈
{0, 0.2, 0.4, 0.6, 0.8, 1.0}, with displayed grids rendered as

isocontours of inverse diffeomorphism from (14) and (15).

Notice that particle weights (represented as sizes) change

in proportion to expansion or contraction of the grid. The

color scale in the middle row indicates our entropy signal,

with black 0 bits and red 3 bits.

In Fig. 8 we show the same at fine scale. Again it is clear

that particle weights change significantly as well as posi-

tion. The refined displacement, visualized as a grid shows a

clear collapse of the ventricle to align data between the two

slices. We note that there is a maximum displacement of ap-

proximately 140 microns, which corresponds to many times

the size of a cell body. This shift accounts for deformations

due to sectioning, but also due to changing anatomy as we

progress from anterior to posterior. In either case this mis-

alignment needs to be accounted for to make spatial com-

parisons between slices.

In Fig. 9 we show examples of mappings between dif-

ferent slices and different specimens, illustrating accuracy

and generalizability. Some interesting features are revealed,

such as the expansion of a small number of particles to fill

in gaps as seen in the bottom row.

3. Conclusion

In this work we demonstrated the application of multi

scale diffeomoprhic metric mapping to MERFISH datasets.

This approach considered two scales, the cell-scale and

the tissue-scale. We represented our data using varifolds,

and diffeomorphisms using multi scale flows. We crossed

from fine scale to coarse scale using locally weighted linear

(mean) and nonlinear (entropy) statistics.

One limitation of with these reproducing kernel Hilbert

space approaches is the quadratic complexity incurred in

performing computations on the norm. This should be in-

terpreted relative to hardware on which the images were ac-

quired, which are currently limited to small fields of view

due to long scanning times. Regardless, there have been

approaches to address this in the field of computational

anatomy, such as (non radially symmetric) kernels that in-

volve interpolation to and from a fixed grid, and use of fast

Fourier transforms [15].

Another limitation of this work is that while the frame-

work permits as many scales as required, only two scales

were used here. Future work will expand the number of

scales that are mapped simultaneously toward the subcellu-

lar scale (as in Fig. 1), and toward more macroscopic scales.

At the subcellular scale with millions of particles, overcom-

ing quadratic complexity using fast kernels as mentioned

above will be essential.

There have been several other approaches to mapping

data at multiple scales. Some approaches have focused on

the diffeomorphic transformation model, rather than repre-

sentations of the data. Some authors have used regulariza-

tion of diffeomorphic flows with velocity fields parameter-

ized through kernels at different scales[23, 25]. These are

summed into a single flow, but parameters can be separated

by scale for later analysis. Other authors included concate-

nation of flows at different scales [3], and investigated the

relationships to the previous approach. Other approaches

have focused on the data model, for example using deep

clustering [34] or wavelets [12] to extract features from high

resolution data without considering multi scale flows. Rel-

ative to these techniques our approach has the advantage

that it describes both point sets and images within a single

framework, and considers the multi scale nature of both dif-

feomorphic mappings and data itself.

This work represents the first attempt to describe and

quantify differences between MERFISH datasets by em-

bedding their shape and signal in a Riemannian space. In

future work these approaches will be extended towards sev-

eral specific problems. These will include accurate 3D re-



Figure 7. Slice to slice alignment results showing flows over time, from t = 0 (left) to t = 1 (right), at coarse spatial scale. The top row

shows the deformation of mean cell type signal, with the same color key as Fig. 2. The second row shows the deformation of our entropy

signal, with black 0 bits and red 3 bits. Particle weights are represented as sizes. The bottom rows show the diffeomorphism at this scale.

Figure 8. Slice to slice alignment results showing flows over time, from t = 0 (left) to t = 1 (right), at fine spatial scale. Particles shown

using the same color key as Fig. 2. The top row shows the deformation of our cell type signal. Particle weights are represented as sizes.

The bottom shows the diffeomorphism at this scale.

construction of serial sections, mapping to standard atlases,

and hypotheses testing concerning spatial organization be-

tween populations of images taken under varying experi-

mental conditions.
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Sarang Joshi, Alain Trouvé, and Guido Gerig. Topology

preserving atlas construction from shape data without corre-

spondence using sparse parameters. In International Confer-

ence on Medical Image Computing and Computer-Assisted

Intervention, pages 223–230. Springer, 2012. 1

[11] P Thomas Fletcher. Geodesic regression and the theory of

least squares on riemannian manifolds. International journal

of computer vision, 105(2):171–185, 2013. 1

[12] Daniel Fürth, Thomas Vaissière, Ourania Tzortzi, Yang
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to-fine hamiltonian dynamics of hierarchical flows in com-

putational anatomy. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition Work-

shops, pages 860–861, 2020. 2, 6

[20] M I Miller, D J Tward, and A Trouve. Hierarchical computa-

tional anatomy: Unifying the molecular to tissue continuum

via measure representations of the brain. bioRxiv, 2021. 6

[21] Jeffrey R Moffitt, Dhananjay Bambah-Mukku, Stephen W

Eichhorn, Eric Vaughn, Karthik Shekhar, Julio D Perez,

Nimrod D Rubinstein, Junjie Hao, Aviv Regev, Catherine

Dulac, et al. Molecular, spatial, and functional single-

cell profiling of the hypothalamic preoptic region. Science,

362(6416), 2018. 1

[22] Josien PW Pluim, JB Antoine Maintz, and Max A Viergever.

Mutual-information-based registration of medical images: a

survey. IEEE transactions on medical imaging, 22(8):986–

1004, 2003. 2

[23] Laurent Risser, François-Xavier Vialard, Robin Wolz, Maria

Murgasova, Darryl D Holm, and Daniel Rueckert. Simul-

taneous multi-scale registration using large deformation dif-

feomorphic metric mapping. IEEE transactions on medical

imaging, 30(10):1746–1759, 2011. 6

[24] C Schmitz and PR Hof. Design-based stereology in neuro-

science. Neuroscience, 130(4):813–831, 2005. 1

[25] Stefan Sommer, Mads Nielsen, François Lauze, and Xavier

Pennec. A multi-scale kernel bundle for lddmm: towards

sparse deformation description across space and scales. In

Biennial International Conference on Information Process-

ing in Medical Imaging, pages 624–635. Springer, 2011. 6

[26] Daniel Tward, Timothy Brown, Yusuke Kageyama, Jaymin

Patel, Zhipeng Hou, Susumu Mori, Marilyn Albert, Juan

Troncoso, and Michael Miller. Diffeomorphic registration

with intensity transformation and missing data: Application

to 3d digital pathology of alzheimer’s disease. Frontiers in

neuroscience, 14:52, 2020. 2

[27] Daniel Tward, Michael Miller, Alain Trouve, and Laurent

Younes. Parametric surface diffeomorphometry for low di-

mensional embeddings of dense segmentations and imagery.

IEEE transactions on pattern analysis and machine intelli-

gence, 39(6):1195–1208, 2016. 1

[28] Daniel J Tward, Chelsea S Sicat, Timothy Brown, Arnold

Bakker, Michela Gallagher, Marilyn Albert, Michael Miller,

Alzheimer’s Disease Neuroimaging Initiative, et al. En-

torhinal and transentorhinal atrophy in mild cognitive im-

pairment using longitudinal diffeomorphometry. Alzheimer’s

& Dementia: Diagnosis, Assessment & Disease Monitoring,

9:41–50, 2017. 1

[29] Jian Wang and Miaomiao Zhang. Deepflash: An efficient

network for learning-based medical image registration. In

Proceedings of the IEEE/CVF conference on computer vi-

sion and pattern recognition, pages 4444–4452, 2020. 1

[30] Quanxin Wang, Song-Lin Ding, Yang Li, Josh Royall, David

Feng, Phil Lesnar, Nile Graddis, Maitham Naeemi, Ben-

jamin Facer, Anh Ho, et al. The allen mouse brain com-

mon coordinate framework: a 3d reference atlas. Cell,

181(4):936–953, 2020. 2

[31] Chenglong Xia, Jean Fan, George Emanuel, Junjie Hao, and

Xiaowei Zhuang. Spatial transcriptome profiling by merfish

reveals subcellular rna compartmentalization and cell cycle-

dependent gene expression. Proceedings of the National

Academy of Sciences, 116(39):19490–19499, 2019. 1, 2

[32] A Xiaowei. Method of the year 2020: spatially resolved tran-

scriptomics. Nature Methods, 18(1), 2021. 1

[33] Xiao Yang, Roland Kwitt, Martin Styner, and Marc Nietham-

mer. Quicksilver: Fast predictive image registration–a deep

learning approach. NeuroImage, 158:378–396, 2017. 1

[34] Paul A Yushkevich, Mónica Muñoz López, Maria Mer-
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