
GILDA++: Grassmann Incremental Linear Discriminant Analysis

Navya Nagananda

Rochester Institute of Technology

nn3264@rit.edu

Andreas Savakis

Rochester Institute of Technology

andreas.savakis@rit.edu

Abstract

Linear Discriminant Analysis (LDA) is an important su-

pervised dimensionality reduction method. Traditional LDA

makes use of the eigenvalue decomposition of the scatter

matrices based on the entire dataset. However, in some

settings the whole dataset may not be available at once.

Our approach considers an incremental LDA framework

where the model receives training data in the form of chunks

for subsequent analysis. We propose the Grassmann-

Incremental Linear Discriminant Analysis (GILDA++) us-

ing the proxy matrix optimization method (PMO). The PMO

method does not directly optimize a matrix on the mani-

fold, but uses an auxiliary or proxy matrix in ambient space

which is retracted to the closest location on the manifold

along the loss minimizing geodesic. PMO makes use of an

LDA objective by incrementally updating the scatter matri-

ces to handle chunks of data. It makes use of automatic

differentiation and stochastic gradient descent to find the

lower dimensional LDA projection matrix. GILDA++ is

able to handle chunk data, where each chunk has new sam-

ples from existing classes or novel classes. Our experiments

demonstrate that GILDA++ outperforms the prevailing in-

cremental LDA methods in various datasets.

1. Introduction

Linear Dimensionality Reduction (LDR) is an important

tool for the machine learning community, finding applica-

tions in face recognition [2, 19], pattern recognition [3, 8],

and data visualization [20]. Linear Discriminant Analysis

(LDA) is a supervised LDR method, that has been mainly

used for classification [3]. Fishers LDA [7, 22] works by

minimizing the within class scatter and maximizing the be-

tween class scatter of the training data. In order to obtain

the lower dimensional projections, a lot of data has to be

provided to obtain scatter matrices that are good represen-

tations of the data. However, this is not always possible,

in cases where the full dataset is not available and training

samples are obtained incrementally in chunks of variable

size, as illustrated in Figure 1. In many real world scenar-

Figure 1. Illustration of data arriving in chunks of variable size for

incremental learning.

ios, the complete set of training samples is not available in

advance, and data is provided in the form of chunks which

may have new classes and/or an uneven distribution of sam-

ples from the existing classes [25]. An incremental LDA

framework has to be able to handle both training scenar-

ios seamlessly, i.e., training on the full dataset or incre-

mentally. Traditionally, LDA methods use an eigenvalue

solution to find the lower dimensional projection matrix,

which is not always the most suitable solution to the prob-

lem. In [4], LDR is cast as a matrix optimization problem

over the Grassmann manifold. This formulation leads to

a generic framework for LDR based on stochastic gradi-

ent descent (SGD) that can be utilized with various opti-

mization techniques. In the case of LDA, the orthogonality

requirement constrains the solution to lie on a Grassmann

manifold, making a Grassmann manifold-based formulation

well-suited for optimization.

Incremental LDA methods have been proposed for

streaming data (one sample at a time) and chunk incom-

ing data. One of the ways that incremental LDA can be

done is by updating the scatter matrices that contribute to

the objective function [25]. However, after the updating the

scatter matrices, the LDA solution is obtained by the tra-

ditional eigenvalue solution which is time consuming and

inefficient [4]. Other techniques work on new optimization

strategies to improve the computational speed [27]. Meth-

ods such as [13, 27, 18] utilize QR decomposition to update

the within-class and between-class scatter matrices. More

recent methods try to reduce the matrix size for decomposi-

tion. LS-ILDA [17] incrementally updates the least square

solution by converting LDA into a multivariate linear re-

gression problem. In [14], sufficient-spanning sets are used

to update the between-class and within-class scatter matri-

ces by updating the eigenvectors at each step and removing

the minor components. This method, however, trades off

between accuracy and complexity. The LDA/GSVD [12]

approach is used in cases where the data dimension ex-

ceeds the number of datapoints, such that the scatter matri-

ces can be singular and hence the inverse is not computable.

LDA/GSVD makes use of the pseudo-inverse and the gen-

eralized singular value decomposition to arrive at the LDA

projection matrix. GSVD-ILDA [28] is the incremental ver-

sion of [12] which incrementally learns a subspace instead

of recomputing it from scratch. It involves updating the

eigenvectors of the data centered matrix by removing the

minor components. It can however be tricky to determine

which minor components are to be removed, thus, there is

risk of deteriorating performance.

We propose the Grassmann-Incremental Linear Discrim-

inant Analysis (GILDA++) approach based on proxy matrix

optimization (PMO). PMO makes use of a proxy matrix in

ambient space instead of directly optimizing on the mani-

fold. The key difference between PMO and the two-step

method [4] is that PMO integrates the manifold retraction

step into the optimization unlike the two-step process that

performs retraction after optimization. Therefore, the op-

timizer in PMO is less constrained than the two-step pro-

cess. The Grassmann manifold [1, 9, 26] has been used to

arrive at the projection matrix for LDA [4, 21], but incre-

mental approaches have not yet been explored. To the best

of our knowledge, our GILDA++ method is the first to in-

tegrate the incremental version of the LDA into a manifold

optimization problem. As chunks of data are received, in-

crementally update the scatter matrices using update rules

as in [25], and then then perform proxy matrix optimization

on the Grassmann manifold to find the lower dimensional

projection for LDA. The main contributions of this paper

are the following:

1. We propose GILDA++, the first method to utilize the

proxy matrix optimization method on the Grassmann

manifold to perform incremental LDA. PMO is less

constrained than the existing two-step optimization

method and allows for larger steps in ambient space

and thus faster convergence.

2. Incremental LDA is cast as an objective function which

does not require analytical computations for a closed

form solution. A single framework based on stochastic

gradient descent can handle the addition of new sam-

ples and/or new classes. This makes GILDA++ more

flexible, due to the ease of replacing the objective func-

tion for a given task within a larger framework.

3. The use of SGD and backpropagation allows easy in-

tegration of LDA into a neural network, as the scat-

ter matrices are updated based on the incoming data

batches for training.

The rest of this paper is organized as follows. Section 2

presents the equations used for incremental chunk LDA.

Section 3 introduces the definitions of some of the concepts

used in this work. Section 4 describes the method and the al-

gorithm of GILDA++. Section 5 discusses the experiments

performed and the results along with the comparison to ex-

isting incremental LDA methods. Section 6 provides a dis-

cussion on the computational complexity and convergence

of GILDA++. We finally conclude in Section 7.

2. Background

Assume that model has N training samples and let X =
[x1, x2, . . . , xN] ∈ R

D×N be the data matrix which is D

dimensional and has M classes. LDA finds a linear projec-

tion of the data by means of a linear transformation R over

X that minimizes the ratio the trace of the between-class

scatter matrix (Sb) and the within-class scatter matrix (Sw)

that are defined as:

Sw =

M∑

c=1

Σc =

M∑

c=1

∑

x∈xc

(x− x̄c)(x− x̄c)
T (1)

and

Sb =

M∑

c=1

nc(x̄c − x̄)(x̄c − x̄)T (2)

where nc is the number of samples in each class c; the total

number of samples is N =
∑M

c=1
nc; x̄ = 1

N

∑N

i=1
xi is

the mean of the data sample X; and x̄c is the mean vector

of the samples that belong to the class c.

In this work, the LDA projection matrix R ∈ O
D×d in a

d-dimensional space of lower dimension d < D, is obtained

by minimizing the following objective,

f = −
trace(RTSbR)

trace(RTSwR)
. (3)

The projection matrix R is orthogonal under this objective

function and can be modeled with a Grassmann manifold

formulation.

Typically LDA is performed by calculating the eigen-

decomposition of Sw
−1Sb and taking the eigenvectors cor-

responding to the d largest eigenvalues as the projection ma-

trix R ∈ R
D×d. This discriminant eigenspace can be rep-

resented by Ω = (Sw,Sb, x̄, N). In the case of traditional

LDA, this eigenspace is created by taking the entire dataset.

However, this does not work in cases when the data is pre-

sented incrementally in a chunk or streaming fashion. With

the arrival of new samples, the total mean, class mean and

the scatter matrices are updated, which in-turn updates the

entire discriminant eigenspace, Ω.

2.1. Chunk Incremental LDA

When performing incremental LDA, new samples are

provided to the model in chunks, Y0, Y1, ... until all the data

have been received. At each time step, N samples have al-

ready been seen, and a chunk has Lk number of samples

such that, Yi = {y1, ...,yLk
} and Lk ≥ 1. The incremen-

tal approach updates the model by incorporating the new

set of observations (Swy
,Sby

, ȳ, Lk) and finding the new

eigenspace, φ = (Sw
′,Sb

′, x̄′, N + Lk). There are two

cases considered here: (a) the new data belong to known

classes, and (b) the new data belong to a new class. In

the fist case, lc of the Lk new samples belong to a class

c that now has number of samples n′
c = nc + lc, and

N + Lk =
∑M

c=1
n′
c =

∑M

c=1
(nc + lc). The updated class

mean is x̄′
c =

1

nc+lc
(ncx̄c + lcȳc), where ȳc is the mean of

the new samples in class c. The updated total mean is:

x̄′ =
1

N + Lk

(Nx̄+ Lkȳ) (4)

where, ȳ = 1

Lk

∑Lk

j=1
yj . The updated between-class scat-

ter matrix is [25],

S′
b
=

M∑

c=1

n′
c(x̄c

′ − x̄′)(x̄c
′ − x̄′)T . (5)

The updated within-class scatter matrix is [25],

S′
w
=

M∑

c=1

Σ′
c

(6)

Σ′
c
= Σc+

ncl
2
c

(nc + lc)2
Dc+

n2
c

(nc + lc)2
Ec+

lc(lc + 2nc

(nc + lc)2
Fc

(7)

where,

Dc = (ȳc − x̄c)(ȳc − x̄c)
T , (8)

Ec =

lc∑

j=1

(ycj − x̄c)(ycj − x̄c)
T , (9)

Fc =

lc∑

j=1

(ȳcj − ȳc)(ȳcj − ȳc))
T . (10)

In the second case, we assume that lM+1 of the Lk new

samples belong to a new, previously unseen class M + 1.

Here the updated between-class scatter matrix is [25],

S′
b
=

M∑

c=1

n′
c(x̄c

′ − x̄′)(x̄c
′ − x̄′)T + lM+1(ȳ − x̄′)(ȳ − x̄′)T

(11)

=
M+1∑

c=1

n′
c(x̄c

′ − x̄′)(x̄c
′ − x̄′)T , (12)

where n′
c is the number of samples in class c for every chunk

of data. If c = M+1, then n′
c = lM+1 or else, n′

c = nc+lc.

The updated within-class scatter matrix is [25],

S′
w
=

M∑

c=1

Σc +ΣM+1 =

M+1∑

c=1

Σ′
c
, (13)

where, ΣM+1 = Σy∈{yc}(y − ȳc)(y − ȳc)
T .

The objective function for LDA in Eqn. (3) remains the

same, except the scatter matrices are now represented by the

expressions in Eqns. (12) and (13).

3. Mathematical Foundation

Definition 1: Stiefel Manifold

The Stiefel manifold (SM) is a compact embedded sub-

manifold of the Euclidean space. A point on the SM,

St(k, n), is the set of n × k dimensional matrices, k ≤ n,

with orthonormal columns equipped with the Frobenius in-

ner product [6].

St(k, n)
∆
= {W ∈ R

n×k : WT W = Ik}

Definition 2: Grassmann Manifold

The Grassmann manifold represents the collection of

subspaces spanned by the columns n × k dimensional ma-

trices with orthonormal columns [6]

G(n, k)
∆
= {Span(X) : X ∈ R

n×k,XT X = Ik}

The points on the GM can also be defined as being equiv-

alence classes of n × k orthogonal matrices, where two

matrices are equivalent if their columns span the same k-

dimensional subspace [6].

A point on the Stiefel manifold represents a basis of the

subspace whereas a point on the GM represents an entire

subspace [24]. Thus, the set of orthogonal matrices that

define the same subspace will exist as a single point on the

GM. Cunningham et al. [4] argue that for dimensionality

reduction, the GM is more suitable for optimization.

Tangent Space

The tangent space at a point Y on the manifold M is the

set of all points X that satisfy the following equation:

YTX+XTY = 0k, (14)

where 0k is a matrix containing all zero entries. The tan-

gent space TY M at a point Y on manifold M , is the linear

approximation to the manifold at a particular point and con-

tains all the tangent vectors to M at Y. While optimizing

over a manifold, the gradient of an objective function at a

point Y ∈ M is defined to be along the tangent space at that

point. The tangent space is important for optimization on

the manifold because the direction of update to the point be-

ing optimized must exist in the point’s tangent space. Each

tangent space defines an exponential mapping to the man-

ifold and thus defines a geodesic curve. The gradients can

then be used to travel along the geodesic in order to mini-

mize the objective function.

Gradient on the Manifold

When optimizing over the Grassmann manifold, the di-

rection of each update step must be found in the tangent

space of the current location on the manifold. However, it

is not possible to restrict the calculated gradients of the loss

to the manifold tangent space. To overcome this limitation,

the gradients are projected to the tangent space. For an ob-

jective function F , the gradients with respect to a point on

the manifold Y ∈ M is defined as:

∇F =
∂F

∂Y
−Y(

∂F

∂Y
)TYT (15)

Projection

The motion in ambient Euclidean space does not imply

that the point will move on the manifold. To move on the

manifold during optimization, a small step is taken along

the direction that exists in the tangent space of a point on

the manifold followed by a retraction to the manifold. How-

ever, sometimes a desired direction of motion may not exist

in the tangent space of the point. In these instances, the di-

rection must first be projected onto the tangent space. The

equation for the projection of a point Z that exists in ambi-

ent Euclidean space to the tangent space of the manifold at

point Y is given as:

πT,Y(Z) = Y
1

2
(YTZ− ZTY) + (Ik −YYT)Z. (16)

The projection operation eliminates the components that are

normal to the tangent space and only keeps the components

that are on the manifold tangent space at the current point,

Y.

Retraction

The retraction rk from ambient space to the manifold is

a mapping from a point in ambient space to the closest point

in the manifold. Updating the solution along the loss min-

imizing direction will likely introduce a small component

that moves the point out of the manifold into ambient space.

Therefore, it is important to retract the updated point back

to the manifold using a retraction operation. In this work,

we use the retraction operation in [4]:

rk(Z) = UVT (17)

using the SVD of Z = UΣVT .

Figure 2. Illustration of the 2-step matrix optimization method.

The tangent space is represented by the orange plane and the

Grassmann manifold is in green. The dotted red line is the loss

minimizing geodesic.

Figure 3. Illustration of the proxy matrix optimization method.

The Grassmann manifold is represented in green and the dotted

red line is the loss minimizing geodesic.

Data: X ∈ R
D×N

Result: Locally Optimal P such that r(Pi)
minimizes the loss fX from Eq. 3

initialize P ∈ RM×P and P 6∈ GM×P ;

for i > iter do

USV
T = P

i ; /* Retract P
i to G

M×P
*/

r(Pi) = UV
T ;

∇r(Pi) = ∂

∂Pi fX(r(Pi)) ; /* Calculate

gradients for P
i using Eq.15 */

P
i+1 = P

i
− β∇r(Pi) ; /* Update P */

end

Algorithm 1: Proxy Matrix Optimization.

4. Methodology

In [4], a two-step approach is used to retract a matrix

from the ambient Euclidean space onto the manifold to find

the optimal projection matrix. The two-step process is illus-

trated in Fig. 2. For each iteration, i, the projection matrix

Ri is updated by calculating its gradient. This takes the ma-

Figure 4. Network architecture of the GILDA++ method for incre-

mental learning from chunks of MNIST images.

trix out of the manifold into the ambient Euclidean space to

produce Zi+1. This point is then projected onto the tangent

space using Eq. (16). From the tangent space, the point is

retracted back onto the manifold using Eq. (17).

The PMO method does not directly optimize a matrix on

the manifold, but uses an auxiliary or proxy matrix in am-

bient space which is retracted to the closest location on the

manifold using Eq. (17). The PMO process is illustrated in

Fig. 3 and the corresponding algorithm is outlined in Al-

gorithm 1. PMO performs optimization in ambient space

by moving each update in the direction that minimizes the

loss. The first step in the PMO process is to retract the

proxy matrix Pi to Yi, its closest location on the manifold

GMXP. Once the proxy matrix is retracted to the mani-

fold, the loss is calculated based on the loss function at Yi.

For LDA, this is the loss described in Eqn. (3). This loss

is then back-propagated through the singular value decom-

position of proxy matrix using a method developed by [11]

to a new point Pi+1. This point is then retracted back onto

the manifold using Eq. 17 to point Yi+1. PMO leverages

the autograd routine in Pytorch to back-propagate through

the SVD and hence removing the need for any analytical

gradient calculation.

The general outline of GILDA++ is provided in Fig. 4.

The input to the model can either be the raw images or fea-

ture vectors, depending on the experiment performed. The

training data chunks are input into the incremental module

which makes use of Eqns. (12) and (13) to update the scat-

ter matrices. These updated scatter matrices are fed into the

objective function described in Eqn. (3) which is used in

the PMO method. Algorithm 1 provides the optimal LDA

projection matrix, Xs. The train and test data is then pro-

jected onto the lower dimensional space using Xs and a lin-

ear layer is trained to obtain the final classification accuracy.

The integration of Algorithm 1 into a neural network is

done by converting the PMO-LDA module into a fully con-

nected layer, which is subsequently connected to the FC

layers of the classifier. The loss for LDA is based on the

objective function of Eqn. (3) and is backpropagated to ob-

tain the optimal projection matrix.

Figure 5. Plot of the accuracy of GILDA++ for MNIST with the

fraction of training data provided.

5. Experiments and Results

In this section, we show the effectiveness of GILDA++

for incremental LDA using PMO on three different types

of experiments and compare our results with some of the

existing methods. Each experiment initializes the scatter

matrices in two stages, the base initialization stage, which

is the training data provided in the first batch and the subse-

quent update steps. All the experiments were performed on

an NVIDIA Titan V GPU.

5.1. Deep Features

A ResNet-18 [10] network was trained from scratch on

the CIFAR-10 [15] and MNIST [16] datasets. These net-

works were used to extract image features that were fed into

the GILDA++ model in a chunk incremental manner. The

base initialization and each chunk had a total of 256 samples

from all the classes. The dimension of the features from the

final convolutional layer of ResNet-18 is 512. Thus, each

chunk adds new samples to the existing classes. The scat-

ter matrices are calculated for every chunk increment and

the corresponding LDA projection matrix is computed. The

dimension of the projected space is one less than the total

number of classes. The final accuracy is obtained by train-

ing a linear layer on the lower dimensional training projec-

tions and testing it on the lower dimensional test data. The

linear layer is trained with a cross entropy loss. The batch

size in each of these experiments is 256. The optimization

used is SGD [23].

From the plots in Figs. 6 and 5, it is clear that even with

a small fraction of the data, it is possible to obtain a high

accuracy. After a significant portion of the data have been

received, performance plateaus and adding more data does

not increase in discrimination capabilities.

Figure 6. Plot of the accuracy of GILDA++ for CIFAR-10 with the

fraction of training data provided.

Table 1. Properties of the UCI datasets.

Dataset # classes # instances # attributes

Wine 3 178 13

Breast Cancer 2 569 30

Heart Disease 2 303 13

Iris 3 150 4

Sonar 2 208 60

Segmentation 7 210 19

Vehicle 4 846 18

5.2. Adding New Samples

The datasets used for these experiments are from the

UCI Machine Learning Repository [5]. The specifics of

the datasets and their properties are described in Table 1.

The train-test split is done randomly and in a 80:20 ratio for

each of the datasets. The base initialization is done with a

few samples from all the classes and each new chunk of data

adds samples to the existing classes. In each of the cases,

the lower dimensional projection is one less that the total

number of classes. The results are compared with the ac-

curacies obtained from the ILDA method described in [25]

and are reported in Table 2.

The plot for the accuracies versus the fraction of training

data for the Iris dataset is shown in Fig 7 for GILDA++ and

ILDA [25]. From the graph, it is evident that GILDA++

does better in terms of final accuracy on the test dataset. It

also shows that just 40% of the training data is sufficient to

obtain a discriminative eigenspace.

In Fig. 8 we show the projections in the lower dimen-

sional space for when the projection matrix is obtained from

20%, 50% and 100% of the training data for the UCI wine

dataset. The lower dimensional projections appear to be-

come more linearly separable as the amount of training data

increases. The accuracy reported is the accuracy on the test

Figure 7. Accuracy comparison of GILDA++ and ILDA [25] for

the Iris dataset for fractions of the training data.

data.

Table 2. Comparison between GILDA++ and ILDA [25] for the

UCI datasets.
Dataset Dim ILDA GILDA++

Wine 2 96.6 100

Breast Cancer 1 93.8 93.8

Heart Disease 1 59.1 69.2

Iris 2 98 100

Sonar 1 81.2 82.5

Segmentation 6 83.9 84.2

Vehicle 3 75.4 78.3

5.3. Adding New Classes

In this set of experiments, the base initialization is done

with data in two classes and each incremental chunk of data

provides a random number of new samples which may or

may not contain new classes. The chunk size used here is

20. This experiment is done on the ORL database of faces

and the final results are compared with two existing meth-

ods: Incremental Fast Batch LDA (IFLDA/QR) [27] and

Orthogonal LDA (OLDA) [18].

IFLDA/QR [27] is the incremental version of the fast

batch LDA (FLDA/QR) that leverages the QR decomposi-

tion of the lower triangular matrix. This algorithm takes

the centroid of each class cluster and uses it as the matrix

for decomposition. The QR decomposition is optimized by

making use of the Cholesky-factorization. FLDA/QR has

an intrinsic incremental mechanism that is updated using

the Gram-Schmidt re-orthogonalization process in a method

called IFLDA/QR. While this method is fast and can handle

tasks such as insertion of samples to an existing class, inser-

tion of a novel cluster, and insertion of a chunk of data, they

Figure 8. Projection vectors for the UCI wine dataset for 20%, 50% and 100% of the training data and their respective test accuracy.

all require different algorithms for updating the projection

matrix.

Orthogonal LDA (OLDA) [18] solves for the objective

function described in equation Eqn. (3). It also makes use of

the Cholesky decomposition and the QR decomposition to

arrive at the optimal projection matrix. Incremental OLDA

is the incremental version of OLDA.

Both of the above methods arrive at the exact solution

by means of analytically solving for the objective function.

The GILDA++ approach is more flexible by making use of

the LDA objective function. Table 3 provides the final ac-

curacies on the ORL dataset for GILDA++ and each of these

methods.

Figure 9. Graph of GILDA++ accuracy versus the fraction of the

training data from the ORL dataset. The numbers in red indicate

the number of new classes (new face ID’s) added in that particular

chunk of incoming training data.

From Fig. 9, the maximum accuracy obtained at the final

stage of incremental LDA is 98.75%. Even when the scatter

matrices are initialized with a few classes, the GILDA++

method provides good accuracy. Each chunk of data ran-

domly adds add new samples from existing classes or new

classes denoted by the numbers in red in Fig.9.

Table 3. Accuracy and complexity comparison of GILDA++ with

other incremental LDA methods for the ORL dataset.
Method Accuracy Complexity

GILDA++ 98.75% O(16× 105)
IFLA/QR 92.25% O(48× 105)
OLDA 98.1% O(64× 105)

6. Discussion

In this section we discuss the computational complexity

of GILDA++ and its convergence properties.

6.1. Computational Complexity

GILDA++ consists of three steps that are done at every

epoch. The first one involves calculating the scatter matri-

ces from each batch of incremental data. The updated scat-

ter matrices are then used for the LDA objective function

computation. The second step is the retraction of the pro-

jection matrix from ambient Euclidean space to the closest

point on the manifold. The third step is to calculate the loss

function and backpropagate it. Consider that the total num-

ber of classes in each batch is c, D is the input dimension

and d is the lower dimensional projection, which in the case

of LDA is one lower than the total number of classes, C.

The number of samples in each incremental chunk is the

batch size, L. N is the total number of samples. In the

first step, the computational complexity of calculating the

between-class scatter matrix is O(cD2) and the within-class

scatter matrix is O(LD2). The objective function given by

Eqn. (3) has a computational complexity of O((L+ c)D2).
In the second step, the retraction to the manifold is essen-

tially an SVD which has a computational complexity of

O(D2d + d3). The third step is the backpropagation of

the loss function which involves taking the partials and has

a computational complexity of O(LDd). This leads to an

overall complexity of O((L + d+ c)D2 + d3 + LDd) per

iteration. Since d is one less than the number of classes,

it is very small in comparison to D. The complexity or

IFLDA/QR and Orthogonal LDA for the ORL faces dataset

are provided in Table. 3. The complexity of the ILDA

method is obtained by calculating the scatter matrices and

the eigenvalue solution for each iteration, which is then

O((L + c)D2 + NDmin(N,D)), which is the least effi-

cient of all the methods.

6.2. Convergence

We provide a heuristic proof of convergence of

GILDA++ and show its advantage over the two-step method

in [4] for manifold optimization. The two-step method is

shown to have a guaranteed convergence [4]. This follows

from the fact that the gradients in the ambient Euclidean

space can be decomposed into their normal and tangential

components. The tangential components lie on the tangent

space to the manifold. Since both of these are orthogonal to

one another, setting the normal component to zero does not

affect the tangential component. The gradients are defined

to be in the loss minimizing direction and as a result, the

tangential components of the gradients also lie in the loss

minimizing direction. The points on the tangent space are

then retracted to the manifold, which by definition of retrac-

tion is the closest point on the manifold and thus lies on the

loss minimizing geodesic of the manifold.

The GILDA++ method integrates the manifold retraction

step into the loss function. This means that the gradient of

the loss function will automatically move the matrix along

the loss minimizing geodesic on the manifold, thus show-

ing convergence to the minimum value. If the GILDA++

method is initialized with the eigenvalue solution, the num-

ber of iterations taken to reach the minimum is lower than

the two-step method due to this unconstrained optimization

and the removal of the projection to the tangent space step.

7. Conclusions

We introduce GILDA++ that combines incremental LDA

with matrix optimization on the Grassmann manifold to ar-

rive at the lower dimensional projections which are used

for classification. We show that GILDA++ performs bet-

ter than the existing methods for experiments that add new

samples and new classes for every chunk of incoming data.

Since GILDA++ is an incremental method and uses auto-

matic differentiation and SGD to arrive at the lower dimen-

sional LDA projection, it is ideally suited to be used as a

layer in a neural network for end-to-end training.

Acknowledgements

This research was partly supported by the Air Force Of-

fice of Scientific Research (AFOSR) under Dynamic Data

Driven Applications Systems (DDDAS) grant FA9550-18-

1-0121 and the National Science Foundation award number

1808582.

References

[1] P.-A. Absil, R. Mahony, and R. Sepulchre. Riemannian ge-

ometry of Grassmann manifolds with a view on algorithmic

computation. Acta Appl. Math., 80(2):199–220, 2004.

[2] P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman. Eigen-

faces vs. fisherfaces: recognition using class specific linear

projection. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 19(7):711–720, 1997.

[3] Christopher M. Bishop. Pattern Recognition and Machine

Learning (Information Science and Statistics). Springer-

Verlag, Berlin, Heidelberg, 2006.

[4] John P. Cunningham and Zoubin Ghahramani. Linear dimen-

sionality reduction: Survey, insights, and generalizations.

Journal of Machine Learning Research, 16(89):2859–2900,

2015.

[5] Dheeru Dua and Casey Graff. UCI machine learning reposi-

tory. http://archive.ics.uci.edu/ml, 2017.

[6] Alan Edelman, Tomás A Arias, and Steven T Smith. The ge-

ometry of algorithms with orthogonality constraints. SIAM

Journal on Matrix Analysis and Applications, 20(2):303–

353, 1998.

[7] Ronald A Fisher. The use of multiple measurements in taxo-

nomic problems. Annals of Human Genetics, 7(2):179–188,

1936.

[8] Keinosuke Fukunaga. Introduction to Statistical Pattern

Recognition (2nd Ed.). Academic Press Professional, Inc.,

USA, 1990.

[9] Jihun Hamm and Daniel D. Lee. Grassmann discriminant

analysis: A unifying view on subspace-based learning. ICML

’08, page 376–383, 2008.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep Residual Learning for Image Recognition. arXiv

preprint arXiv:1512.03385, 2015.

[11] C. Ionescu, O. Vantzos, and C. Sminchisescu. Matrix back-

propagation for deep networks with structured layers. In

2015 IEEE International Conference on Computer Vision

(ICCV), pages 2965–2973, 2015.

[12] Jieping Ye, R. Janardan, C. H. Park, and H. Park. An

optimization criterion for generalized discriminant analysis

on undersampled problems. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 26(8):982–994, 2004.

[13] Jieping Ye, Qi Li, Hui Xiong, H. Park, R. Janardan, and V.

Kumar. IDR/QR: an incremental dimension reduction algo-

rithm via QR decomposition. IEEE Transactions on Knowl-

edge and Data Engineering, 17(9):1208–1222, 2005.

[14] Tae-Kyun Kim, B. Stenger, J. Kittler, and R. Cipolla. Incre-

mental linear discriminant analysis using sufficient spanning

sets and its applications. International Journal of Computer

Vision, 91:216–232, 2010.

[15] Alex Krizhevsky. Learning multiple layers of features from

tiny images. University of Toronto, 05 2012.

[16] Yann LeCun and Corinna Cortes. MNIST handwritten digit

database. 2010.

[17] L. Liu, Y. Jiang, and Z. Zhou. Least square incremental lin-

ear discriminant analysis. In 2009 Ninth IEEE International

Conference on Data Mining, pages 298–306, 2009.

[18] Gui-Fu Lu, Jian Zou, and Yong Wang. A new and fast im-

plementation of orthogonal lda algorithm and its incremental

extension. Neural Process. Lett., 43(3):687–707, June 2016.

[19] Juwei Lu, Konstantinos Plataniotis, and Anastasios Venet-

sanopoulos. Face recognition using LDA-based algorithms.

IEEE transactions on neural networks / a publication of the

IEEE Neural Networks Council, 14:195–200, 02 2003.

[20] Kevin R. Moon, David van Dijk, Zheng Wang, William

Chen, Matthew J. Hirn, Ronald R. Coifman, Natalia B.

Ivanova, Guy Wolf, and Smita Krishnaswamy. PHATE:

A dimensionality reduction method for visualizing trajec-

tory structures in high-dimensional biological data. bioRxiv,

2017.

[21] Navya Nagananda, Breton Minnehan, and Andreas Savakis.

Grassmann Iterative Linear Discriminant Analysis with

Proxy Matrix Optimization . NeurIPS workshop on Differ-

ential Geometry meets Deep Learning, 2020.

[22] C. Radhakrishna Rao. The utilization of multiple mea-

surements in problems of biological classification. Journal

of the Royal Statistical Society. Series B (Methodological),

10(2):159–203, 1948.

[23] Herbert Robbins and Sutton Monro. A stochastic approx-

imation method. The Annals of Mathematical Statistics,

22(3):400–407, 1951.

[24] S. K. Roy, Z. Mhammedi, and M. Harandi. Geometry aware

constrained optimization techniques for deep learning. In

2018 IEEE/CVF Conference on Computer Vision and Pat-

tern Recognition, pages 4460–4469, 2018.

[25] Shaoning Pang, S. Ozawa, and N. Kasabov. Incremental lin-

ear discriminant analysis for classification of data streams.

IEEE Transactions on Systems, Man, and Cybernetics, Part

B (Cybernetics), 35(5):905–914, 2005.

[26] Pavan Turaga, Ashok Veeraraghavan, and Rama Chellappa.

Statistical analysis on stiefel and grassmann manifolds with

applications in computer vision. 26th IEEE Conference on

Computer Vision and Pattern Recognition, CVPR, 2008.

[27] Yi Wang, Xin Fan, Zhongxuan Luo, Tianzhu Wang, Mao-

mao Min, and Jiebo Luo. Fast online incremental learning

on mixture streaming data. AAAI Conference on Artificial

Intelligence, 2017.

[28] H. Zhao and P. C. Yuen. Incremental linear discriminant

analysis for face recognition. IEEE Transactions on Systems,

Man, and Cybernetics, Part B (Cybernetics), 38(1):210–221,

2008.

