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Abstract

We present SrvfNet, a generative deep learning frame-

work for the joint multiple alignment of large collections of

functional data comprising square-root velocity functions

(SRVF) to their templates. Our proposed framework is fully

unsupervised and is capable of aligning to a predefined tem-

plate as well as jointly predicting an optimal template from

data while simultaneously achieving alignment. Our net-

work is constructed as a generative encoder-decoder archi-

tecture comprising fully-connected layers capable of pro-

ducing a distribution space of the warping functions. We

demonstrate the strength of our framework by validating it

on synthetic data as well as diffusion profiles from magnetic

resonance imaging (MRI) data.

1. Introduction

Owing to technological advances in imaging and sens-

ing, the availability of commercial wearable devices,

biosensors, and continuous recording instruments at re-

duced cost, there is an abundance of feature-rich scalar data.

Such data arise from diverse applications and processes

that produce continuous functions such as voltage, current

from electronic meters, time-series data related to electroen-

cephalography or electrocardiography from medical appli-

cations, scalar measures observed over spatial data from ge-

ological applications, or intensity-based features from spa-

tial biological data. Recent advances in statistical shape and

functional data analysis allow researchers to collectively

study such data using geometric representations and struc-

tures [18].

An important step in the statistical analysis of multiple

signals or recordings is matching or aligning them across

the population. Pairwise matching or alignment is conve-

nient for discriminative analysis such as classification and

clustering, while the computation of the population mean is

useful for inference. A typical approach for aligning multi-

ple functional data involves a two step process: i) compute

a mean in the appropriate space equipped with a choice of

a metric by minimizing the variance of the set of functions,

often iteratively in case a closed form solution is not avail-

able, and ii) align or register all the elements in the dataset

to this mean, thereby establishing a correspondence across

the entire population. The procedure for the computation

of the mean is slow and typically yields a local solution

if gradient descent is used. Further, in the case of signals

and time-series, if one seeks invariance to reparameteriza-

tion (or arbitrary nonlinear order-preserving warpings of the

domain of the function), then one needs to employ dynamic

time warping (DTW) procedures [14]. Although efficient

algorithms exist, this process can quickly become compu-

tationally intensive for T -length data O(TN ) as the size of

the data (N ) increases. If DTW is applied at every itera-

tion until the convergence of the mean, the computational

cost can become prohibitively expensive for a large popula-

tion (N > 500K). A slightly faster yet sub-optimal solu-

tion is to compute a Euclidean (extrinsic) average, project it

back onto the space of functions and, using it as a template,

compute dynamic time warps with respect to this template.

However, such an average template may not be optimal with

respect to the underlying metric, and because it was com-

puted by ignoring the nonlinear domain warps, may not pre-

serve important geometric features present in the data.

In this paper, we propose a novel neural network archi-

tecture SrvfNet inspired from variational auto-encoders to

simultaneously predict multiple functional data alignments

in addition to the population templates.

1.1. Background and Related Work

Several researchers have proposed ideas for machine-

learning based estimation of nonlinear alignment. Here,

we discuss the approaches related to our work. A frame-

work based on Gaussian process-based non-parametric pri-

ors was proposed by Kazlauskaite et al. [7] to learn a

latent model for functional alignments. A deep-learning

based approach, the deep canonical time warping (DCTW)



was used to perform joint temporal registration, while at

the same time maximizing the joint correlation of multi-

ple time-series [19]. A sequence transformer network was

proposed by Oh et al. [13] to perform stretching, compres-

sion, shifting, and flipping of the time-series signals to in-

corporate invariant matching of signals from clinical data.

The approach by Lohit et al. [11] uses a temporal trans-

former network (TTN) to learn the inter-signal warping

functions while performing classification simultaneously.

The TTN performs a joint discriminative alignment of time-

series by decreasing the intra-class variability and increas-

ing the inter-class separation without using a fixed tem-

plate for each class. Abid et al. [1] proposed Auto-warp,

which learns and optimizes a metric distance on the set of

unlabeled time-series. This is achieved by pairwise align-

ment of signals without diffeomorphic constraints on the

warping functions. Recently, Weber et al. [15] have pro-

posed the learning of diffeomorphisms in an unsupervised

manner. Their approach uses temporal transformer lay-

ers to perform joint alignment of time-series and includes

a loss function that aims to minimize the empirical vari-

ance of warped signals while regularizing the network us-

ing continuous piecewise-affine (CPA) covariance matrices

[2]. Koneripalli et al. [10] also use autoencoders and tempo-

ral warping layers for unsupervised learning of diffeomor-

phisms. The reader is also referred to a previous approach

by Nunez and Joshi [12] where a convolutional network is

used for predicting warping functions when matching a pair

of shapes.

1.2. Contributions

In this paper we develop a deep neural network archi-

tecture, SrvfNet, that allows for unsupervised multiple dif-

feomorphic alignment of functional data. We show that

this generative-based architecture is capable of generating

warping functions to warp data to a given template, and

can simultaneously learn a suitable template when one is

not provided. Our method is unsupervised in the sense that

only the population of functions we wish to align are input–

that is, we do not require pre-computed warping functions

nor a priori labels/targets. Instead, our loss function aggre-

gates an intrinsic geometric distance of the predicted align-

ments which is then iteratively minimized to improve the

predicted alignments. Further, a key distinction between our

work and others is in our shape representation of functional

data through the use of the Square-Root Velocity Function

(SRVF) [4]. Our network architecture is simple and con-

sists only of fully-connected and regularization layers. The

design of our network is inspired by the variational autoen-

coder (VAE) [8] in the sense that inputs are encoded onto

a low-dimensional latent space which then serves to model

the conditional posterior distribution of the warping func-

tions. Contrary to the autoencoder design of VAEs, we do

not measure a reconstruction error, nor do we impose a dis-

tribution assumption on the posterior distribution of the in-

puts given the latent variables. VAEs are trained to max-

imize the evidence lower bound (ELBO) function. While

our loss functions partially build off of the ELBO function,

we do not include the term that arises from the posterior dis-

tribution assumption made by VAEs. Instead, one novelty

of our approach is in the replacement of this term with a

geometric measure.

This generative approach distinguishes our work from

recent developments such as that of [15, 10, 12] where the

produced outputs are deterministic. Our approach has the

added benefit of providing a statistical summary of the in-

trinsic relationship between the class of training data and

the provided or predicted template. More specifically, our

framework differs from [15] in the following ways: i) our

architecture does not use any temporal transformer layers

nor any CPA-based transformations [2], instead our network

consists of simple feed-forward fully-connected layers with

basic batch normalization and dropout regularizations; ii)

our loss functions do not promote smoothness in the dif-

feomorphisms through a CPA-based regularization penalty

and instead do so by penalizing the gradients of the pre-

dicted warps; iii) we approach this problem through a ge-

ometric lens and consider a representation of the data that

encodes geometric variability rather than working with the

raw data–consequently, our loss functions aim to minimize

an intrinsic distance over a Hilbert sphere; iv) our frame-

work is generative and provides a distribution over possible

diffeomorphisms. Different from [10], we use a variational-

based autoencoder rather than a deterministic one. More-

over, we do not aim to learn network weights by minimizing

a mean squared reconstruction error, but rather minimize a

geometric measure on the predicted alignments. To this end,

our framework allows for direct penalties over learned dif-

feomorphisms to control for smoothing that in turn lead to

more robust alignments. Our paper also differs from [12]

where they used a supervised deep learning framework to

predict warps between pairs of shapes. Unlike their ap-

proach, our network can not only predict pairwise warping

between functions, but can also perform unsupervised tem-

plate estimation of multiple functions taken together.

2. Methods

2.1. Shape Representation and Preliminaries

We first provide the reader a brief summary of the shape

representation of curves that will be used through out this

paper. We represent curves as one-dimensional parameter-

ized functions. These functions are assumed to be first dif-

ferentiable, and belonging to the class of L2 functions, de-

noted as f ∈ L
2([0, 1],R), where an entire of collection of

curves is denoted F ≡
{

fi | fi ∈ L
2([0, 1],R)

}

. We define



a template as a designated fixed function g ∈ L
2([0, 1],R),

and we seek to align an entire collection of curves, F , to the

template curve.

When performing computations and shape comparisons

of curves, we represent them as SRVFs [4, 5, 17]. Each

fi is represented by the SRVF map fi 7→ qi = ḟi
√

‖ḟi‖
,

and the space of such functions is denoted by S . Adding

the constraint,
∫

[0,1]
〈q(t), q(t)〉 dt = 1 under the standard

L
2 inner product (〈·, ·〉) ensures that our shape representa-

tions are invariant to translation and scaling. As defined,

the SRVFs are unit normalized, thus shape comparisons are

equivalent to computing geodesic distances between SRVF

points on the unit Hilbert Sphere S in L
2([0, 1],R). We in-

troduce an analogous notation for S where we designate a

class of functions as Q ≡ {qi | qi ∈ S}.

When warping a function f to a specified template g, we

solve the following optimization problem in terms of the

Fisher-Rao metric via dynamic programming [16]

argmin
γ

∥

∥

∥
qf −

√

γ̇(qg ◦ γ)
∥

∥

∥

2

, (1)

where qf , qg are the respective SRVF representations of f ,

g, and γ : [0, 1] → [0, 1] is a reparameterization function.

The γ obtained in this fashion acts as a suitable diffeomor-

phism between qf and qg , which in turn produces a warp

from f to g in the original space. In fact, we need only

recover γ̇, since γ can be reconstructed via

γ(s) =

∫

[0,s]

γ̇(t)dt. (2)

In the general setting, we have a collection of curves

F where we must make a justified choice of template. In

this setting, the Kärcher mean [6] is a well-known aver-

age representation of the overall shape variability. Hence,

the Kärcher mean, denoted qµ, serves as a suitable template

candidate and is given by

qµ = argmin
q

1

N

N
∑

i=1

argmin
γ

d(q,
√

γ̇(qi ◦ γ))2, (3)

where d(, ) is the geodesic distance given by, d(ψi, ψj) =
cos−1 〈ψi, ψj〉, where 〈·, ·〉 is the standard L

2 inner product.

2.2. Unsupervised Prediction of Warping Functions
Under a Fixed Template

In this paper, we minimize a loss function that uses the

chord distance
∥

∥q −√
γ̇(qi ◦ γ)

∥

∥ instead of the geodesic

distance and apply deep learning to learn the desired tem-

plate and to learn the proper warping functions without prior

knowledge of the warps nor the Kärcher mean, effectively

making this approach unsupervised. Formally, since the

geodesic paths under the SRVF framework converge to a

locally unique solution, the optimization problem in (1) pro-

duces a unique diffeomorphism, γ. However, in the unsu-

pervised approach, we don’t have prior information of the

uniqueness of geodesic paths, so we specify the constraints

γ(0) = 0, γ(1) = 1, and a non-decreasing condition on γ.

This ensures that γ produced by the network is unique.

We start by assuming we have a template q̄ and a collec-

tion Q ≡ {qi}Ni=1 which we would like to warp to q̄. As

such, we seek to obtain {γi}Ni=1 that solve equation (1). We

assume that all functions q̄, {qi}Ni=1 have been discretized

into T uniformly spaced points over the domain [0, 1]. We

construct an unsupervised deep learning framework based

on the variational autoencoder [8] to subsequently not only

obtain the γi diffeomorphisms, but also an estimate of the

distribution of γi’s, which we denote Γ, that warp functions

from the class Q to q̄.

Adopting the standard autoencoder terminology, our

SrvfNet architecure consists of an encoder and a decoder.

We let φ denote the trainable parameters of the encoder net-

work, and θ the parameters of the decoder. The encoder

takes a function q and maps it to an ℓ-dimensional space

via the reparameterization trick. In particular, the encoder

outputs a mean µφ(q) ∈ R
ℓ and diagonal covariance matrix

Σφ(q) ∈ R
ℓ×ℓ which are then used to construct the low-

dimensional representation z ∈ R
ℓ defined by

z =
(

Σφ(q)
)

1

2 z̃ + µφ(q) (4)

where z̃ ∼ N (0, Iℓ). This has the effect of modeling the

posterior distribution of the latent variable z given q as

pφ(z|q) = N (µφ(q),Σφ(q)) which is then transformed into

a distribution over the diffeomorphisms by the decoder. We

also invoke a prior on the latent variables z ∼ N (0, Iℓ)
to allow for efficient sampling over Γ. More specifically,

once our network is trained, we can generate a sample from

Γ by sampling z ∼ N (0, Iℓ) and then pass z through the

decoder. This gives rise to the first term in our training

loss function where we push the posterior pφ(z|q) to re-

semble the prior p(z) and measure this disparity through

the Kullback-Leibler (KL) divergence. Because the poste-

rior and prior distributions are assumed to be normal, the

KL divergence exhibits a closed-form solution. Letting

LKL(q) = DKL

(

pφ(z|q) ||p(z)
)

, we have

LKL(q) =
1

2

[

trace
(

Σφ(q)
)

− l +
(

µφ(q)
)T
µφ(q)

− log
∣

∣Σφ(q)
∣

∣

]

. (5)

Once z is obtained using equation (4), it is propagated

through the decoder which outputs vθ ∈ R
T which then

goes through a diffeomorphic constraint satisfaction layer.



We construct γ by first transforming vθ into an estimate of

γ̇ which we denote γ̇θ. Similar to Lohit et al. [11], we first

map vθ onto the probability simplex by normalizing and

then take the Hadamard product of the resulting output as

given by

γ̇θ =
vθ

‖vθ‖ ⊙ vθ

‖vθ‖ . (6)

In conjunction with equation (2), the estimated γ, denoted

γθ, is then constructed as

γθ(s) =

s
∑

t=1

γ̇θ(t). (7)

Normalizing vθ by
∥

∥vθ
∥

∥ in equation (6) ensures that all el-

ements in vθ

‖vθ‖
are in the interval [−1, 1], and taking the

Hadamard product ensures all elements of γ̇θ are nonnega-

tive, which leads to a non-decreasing γθ.

We further impose the constraint that γθ(0) = 0 and

γθ(1) = 1. To promote smooth diffeomorphisms, we use

linear interpolation to downsample γθ ∈ R
T to γ̃θ ∈ R

T̃

uniformly on [0, 1] where T̃ < T . We then use linear in-

terpolation again to upsample γ̃θ back to R
T . With a slight

abuse of notation, we refer to the upsampled γ̃θ as γθ.

The second term in our training loss function is inspired

by the Fisher-Rao metric defined in equation (1) and is

given by

LFR(q, γ
θ; q̄) =

∥

∥

∥
q̄ −

√

γ̇θ(q ◦ γθ)
∥

∥

∥

2

2
. (8)

To penalize diffeomorphisms with large slopes and to

further promote smoothness, we consider penalties on the

norms of both the first and second derivatives of γθ. For the

first derivative, we define

L∇

(

γθ
)

=
∥

∥γ̇θ
∥

∥

2

2
, (9)

and for the second derivative,

L∇2

(

γθ
)

=
∥

∥γ̈θ
∥

∥

2

2
. (10)

The loss function we consider is a weighted sum of

LKL,LFR,L∇, and L∇2 given by equations (5), (8), (9),

and (10) with respective weights λKL, λFR, λ∇, λ∇2 . For

a fixed template q̄ and function q with predicted warping

function γθ, the loss is therefore given by

LF = λFRLFR

(

q, γθ; q̄
)

+ λKLLKL(q) + λ∇L∇

(

γθ
)

+ λ∇2L∇2

(

γθ
)

(11)

For a training batch {qi}Bi=1, we define the loss as

LF =
1

B

B
∑

i=1

[

λFRLFR

(

qi, γ
θ
i ; q̄
)

+ λKLLKL(qi)

+ λ∇L∇

(

γθi
)

+ λ∇2L∇2

(

γθi
)]

. (12)

2.3. Unsupervised Joint Prediction of the Template
and Warping Functions

In the previous section we considered the case where a

template q̄ was provided to us a priori. This could be, for ex-

ample, the Kärcher mean of the collection Q as defined by

equation (3), or it could be some qi ∈ Q, or any other func-

tion in S . In this section we will consider the case where

the template is unknown to us, and we wish to estimate the

optimal template to warp the collection Q to. We would

like this predicted template to capture the geometric vari-

ability of Q, and as such aim to integrate the notion of the

Kärcher mean into our previous Fisher-Rao loss defined in

equation (8). In particular, for batch {qi}Bi=1, we estimate

the template as

q̂ = Ω

(

1

B

B
∑

i=1

√

γ̇θi
(

qi ◦ γθi
)

)

(13)

where Ω(u) = u
||u||2

normalizes its input. In other words,

we estimate the template as the Euclidean mean of the

warped batch and then normalize to ensure q̂ ∈ S .

The batch template q̂ can now be used as a surrogate for

the template q̄ as given in equation (8). For a given batch,

our Fisher-Rao loss function takes the form

L̂FR(q, γ
θ; q̂) =

∥

∥

∥
q̂ −

√

γ̇θ(q ◦ γθ)
∥

∥

∥

2

2
(14)

where q̂ is as defined in equation (13). The remaining terms

in our loss function mirror those from the fixed template

setting in equation (12). More precisely, we will again have

weights λ̂FR, λKL, λ∇, λ∇2 for the Fisher-Rao loss with

template prediction, KL loss, and first and second derivative

penalties as defined in equations (14), (5), (9), and (10), re-

spectivly. In this setting, we aim to minimize the following

loss defined for batch {qi}Bi=1

LE =
1

B

B
∑

i=1

[

λ̂FRL̂FR

(

qi, γ
θ
i ; q̂
)

+ λKLLKL(qi)

+ λ∇L∇

(

γθi
)

+ λ∇2L∇2

(

γθi
)]

. (15)

While our setup does not explicitly output a predicted

template, once our network has been trained we can obtain

an estimate of the predicted template by computing equa-

tion (13) over the entire training data.
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Figure 1. Schematic of the SrvfNet architecture.

3. Network Design

The SrvfNet architecture is designed to operate on both

the fixed template setting described in section 2.2 and the

template prediction setting from section 2.3. The training

regimes differ only in their respective loss functions given

by equations (12) and (15).

3.1. SrvfNet Architecture

A schematic diagram of the SrvfNet architecture is pro-

vided in figure 1. Both our encoder and decoder networks

consist only of fully-connected layers. We let BRD repre-

sent a batch normalization layer, followed by a ReLU ac-

tivation, and finally a dropout layer with drop rate 0.65.

Our encoder, then, consists of three fully-connected-BRD

pairs with 528, 256, and 128 fully-connected units, respec-

tively. The output of this last layer is then passed to two

fully-connected layers, each with ℓ units. The first rep-

resents the mean µφ(q), while the second represents the

diagonal covariance matrix Σφ(q) (for numerical stability,

this layer outputs log
(

Σφ(q)
)

which is exponentiated to re-

cover Σφ(q)). µφ(q) and Σφ(q) are then used to sample

z ∼ N
(

µφ(q),Σφ(q)
)

as in equation (4).

Given z, we obtain γθ by passing z through the decoder

network. Our decoder consists of a single fully-connected

layer with T units which is then followed by a diffeomor-

phic constraint satisfaction and smoothing layer, which we

denote Π, as discussed in section 2.2.

3.2. Training and Implementation Details

All network weights are initialized using a Glorot Uni-

form initialization [3]. We use a batch size of 512 and an

Adam optimizer [9] with learning rate 10−3. Loss function

weights as defined in equations (12) and (15), as well as

number of training epochs, are dataset-dependent and dis-

cussed further in subsequent sections. All models are im-

plemented using TensorFlow on an Intel i7-7700K CPU @

4.20GHz machine equipped with TITAN Xp GPUs.

4. Experiments

4.1. Datasets

Our data comprises two classes i) synthetic bump func-

tions, and ii) diffusion profiles from MRI data. We first con-

sider bump functions as shown in the first (original) column

of figure 2. In this data we consider a collection of ran-

domly generated sinusoidal functions characterized by their

number of peaks, amplitudes, and phases. Each function is

discretized to T = 300 uniformly-spaced points on the in-

terval [0, 1]. We consider a two-bump dataset that consists

of bump functions with two peaks and a three-bump dataset

that consists of bump functions with three peaks.

We also consider a more realistic dataset consisting of

fractional anisotropy (FA) values derived from white mat-

ter fiber bundles as depicted in the ‘original’ column of

figure 6. In this dataset, each function is discretized to

T = 100 uniformly-spaced points on the interval [0, 1]. We

consider five bundle subclasses: i) the arcuate tract, ii) cor-

pus callosum forceps minor (CCFmin), iii) cortico spinal

tract (CST), iv) superior longitudinal fasciculus (SLF), and

v) thalamic radiation tract (Th Rad).

4.2. Unsupervised Warping to a Fixed Template

In the fixed template setting, we perform two experi-

ments on the bump datasets.

4.2.1 Two-to-Two Bumps Matching

We first generate a random bump function with two peaks

and designate this as the template. We then randomly gener-
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Figure 2. Two-to-Two and Two-to-Three bump matching with template (in orange).

ate 50, 000 bump functions to serve as our training dataset

and 5, 000 more to serve as our test set. All bump func-

tions are converted to their SRVF representations and are

normalized to have unit length. We then train our network to

minimize the fixed-template loss function given by equation

(12). We train for 5000 epochs (approximately 30 minutes

of training) and use a latent space dimension of ℓ = 150.

After training, we sample 70 bumps from our test set and

obtain the predicted warping functions and apply them to

the sampled functions. Figure 2 shows the test data, the

warped data to a fixed template (orange) and the predicted

warping functions γθ
i

.

4.2.2 Two-to-Three Bumps Matching

In this experiment we reuse the two-bump training and test

sets constructed in the previous experiment, but replace the

template with a bump function that has three peaks. We

train for 5000 epochs with a 150-dimensional latent space

and visualize the performance on 70 randomly-sampled test

functions as shown in the second row of figure 2. To clarify

the nature of the warping functions learned by our network,

we visualize the process on a single function in figure 3,

where we see two peaks in the test function warp to two out

of three peaks in the template (orange).

s

γ
θ

s

Figure 3. Two-to-Three bump matching with template (in orange).

4.2.3 Random Samples in the Encoding space of

Warps

As discussed in section 2.2, our network allows sampling

from the estimated space of diffeomorphisms that warp

the training functions to the prescribed template by repeat-

edly sampling zi ∼ N (0, Iℓ) and passing this through the

decoder. To qualitatively demonstrate that this procedure

yields valid warping functions, we randomly sampled 200
zi’s and passed them through the decoder for the two-bump

template model to obtain warping functions γθ(zi). Figure

4 visualizes these results, which empirically shows the dis-

tribution over warps that encodes the intrinsic relationships

between the class of two-bump functions and the template.

s s

γ
θ
(z

i
)

Figure 4. Distribution of γ for two-to-two bump matching with a

fixed template.

4.3. Unsupervised Template Prediction

In the template prediction setting, we show results on

synthetic data and diffusion profile data from fiber bundles.



4.3.1 Two-to-Two Bumps

Here we reuse the train and test datasets constructed for the

two-bump dataset from section 4.2.1. However, instead of

using a template q̄, we minimize the loss function given in

equation (15) and learn an appropriate template from the

training data. We train for 1200 epochs with ℓ = 150 and

visualize the performance of our trained model on 70 ran-

domly sampled test functions in figure 5.

4.3.2 Fractional Anisotropy (FA) Profiles

We train five different models on each of the bundles. Our

training sets for Arcuate, CCFmin, CST, SLF, and Th Rad,

have sizes 300K, 260K, 110K, 390K, and 160K, respec-

tively. Test sets ranged in size from 20K to 90K. We again

aim to minimize the loss function given in equation (15) and

train for 1250 epochs (about 15 − 30 minutes of training)

with ℓ = 50. We visualize the performance of our mod-

els on 70 randomly sampled functions from our test sets in

figure 6. After the warping phase, one can see more pro-

nounced patterns of shapes in the underlying FA values.

5. Discussion

5.1. Fixed Template

From figure 2 we observe that SrvfNet can successfully

warp the functions in the test set to the template. Addi-

tionally, the produced warping functions appear as piece-

wise affine warps as expected when mapping a two-bump

function to another bump function. We also replicated

this experiment using the standard DTW method and found

that the procedure took approximately 11 minutes to warp

50, 000 two-bump functions to a three-bump template on

a 2.6GHz 6core Intel Core i7 processor. In contrast, the

training phase of our network is slower and takes approxi-

mately 30 minutes to warp the training set to the prescribed

template. While training time is slower, once the network

is trained, the efficient implementation of the forward pass

allows for extremely fast warpings of unseen functions be-

longing to the same class of training data.

5.2. Template Prediction

SrvfNet provides a convenient way to compute a popu-

lation template by computing a mean of the set of warped

inputs. Since all functions will be nonlinearly aligned to

this underlying predicted template, their mean will resemble

the predicted template. By simply visualizing the warped

inputs as in figure 5 for the two-to-two bump experiment,

we can also gain an insight into the types of functions that

the model learns for the purpose of warping. For this two-

to-two bump experiment, the network was able to learn a

suitable two-bump template function, as evidenced by the

two peaks in the warped outputs. Moreover, the predicted

warping functions continue to exhibit the piecewise affine

structure that we expect and observed in the fixed template

case. We also note that while our network may have learned

a template that minimized equation (15), this solution may

not be unique as there may be several functions that yield

the same objective. Indeed, in our experiments we found

that different initializations lead to varying predicted tem-

plates with similar loss function values. To replicate this

experiment using DTW we first need to construct a tem-

plate as there is not one provided in this setting. Since our

framework aims to construct a template that captures the

geometric properties of the data, we would like our DTW

template to also encode the shape variability of the training

data. As discussed in 2.1, one such suitable template is the

Kärcher mean in equation (3), from which our loss func-

tion (15) is based. However, solving equation (3) becomes

prohibitively expensive for large datasets. As an example,

solving (3) for 100K diffusion profiles would take roughly

25 hours on our platform. This is 150 times slower than

our approach, which takes less than 30 minutes to train on

300K diffusion profiles, while also producing a template

that encodes the shape variability of the profiles.

In general, we have no guarantees on the uniqueness of

the predicted template. In all our experiments we assumed

that the signal-to-noise ratio (SNR) is acceptable (> 15
dB after following standard processing techniques for MRI

data). Further, in the case of functions and signals, where

the noise levels are comparable to that of signal amplitudes,

there may be ambiguity in generating the warping functions

in the training phase. This may give rise to spurious peaks

or valleys, which may not naturally occur in the training

data. While we did not observe this behaviour in our exper-

iments with bump functions, data generated from biological

processes such as diffusion profiles may consist of segments

where the signal to noise ratio may be reduced. Thus more

validation of the method is needed in cases where such SNR

assumptions are violated.

6. Conclusion

The proposed generative encoder-decoder network

SrvfNet is capable of efficiently computing warping func-

tions in an unsupervised manner that is also amenable to

both fixed template and template prediction schemes. We

validated our fixed template models on two experiments and

found that the resulting warpings strongly resembled what

we would expect from standard dynamic time warping ap-

proaches. Similarly, we validated our template prediction

framework on both synthetic and FA data. In the synthe-

sized bumps, we found that our predicted template closely

resembled an exemplar function from the class of train-

ing data and displayed a prominent feature of two bumps.

This suggests that our framework has learned the geometric

structure of the data and has produced a more descriptive
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Figure 6. Warping of FA diffusion profiles with simultaneous template prediction.

template than a simple Euclidean mean, which would not

necessarily preserve the geometric properties of the data.

This is also demonstrated in the FA experiments where we

observed distinct patterns in diffusion profiles in the warped

test data compared to the original profiles while still retain-

ing the overall structure of the original data. Importantly,

our approach is not only capable of jointly aligning multi-

ple signals and estimating a nonlinear template, but it also

allows for sampling of warping functions from a space of

distributions of encoded warps.
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