
Deep Spherical Manifold Gaussian Kernel for Unsupervised Domain Adaptation

Youshan Zhang Brian D. Davison

Computer Science and Engineering, Lehigh University, Bethlehem, PA, USA

{yoz217, bdd3}@lehigh.edu

Abstract

Unsupervised Domain adaptation is an effective method

in addressing the domain shift issue when transferring knowl-

edge from an existing richly labeled domain to a new domain.

Existing manifold-based methods either are based on tra-

ditional models or largely rely on Grassmannian manifold

via minimizing differences of single covariance matrices of

two domains. In addition, existing pseudo-labeling algo-

rithms inadequately consider the quality of pseudo labels in

aligning the conditional distribution between two domains.

In this work, a deep spherical manifold Gaussian kernel

(DSGK) framework is proposed to map the source and target

subspaces into a spherical manifold and reduce the discrep-

ancy between them by embedding both extracted features

and a Gaussian kernel. To align the conditional distribu-

tions, we further develop an easy-to-hard pseudo label re-

finement process to improve the quality of the pseudo labels

and then reduce categorical spherical manifold Gaussian

kernel geodesic loss. Extensive experimental results show

that DSGK outperforms state-of-the-art methods, especially

on challenging cross-domain learning tasks.

1. Introduction

Massive amounts of labeled data are a prerequisite of

most existing machine learning methods. Unfortunately,

such a requirement cannot be met in many real-world appli-

cations. In addition, collecting sufficient labeled data is a big

investment of time and effort. Therefore, it is often necessary

to transfer label knowledge from one labeled domain to an

unlabeled domain. However, due to domain shift or dataset

bias issue [19], it is difficult to improve performance for the

unlabeled domain.

Domain adaptation (DA) is proposed to circumvent the

domain shift problem. By not requiring additional anno-

tated labels on the new domain, unsupervised DA (UDA)

is attractive, as it aims to transfer knowledge learned from

a label-rich source domain to a fully unlabeled target do-

main [14]. Before the popularity of deep features, ap-

proaches with hand-crafted features aim to map the two

domains into a shared subspace and learn the invariant fea-

tures [36]. Manifold learning is commonly used to identify

the shared space between the source and target domains.

There have been efforts made in traditional methods, includ-

ing sampling geodesic flow (SGF) [6], geodesic flow kernel

(GFK) [4], and geodesic sampling on manifolds (GSM) [39].

These methods focus on matching either marginal, condi-

tional, or joint distributions between two domains to learn

domain-invariant representations. However, these traditional

methods cannot handle large-scale recognition tasks since

they require large memory to compute singular value de-

composition (SVD) on a Grassmannian manifold. Although

discriminative manifold propagation (DMP) [17] proposed a

Grassmannn distance to reduce the domain discrepancy, it

still largely relies on the differences of covariance matrices,

and it cannot avoid complex the SVD process. Further, its

Log-Euclidean loss is not the closed-form solution to calcu-

late the intrinsic distance between two domains. Recently,

existing deep learning-based methods generate pseudo labels

for the target domain to align the conditional distribution

and learn the target discriminative representations [32, 33].

However, the credibility of these pseudo labels is unknown.

Noisy labels can easily lead to poor alignment and discrimi-

nation. As a result, it is easy to cause negative transfer for

the target domain.

To address the above challenges, our contributions are

three-fold:

• To explicitly measure the intrinsic distance between two

domains and reduce computation time, we propose a

novel spherical manifold Gaussian kernel geodesic loss,

which considers both latent features and discrepancy

between covariance matrices.

• We develop an easy-to-hard refinement process to re-

move the noise labels via T times adjustment, and we

then form a pseudo labeled target domain so as to jointly

optimize the shared classifier with labeled examples

from the source domain.

• We also enforce a categorical spherical manifold Gaus-

sian kernel geodesic loss to reduce conditional discrep-

ancies. Then, our model can jointly align marginal and

conditional distributions between two domains.

We conduct extensive experiments on three benchmark

datasets (Office-31, Office-Home, and VisDA-2017), achiev-

ing higher accuracy than state-of-the-art methods.

2. Related work

Most existing manifold-based methods are only focused

on the Grassmannian manifold. The SGF model [6] gen-

erated multiple intermediate subspaces between the source

and the target domain along with geodesic flow on a Grass-

mannian manifold. Then, GFK [4] integrated all sampled

points along the geodesic as calculated in the SGF model via

constructing a kernel function. Manifold embedded distribu-

tion alignment (MEDA) [29] further took the advantages of

GFK to better represent source and target domain features

and then dynamically aligned the marginal and conditional

distributions between two domains. Later, geodesic sam-

pling on manifolds (GSM) [39] revealed that the SGF model

cannot generate correct intermediate subspaces along the

true geodesic, and provided a correct way to sample the in-

termediate features along the correct geodesic for the general

manifold, which is further extended to the sphere, Kendall’s

shape, and Grassmannian manifold. Luo et al. [17] proposed

a discriminative manifold propagation for UDA in a deep

learning framework. They proposed Grassmann distance and

the Log-Euclidean loss to minimize the difference between

the two domains. They did not, however, explicitly measure

the intrinsic distance between two domains.

Other frequently used deep learning-based methods rely

on minimizing the discrepancy between the source and target

distributions by proposing different loss functions, such as

Maximum Mean Discrepancy (MMD) [27], CORrelation

ALignment [24], and Kullback-Leibler divergence [18]. Re-

cently, Kang et al. [8] extended MMD to the contrastive

domain discrepancy loss. Li et al. [9] proposed an Enhanced

Transport Distance (ETD) to measure domain discrepancy

by establishing the transport distance of attention perception

as the predictive feedback of iterative learning classifiers.

However, these distance-based metrics can also mix sam-

ples of different classes together. Inspired from GAN [5],

adversarial learning has shown its power in learning domain

invariant representations. The domain discriminator aims

to distinguish the source domain from the target domain,

while the feature extractor aims to learn domain-invariant

representations to fool the domain discriminator [2, 26, 41].

Pseudo-labeling is another technique to address UDA and

also achieves substantial performance on multiple tasks.

There are also many methods that utilized pseudo-labels

to consider label information in the target domain and then

minimize the conditional distribution discrepancy between

two domains [22, 33, 8, 37]. However, it is still difficult to

remove noisy pseudo labels for the target domain. Notably,

we project data into a much faster spherical manifold and

propose a useful easy-to-hard refinement process.

3. Methodology

3.1. Problem

Here we discuss the unsupervised domain adaptation

(UDA) problem and introduce some basic notation. Given

a labeled source domain DS = {X i
S ,Y

i
S}

NS

i=1 with NS

samples in C categories and an unlabeled target domain

DT = {X j
T }

NT

j=1 with NT samples in the same C categories

(YT for evaluation only), our challenge is how to get a well-

trained classifier so that domain discrepancy is minimized

and generalization error in the target domain is reduced.

In UDA, existing manifold-based methods are either

based on traditional methods [6, 4, 39] or highly rely on the

Grassmannian manifold, which requests complex singular

value decomposition (SVD) of the covariance matrices [17].

In addition, to align the conditional distributions of two do-

mains, the reliability of generated pseudo labels is uncertain.

These approaches face two critical limitations: (1) the SVD

needs more computation time, and minimizing covariance

matrices is not equivalent to reducing marginal distribution

differences between two domains. It is hence necessary to

develop a faster metric to align the marginal distribution of

two domains. (2) Noisy pseudo labels can deteriorate the

shared classifier. The categorical condition distribution of

two domains is difficult to minimize with the lower quality

pseudo labels.

To mitigate these shortcomings, we propose a deep spher-

ical manifold Gaussian kernel (DSGK) model. To avoid

the complex calculation of SVD, we focus on a spherical

manifold. We propose a spherical manifold Gaussian ker-

nel geodesic loss to minimize the marginal distribution, and

design an easy-to-hard pseudo-label refinement process to

improve the quality of the pseudo-labels in the target domain

and then minimize the categorical spherical manifold Gaus-

sian kernel geodesic loss. Therefore, our DSGK model can

jointly align the marginal and conditional distributions of

two domains.

3.2. Geometry of spherical manifold

Before, we discuss the contributions of this work, we first

recap some important concepts on Riemannian manifold as

shown in Fig. 1. The n dimensional unit sphere denoted

as Sn and can be defined as Sn = {(x1, x2, · · · , xn+1) ∈

R
n+1|

∑n+1
i=1 x2

i = 1}. Let p and q be two points on a sphere

Sn embedded in R
n+1, and the tangent space of Sn at point

p is denoted as TpS
n.

The Logarithmic (Log) map between p and q can be

computed in Eq. 1.

v = Log(p, q) =
θ · L

||L||
, θ = arccos(〈p, q〉),

L = (q − p · 〈p, q〉)

(1)

where p · 〈p, q〉 denotes the projection of the vector q onto

Figure 1: Some basic concepts of geometry on manifold

M. p and q are two points on M. TpM is the tangent

space at point p and p is called the pole of the tangent space.

The red curve γ is called the geodesic, which is shortest

distance between p and q on M. The Logarithmic map

Logp(·) projects the point p into the tangent space and the

Exponential map Expp(·) projects the element of tangent

space v back to the manifold, such that v = Logp(q) and

Expp(v) = γ(1) = q.

p. The norm of v is usually a constant, i.e. ||v|| = const.,
which is the distance between point p and q.

Given point p, and its tangent vector v from Eq. 1 and t,
the Exponential (Exp) map is defined as:

Exp(p, vt) = cos θ · p+
sin θ

θ
· vt, θ = ||vt||. (2)

Additional details of Log map and Exp map on the spherical

manifold can be found in [31, 40, 34].

3.3. Initial source classifier

Given feature activation function Φ from one backbone

network, it maps data into a d dimensional latent space, i.e.,

Φ(XZ) ∈ R
NZ×d, where Z can be either source domain S

or target domain T . The task in the source domain is trained

using the typical cross-entropy loss as follows:

LS = −
1

NS

NS∑

i=1

C∑

c=1

Yi
Sc

log(Gc(Φ(X
i
S))), (3)

where Yi
Sc

∈ [0, 1]C is the binary indicator of each class c

in true label for observation Φ(X i
S), and Gc(Φ(X

i
S)) is the

predicted probability of class c (using the softmax function

as shown in Fig. 2).

3.4. Kernel for Gaussian distribution

We assume that the batch-wise features vector BZ (which

is one batch data of G(Φ(XZ))) follows a Gaussian distribu-

tion N (µZ ,ΣZ), where Z can be either the source or target

domain, and µZ and ΣZ are the data mean and covariance

respectively:

µZ =
1

NB

NB∑

z=1

Bz
Z (4)

ΣZ =
1

NB

NB∑

z=1

(Bz
Z − µZ)(B

z
Z − µZ)

T (5)

Therefore, we can calculate the batch-wise covariance ma-

trix of source ΣS and target ΣT domain, respectively. The

Gaussian jointly considers the first-order statistic mean and

second-order statistic covariance in one single model. Then

a form of RBF kernel can be denoted as:

K = exp(−κ||ΣS − ΣT ||
2
F), (6)

where || · ||2F is the Frobenius norm. This differs from previ-

ous work [24], which only minimizes the difference between

covariance matrices between two domains and reduces Log-

Euclidean distance loss. These existing loss functions are

largely based on the covariance matrices while ignoring orig-

inal data. To alleviate this issue, we define the spherical

manifold Gaussian kernel geodesic loss to incorporate both

covariance matrices and original data.

3.5. Spherical manifold Gaussian kernel geodesic
loss

By combining the defined Gaussian kernel (Eq. 6) and

batch-wise feature vectors (BZ), we can measure the in-

trinsic distance between two domains on one underlying

Riemannian spherical manifold. Therefore, we first project

two subspaces into a spherical manifold as follows.

p = φProj.(BS ×K)

q = φProj.(BT ×K),
(7)

where φProj. projects data into a |C|2 dimensional

spherical manifold and is defined as φProj.(x) =
x.reshape(−1)/norm(x). It first reshapes data into a |C|2

dimensional space (|C| is the number of categories) and then

projects data into a unit |C|2 dimensional sphere as shown in

Fig. 2 (for better visualization, we only show a 3D sphere).

Therefore, we can define the spherical manifold Gaussian

kernel geodesic loss as:

LK = ||Logp(q)||
2
F . (8)

LK can estimate the true geodesic distance between two

points on the sphere with the closed-form solution in Eq. 1.

During the training, minimizing this loss function directly

leads to a small distance between the source and target do-

mains, which is equivalent to minimizing the marginal distri-

bution between two domains.

3.6. Conditional distribution alignment

Since there are no labels in the target domain, we first

generate the pseudo labels for the target domain. To mit-

igate the detrimental effects of bad pseudo-labels, we em-

ploy a T times easy-to-hard pseudo-label refinement pro-

cess to improve the quality of the pseudo-labels in the

Figure 2: Architecture of the DSGK model. We first extract features Φ(XZ) for both source and target domains via Φ using a

pre-trained model, and then train the shared classifier G. LS is source classification loss. Spherical manifold Gaussian kernel

geodesic loss LK minimize the marginal distribution difference of two domains. The dash-dot line is the generated pseudo

labeled target domain using an easy-to-hard refinement process, which will optimize the shared classifier G in T times. LT is

the pseudo labeled target domain classification loss, and Lc
K is categorical spherical manifold Gaussian kernel geodesic loss to

minimize the conditional distribution. Norm.: BatchNormalization layer. Best viewed in color.

target domain. Given the trained classifier G in Eq. 3,

we can get predicted probability for each target sample

as Softmax(G(Φ(X j
T))), and the dominate class label is

Yj
PT = max Softmax(G(Φ(X j

T))) . Easy samples are those

whose dominant predicted class probability is bigger than

a certain threshold Pt. Therefore, one easy pseudo labeled

target example can be defined as:

(Φ(X j
PT),Y

j
PT) if max(Softmax(G(Φ(X j

T)))) > Pt (9)

During T times easy-to-hard pseudo-label refinement pro-

cess, for easy examples, Pt has a higher value and for hard

examples, Pt has a lower value, hence P1 > P2 > · · · > PT .

We define the pseudo labeled target domain as: DPT =
{Φ(X j

PT),Y
j
PT }

NPT

j=1 with NPT samples.

After obtaining the pseudo labeled target domain, we can

first optimize the shared classifier G with pseudo labeled

target samples in Eq. 10.

LT = −
1

NPT

NPT∑

j=1

C∑

c=1

Yj
PT c

log(Gc(Φ(X
j
PT))) (10)

For the conditional distribution alignment, differing from

Sec. 3.4, we use categorical batch-wise feature vectors

C(BZ) instead of BZ since we have labels for both the

source and the target domain. C(BZ) is the categorical data,

which consists of all data in same categories. For example,

if the category is 1, then C(BS) = BS [BYS
== 1], and

C(BT) = BT [BYPT
== 1]. We again assume that C(BZ)

follows a Gaussian distribution N (C(µZ), C(ΣZ)), where

Z can be either source or the target domain, and C(µZ) and

C(ΣZ) are the mean and covariance of C(BZ):

C(µZ) =
1

NC(B)

NC(B)∑

z=1

C(Bz
Z) (11)

C(ΣZ) =
1

NC(B)

NC(B)∑

z=1

(C(Bz
Z)−C(µZ))(C(B

z
Z)−C(µZ))

T

(12)

Therefore, the categorical RBF kernel can be denoted as:

C(K) = exp(−κ||C(ΣS)− C(ΣT)||
2
F), (13)

The categorical spherical manifold Gaussian kernel

geodesic loss is defined as:

Lc
K = ||LogφProj.(C(BS)×C(K))(φProj.(C(BT)×C(K)))||2F .

(14)

During the training, minimizing Lc
K can lead to categorical

features between source and target domains to be close to

each other. We hence can align the conditional distribution

between two domains.

3.7. DSGK model

The framework of our proposed DSGK model is depicted

in Fig. 2. Taken altogether, our model minimizes the follow-

ing objective function:

argmin (LS + LT + αLK + β
1

C

C∑

c=1

Lc
K) (15)

where LS is the source classification loss and LK minimizes

marginal discrepancy between two domains. LT is the

pseudo labeled target domain classification loss, and Lc
K

is the loss function reducing the conditional categorical dis-

crepancy between two domains. LT is equally important as

LS since we treat pseudo labels as real target labels. The

overall training algorithm is shown in Alg. 1.

Algorithm 1 Deep Spherical Manifold Gaussian Kernel Net-

work. BS and BT denote the mini-batch training sets, I is

number of iterations. T is the number refinement steps.

1: Input: labeled source samples DS = {X i
S ,Y

i
S}

NS

i=1 and

unlabeled target samples DT = {X j
T }

NT

j=1

2: Output: predicted target domain labels

3: repeat

4: Derive BS and BT sampled from DS and DT

5: Initialize Φ and G using Eqs. 3 and 8, output: G
6: for t = 1 to T do

7: for i = 1 to I do

8: Generate pseudo-labels YTP
using G

9: Derive B̂T sampled from pseudo-labeled

DPT = {Φ(X j
PT),Y

j
PT }

NPT

j=1

10: Perform conditional distribution alignment using

Eqs. 10 and 14

11: Refine G using Eq. 15

12: end for

13: end for

14: until converged

3.8. Theoretical Analysis

In this section, we theoretically show the error bound of

the target domain for our proposed DSGK model with the

domain adaptation theory [1] in Theorem 1.

Theorem 1 Let H be a hypothesis space. Given two

domains DS and DT , we have

∀h ∈ H, RT (h) ≤ RS(h) + dH∆H(DS ,DT) + β,

where RS(h) and RT (h) represent the source and tar-

get domain risk, respectively. dH∆H is the discrepancy

distance between two distributions DS and DT (includ-

ing both marginal and conditional distributions). β =
argminh∈H RS(h

∗, fS) + RT (h
∗, fT) where fS and fT

are the label functions of two domains, which can be deter-

mined by YS and pseudo target domain labels. h∗ is the

ideal hypothesis and β is the shared error and is expected to

be negligibly small and can be disregarded.

In our DSGK model, the first term RS(h) can be small

by training the labeled source domain in Eq. 3. During the

training, the domain discrepancy distance dH∆H can be min-

imized by reducing the divergence between the marginal

and target distributions of latent feature space of two do-

mains. Specifically, dH∆H ≈ LK + 1
C

∑C

c=1 L
c
K. Ideally,

the domain discrepancy distance will be perfectly removed if

LK+ 1
C

∑C

c=1 L
c
K is close to 0. However, it can be achieved

if and only if DS = DT . Therefore, minimizing dH∆H is

equivalent to minimizing LK + 1
C

∑C

c=1 L
c
K.

4. Experiments

4.1. Setup

Datasets. We test our model using three image datasets:

Office-31, Office-Home, and VisDA-2017. Office-31 [21]

has 4,110 images from three domains: Amazon (A), We-

bcam (W), and DSLR (D) in 31 classes. In experiments,

A�W represents transferring knowledge from domain A

to domain W. Office-Home [28] dataset contains 15,588

images from four domains: Art (Ar), Clipart (Cl), Product

(Pr), and Real-World (Rw) in 65 classes. Fig. 3 shows some

example images of four domains. VisDA-2017 [20] is a

challenging dataset due to the big domain-shift between the

synthetic images (152,397 images from VisDA) and the real

images (55,388 images from COCO) in 12 classes. We test

our model on the setting of synthetic-to-real as the source-

to-target domain and report the accuracy of each category.

Figure 3: Sample images from four domains of the Office-

Home dataset. We only show images from four categories.

Implementation details. We implement our approach us-

ing PyTorch and extract features for the three datasets

from finely tuned ResNet50 (Office-31, Office-Home) and

ResNet101 (VisDA-2017) networks [7]. The 1,000 features

are then extracted from the last fully connected layer for the

source and target features. The output of three Linear layers

are 512, 256 and |C|, respectively. Parameters in recurrent

pseudo labeling are T = 5 and PT = [0.9, 0.8, 0.7, 0.6, 0.5].
Learning rate (ǫ = 0.001), batch size (64), κ = 0.1, α = 0.1,

β = 0.01 and number of epochs (9) are determined by perfor-

mance on the source domain. We compare our results with

20 state-of-the-art methods1. Experiments are performed

with a GeForce 1080 Ti.

4.2. Results

The performance on Office-Home, VisDA-2017, and

Office-31 are shown in Tables 1-3. Our DSGK model out-

performs all state-of-the-art methods in terms of average

1Source code is available at: https : / / github . com /

YoushanZhang / Transfer - Learning / tree / main / Code /

Deep/DSGK.

https://github.com/YoushanZhang/Transfer-Learning/tree/main/Code/Deep/DSGK
https://github.com/YoushanZhang/Transfer-Learning/tree/main/Code/Deep/DSGK
https://github.com/YoushanZhang/Transfer-Learning/tree/main/Code/Deep/DSGK

Table 1: Accuracy (%) on Office-Home dataset (based on ResNet50)

Task Ar�Cl Ar�Pr Ar�Rw Cl�Ar Cl�Pr Cl�Rw Pr�Ar Pr�Cl Pr�Rw Rw�Ar Rw�Cl Rw�Pr Ave.

ResNet-50 [7] 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1

DAN [12] 43.6 57.0 67.9 45.8 56.5 60.4 44.0 43.6 67.7 63.1 51.5 74.3 56.3

DANN [3] 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6

JAN [15] 45.9 61.2 68.9 50.4 59.7 61.0 45.8 43.4 70.3 63.9 52.4 76.8 58.3

CDAN-M [13] 50.6 65.9 73.4 55.7 62.7 64.2 51.8 49.1 74.5 68.2 56.9 80.7 62.8

TAT [11] 51.6 69.5 75.4 59.4 69.5 68.6 59.5 50.5 76.8 70.9 56.6 81.6 65.8

ETD [9] 51.3 71.9 85.7 57.6 69.2 73.7 57.8 51.2 79.3 70.2 57.5 82.1 67.3

TADA [30] 53.1 72.3 77.2 59.1 71.2 72.1 59.7 53.1 78.4 72.4 60.0 82.9 67.6

SymNets [38] 47.7 72.9 78.5 64.2 71.3 74.2 64.2 48.8 79.5 74.5 52.6 82.7 67.6

DMP [17] 52.3 73.0 77.3 64.3 72.0 71.8 63.6 52.7 78.5 72.0 57.7 81.6 68.1

DCAN [10] 54.5 75.7 81.2 67.4 74.0 76.3 67.4 52.7 80.6 74.1 59.1 83.5 70.5

DSGK 55.9 78.4 81.3 69.1 81.9 80.2 70.1 55.7 82.1 75.1 58.4 84.9 72.8

Table 2: Accuracy (%) on VisDA-2017 dataset (based on ResNet101)

Task plane bcycl bus car horse knife mcycl person plant sktbrd train truck Ave.

Source-only [7] 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4

DANN [3] 81.9 77.7 82.8 44.3 81.2 29.5 65.1 28.6 51.9 54.6 82.8 7.8 57.4

DAN [12] 87.1 63.0 76.5 42.0 90.3 42.9 85.9 53.1 49.7 36.3 85.8 20.7 61.1

JAN [15] 75.7 18.7 82.3 86.3 70.2 56.9 80.5 53.8 92.5 32.2 84.5 54.5 65.7

MCD [23] 87.0 60.9 83.7 64.0 88.9 79.6 84.7 76.9 88.6 40.3 83.0 25.8 71.9

DMP [17] 92.1 75.0 78.9 75.5 91.2 81.9 89.0 77.2 93.3 77.4 84.8 35.1 79.3

DADA [25] 92.9 74.2 82.5 65.0 90.9 93.8 87.2 74.2 89.9 71.5 86.5 48.7 79.8

STAR [16] 95.0 84.0 84.6 73.0 91.6 91.8 85.9 78.4 94.4 84.7 87.0 42.2 82.7

DSGK 95.7 86.3 85.8 77.3 92.3 94.9 88.5 82.9 94.9 86.5 88.1 46.8 85.0

Table 3: Accuracy (%) on Office-31 dataset (based on

ResNet50)

Task A�W A�D W�A W�D D�A D�W Ave.

ResNet50 [7] 68.4 68.9 60.7 99.3 62.5 96.7 76.1

RTN [14] 84.5 77.5 64.8 99.4 66.2 96.8 81.6

ADDA [26] 86.2 77.8 68.9 98.4 69.5 96.2 82.9

GSM [39] 84.8 82.7 73.5 96.6 70.9 95.0 83.9

JAN [15] 85.4 84.7 70.0 99.8 68.6 97.4 84.3

ETD [9] 92.1 88.0 67.8 100 71.0 100 86.2

DMP [17] 93.0 91.0 70.2 100 71.4 99.0 87.4

TADA [30] 94.3 91.6 73.0 99.8 72.9 98.7 88.4

SymNets [38] 90.8 93.9 72.5 100 74.6 98.8 88.4

TAT [11] 92.5 93.2 73.1 100 73.1 99.3 88.5

MDA [35] 94.0 92.6 77.6 99.2 78.7 96.9 89.8

CAN [8] 94.5 95.0 77.0 99.8 78.0 99.1 90.6

DSGK 95.7 96.9 80.3 99.6 80.3 99.2 92.0

accuracy (especially in the VisDA-2017 and Office-Home

datasets). The DSGK model substantially improves classifi-

cation accuracy on difficult adaptation tasks (e.g., W�A task

in the Office-31 dataset and the challenging VisDA-2017

and Office-Home datasets, which have a larger number of

categories and different domains are visually dissimilar).

In the Office-31 dataset, the mean accuracy is 92.0%,

compared with the best baseline (CAN), our DSGK model

provides a 1.4% improvement. Although the improvement

is not significant, we have an obvious improvement in some

difficult tasks (W�A and D�A). The mean accuracy on the

Office-Home dataset is increased from 70.5% (DCAN) to

72.8%. We also notice that accuracy is obviously improved

across all tasks except Pr�Cl. In the VisDA-2017 dataset,

the DSGK model has a 2.3% improvement over the best

baseline (STAR), and it achieves the highest performance in

all tasks. Therefore, our proposed spherical manifold Gaus-

sian kernel loss is useful, and the easy-to-hard refinement

process is effective in improving the classification accuracy.

In addition, we compare the computation time of our

proposed DSGK model with Grassmann distance in DMP,

which relies on the SVD of the covariance matrices in

Fig. 4a. DSGK model requires relatively less computation

time for all three datasets. Our loss functions are (1.5, 1.6,

and 1.7 times) faster than Grassmann distance loss in the

Table 4: Ablation experiments on Office-31 dataset

Task A�W A�D W�A W�D D�A D�W Ave.

DSGK−K/T/C 85.2 89.2 75.0 97.6 75.4 94.7 86.2

DSGK−C/T 85.9 90.1 75.2 98.0 76.0 96.1 86.9

DSGK−K/T 91.6 90.7 78.0 98.1 77.8 96.3 88.8

DSGK−K/T 93.4 91.6 78.0 98.3 78.3 96.9 89.4

DSGK−C 94.5 94.3 78.7 99.0 78.6 97.0 90.4

DSGK−T 94.9 95.3 79.0 99.0 79.0 97.4 90.8

DSGK−K 95.3 96.4 79.5 99.0 79.2 98.0 91.2

DSGK 95.7 96.9 80.3 99.6 80.3 99.2 92.0

(a) Time of three datasets (b) Accuracy comparison of different loss functions

Figure 4: Computation time and different loss functions comparison. (a) is the total computation time of all transfer tasks in

three datasets (six for Office-31, twelve for Office-Home and one for VisDA-2017 dataset). On average, our DSGK model is

approximately 1.6 times faster than Grassmann distance loss. (b) compares the DSGK model with the other two loss functions

in each task of Office-31. Our loss function achieves a higher accuracy than the other two.

three datasets since Grassmann distance loss requires the

calculation-intensive SVD. Therefore, our proposed loss

function is much faster than Grassmann distance loss. To

show the effectiveness of the proposed spherical manifold

Gaussian kernel geodesic loss, we also compare the results of

well-used loss functions: CORAL loss [24] and MMD [12]

loss; that is, we replace Eq. 8 and Eq. 14 with these two loss

functions. As shown in Fig. 4, our proposed loss achieves

higher accuracy than CORAL and MMD loss functions.

Therefore, our DSGK model is effective and accurate in

UDA tasks.

4.3. Ablation study

To demonstrate the effects of different loss functions on

final classification accuracy, we present an ablation study in

Tab. 4, in which K represents spherical manifold Gaussian

kernel geodesic loss LK, T is the LT and C denotes the

Lc
K. “DSGK−K/T/C” is implemented without LK, LT , and

Lc
K. It is a simple model, which only reduces the source

risk without minimizing the domain discrepancy using LS .

“DSGK−C/T” only aligns the marginal distribution between

two domains. “DSGK−C” reports results without perform-

ing the additional categorical conditional distribution align-

ment. We observe that with the increasing number of loss

functions, the robustness of our model keeps improving. The

usefulness of loss functions is ordered as LK < LT < Lc
K.

Therefore, the proposed spherical manifold Gaussian kernel

geodesic loss and easy-to-hard learning approach are effec-

tive in improving performance, and different loss functions

are helpful and important in minimizing target domain risk.

4.4. Parameter Analysis

There are four hyperparameters T , Pt, α and β in

DSGK that can affect the final accuracy. To get the

optimal parameters, we randomly select the task W�A in

Office-31 dataset and run a set of experiments regarding

different values of each parameter. Notice that it is

inappropriate to tune parameters using the target domain

accuracy since we do not have any labels in the target

domain. Therefore, we report the H divergence between

two domains, as stated in Sec. 3.8. Since H divergence

can be assessed by dH∆H ≈ LK + 1
C

∑C

c=1 L
c
K, we can

calculate LK + 1
C

∑C

c=1 L
c
K and select the parameters

if they achieve the minimal value. α is selected from

{0.06, 0.07, 0.08, 0.09, 0.1, 0.2, 0.3, 0.4, 0.5}, β is selected

from {0.006, 0.007, 0.008, 0.009, 0.01, 0.02, 0.03, 0.04, 0.05},

T is selected from {1, 2, 3, 4, 5, 6, 7, 8, 9}, and Pt is selected

from {0.9, 0.8, 0.7, 0.6, 0.5, 0.5, 0.3, 0.2, 0.1}, we vary one

parameter and fix the others at a time. For T and Pt, if

T = 9, then Pt = [0.9, 0.8, 0.7, 0.6, 0.5, 0.5, 0.3, 0.2, 0.1]
and if T = 1, then Pt = [0.1].

Fig. 5 demonstrates that our DSGK model is not very

sensitive to a wide range of parameter values since the H di-

vergence (dH∆H) is not significantly changed. We first deter-

mine the T and Pt as shown in Fig. 5a. We can find that when

T = 5, that is Pt = [0.9, 0.8, 0.7, 0.6, 0.5], dH∆H achieves

the minimum value. Hence, Pt = [0.9, 0.8, 0.7, 0.6, 0.5] is

the best parameter for our DSGK model. In Fig. 5, a large T
can have a larger dH∆H (e.g., T = 6 in Fig. 5a and T = 7
in Fig. 5a) since a larger T brings hard examples into the

shared classifier G, which leads to lower perforamce in the

target domain. Therefore, the parameter analysis is useful

in finding the best hyperparameters for our DSGK model.

After fixing T and Pt, in Fig. 5b, we combine the parameter

tuning results for α and β together. If it is α, then the x-axis

is from 0.1 to 0.9, and if it is β, then the x-axis is from 0.01 to

0.09. It shows that when α = 0.1 and β = 0.01 achieves the

minimum number. Therefore, the hyperparameter α = 0.1
and β = 0.01 is the best since the discrepancy between two

domains is minimized.

4.5. Feature Visualization

To intuitively present adaptation performance during the

transition from the source domain to the target domain, we

utilize-SNE to visualize the deep features of network acti-

vations in 2D space before and after distribution adaptation.

(a) Effect of different T on dH∆H
(b) Effect of different α and β on dH∆H

Figure 5: Parameter analysis. In (a), dH∆H is minimum when T = 5. In (b), the x-axis denotes different α and β, dH∆H is

minimum when α = 0.1 and β = 0.01.

Figure 6: Feature visualization using a 2D t-SNE view of task A�W in Office-31 dataset and Pr�Ar in Office-Home dataset.

Our DSGK model improves the discriminative representations across domains. (blue color: source domain, red color: target

domain). Best viewed in color.

Fig. 6 visualizes embeddings of the task A�W in the Office-

31 dataset and Pr�Ar in the Office-Home dataset. We can

observe that the representation becomes more discriminative

after adaptation, while many categories are mixed in the

feature space before adaptation. Therefore, DSGK can learn

more discriminative representations, which can significantly

increase inter-class dispersion and intra-class compactness.

5. Discussion

In these experiments, DSGK always achieves the high-

est average accuracy. Therefore, the quality of our model

exceeds that of SOTA methods and is better than existing

loss functions. There are two compelling reasons. First, the

proposed spherical manifold Gaussian kernel geodesic loss

can project data into a spherical manifold and calculate the

intrinsic distance between two domains. It not only avoids

the complex SVD calculation to reduce computation time as

in the Grassmannian manifold but also considers both the

batch-wise features BZ and the Gaussian kernel K between

two domains. Secondly, to minimize the conditional distri-

bution discrepancy, we develop an easy-to-hard refinement

process by keeping reducing the predicted probability of the

target domain. This strategy can push the shared classifier G

towards the target domain. Hence, the easy-to-hard refine-

ment process is useful in updating the network parameters,

which further reduces the domain discrepancy.

One limitation of DSGK is the loss Lc
K needs to calculate

the difference between two domains of each category. If

the number of categories (|C|) is substantially larger, it may

need more computation time. However, it will still be faster

than existing Grassmann distance loss function, as shown in

Fig. 4a.

6. Conclusion

In this paper, we propose a novel deep spherical mani-

fold Gaussian kernel (DSGK) model for unsupervised do-

main adaptation. To align the marginal distribution between

the source and the target domain, we develop a spherical

manifold Gaussian kernel geodesic loss to minimize the in-

trinsic distance between two domains. We also employ an

easy-to-hard refinement process to remove the noisy pseudo

labels and reduce the categorical spherical manifold Gaus-

sian kernel geodesic loss to align the conditional distribution

of two domains. Extensive experiments demonstrate that

the proposed DSGK model achieves higher accuracy than

state-of-the-art domain adaptation methods.

References

[1] S. Ben-David, J. Blitzer, K. Crammer, and F. Pereira. Analysis

of representations for domain adaptation. In Advances in

Neural Information Processing Systems, pages 137–144, 2007.

5

[2] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle,

F. Laviolette, M. Marchand, and V. Lempitsky. Domain-

adversarial training of neural networks. The Journal of Ma-

chine Learning Research, 17(1):2096–2030, 2016. 2

[3] M. Ghifary, W. B. Kleijn, and M. Zhang. Domain adaptive

neural networks for object recognition. In Proceedings of

the Pacific Rim International Conference on Artificial Intelli-

gence, pages 898–904. Springer, 2014. 6

[4] B. Gong, Y. Shi, F. Sha, and K. Grauman. Geodesic flow

kernel for unsupervised domain adaptation. In Proceedings

of IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), pages 2066–2073. IEEE, 2012. 1, 2

[5] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-

Farley, S. Ozair, A. Courville, and Y. Bengio. Generative

adversarial nets. In Advances in Neural Information Process-

ing Systems, pages 2672–2680, 2014. 2

[6] R. Gopalan, R. Li, and R. Chellappa. Domain adaptation

for object recognition: An unsupervised approach. In Pro-

ceedings of the IEEE International Conference on Computer

Vision (ICCV), pages 999–1006. IEEE, 2011. 1, 2

[7] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages

770–778, 2016. 5, 6

[8] G. Kang, L. Jiang, Y. Yang, and A. G. Hauptmann. Con-

trastive adaptation network for unsupervised domain adapta-

tion. In Proc. of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 4893–4902, 2019. 2, 6

[9] M. Li, Y. Zhai, Y. Luo, P. Ge, and C. Ren. Enhanced transport

distance for unsupervised domain adaptation. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 13936–13944, 2020. 2, 6

[10] S. Li, C. H. Liu, Q. Lin, B. Xie, Z. Ding, G. Huang, and

J. Tang. Domain conditioned adaptation network. In AAAI,

pages 11386–11393, 2020. 6

[11] H. Liu, M. Long, J. Wang, and M. Jordan. Transferable

adversarial training: A general approach to adapting deep

classifiers. In International Conference on Machine Learning,

pages 4013–4022, 2019. 6

[12] M. Long, Y. Cao, J. Wang, and M. I. Jordan. Learning transfer-

able features with deep adaptation networks. arXiv preprint

arXiv:1502.02791, 2015. 6, 7

[13] M. Long, Z. Cao, J. Wang, and M. I. Jordan. Conditional

adversarial domain adaptation. In Advances in Neural Infor-

mation Processing Systems, pages 1647–1657, 2018. 6

[14] M. Long, H. Zhu, J. Wang, and M. I. Jordan. Unsupervised do-

main adaptation with residual transfer networks. In Advances

in Neural Information Processing Systems, pages 136–144,

2016. 1, 6

[15] M. Long, H. Zhu, J. Wang, and M. I. Jordan. Deep trans-

fer learning with joint adaptation networks. In Proceedings

of the 34th International Conference on Machine Learning,

volume 70, pages 2208–2217. JMLR.org, 2017. 6

[16] Z. Lu, Y. Yang, X. Zhu, C. Liu, Y. Song, and T. Xiang.

Stochastic classifiers for unsupervised domain adaptation.

In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 9111–9120, 2020. 6

[17] Y. Luo, C. Ren, D. Dao-Qing, and H. Yan. Unsupervised

domain adaptation via discriminative manifold propagation.

IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 2020. 1, 2, 6

[18] Z. Meng, J. Li, Y. Gong, and B. Juang. Adversarial teacher-

student learning for unsupervised domain adaptation. In 2018

IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), pages 5949–5953. IEEE, 2018.

2

[19] S. J. Pan and Q. Yang. A survey on transfer learning.

IEEE Transactions on Knowledge and Data Engineering,

22(10):1345–1359, 2010. 1

[20] X. Peng, B. Usman, N. Kaushik, J. Hoffman, D. Wang, and

K. Saenko. Visda: The visual domain adaptation challenge.

arXiv preprint arXiv:1710.06924, 2017. 5

[21] K. Saenko, B. Kulis, M. Fritz, and T. Darrell. Adapting visual

category models to new domains. In Proceedings of the

European Conference on Computer Vision, pages 213–226.

Springer, 2010. 5

[22] K. Saito, Y. Ushiku, and T. Harada. Asymmetric tri-

training for unsupervised domain adaptation. arXiv preprint

arXiv:1702.08400, 2017. 2

[23] K. Saito, K. Watanabe, Y. Ushiku, and T. Harada. Maximum

classifier discrepancy for unsupervised domain adaptation. In

Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 3723–3732, 2018. 6

[24] B. Sun and K. Saenko. Deep coral: Correlation alignment for

deep domain adaptation. In Proc. of European Conference on

Computer Vision, pages 443–450. Springer, 2016. 2, 3, 7

[25] H. Tang and K. Jia. Discriminative adversarial domain adap-

tation. In Proceedings of the AAAI Conference on Artificial

Intelligence, volume 34, pages 5940–5947, 2020. 6

[26] E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell. Adversarial

discriminative domain adaptation. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 7167–7176, 2017. 2, 6

[27] E. Tzeng, J. Hoffman, N. Zhang, K. Saenko, and T. Darrell.

Deep domain confusion: Maximizing for domain invariance.

arXiv preprint arXiv:1412.3474, 2014. 2

[28] H. Venkateswara, J. Eusebio, S. Chakraborty, and S. Pan-

chanathan. Deep hashing network for unsupervised domain

adaptation. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 5018–5027, 2017.

5

[29] J. Wang, W. Feng, Y. Chen, H. Yu, M. Huang, and P. S. Yu.

Visual domain adaptation with manifold embedded distribu-

tion alignment. In Proceedings of the 26th ACM International

Conference on Multimedia, MM ’18, pages 402–410, 2018. 2

[30] X. Wang, L. Li, W. Ye, M. Long, and J. Wang. Transferable

attention for domain adaptation. In Proceedings of the AAAI

Conference on Artificial Intelligence, volume 33, pages 5345–

5352, 2019. 6

[31] R. C. Wilson and E. R. Hancock. Spherical embedding and

classification. In Joint IAPR International Workshops on Sta-

tistical Techniques in Pattern Recognition (SPR) and Struc-

tural and Syntactic Pattern Recognition (SSPR), pages 589–

599. Springer, 2010. 3

[32] S. Xie, Z. Zheng, L. Chen, and C. Chen. Learning semantic

representations for unsupervised domain adaptation. In Inter-

national Conference on Machine Learning, pages 5423–5432,

2018. 1

[33] W. Zhang, W. Ouyang, W. Li, and D. Xu. Collaborative and

adversarial network for unsupervised domain adaptation. In

Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 3801–3809, 2018. 1, 2

[34] Y. Zhang. K-means principal geodesic analysis on rieman-

nian manifolds. In Proceedings of the Future Technologies

Conference, pages 578–589. Springer, 2019. 3

[35] Y. Zhang and B. D. Davison. Modified distribution alignment

for domain adaptation with pre-trained Inception ResNet.

arXiv preprint arXiv:1904.02322, 2019. 6

[36] Y. Zhang and B. D. Davison. Domain adaptation for object

recognition using subspace sampling demons. Multimedia

Tools and Applications, pages 1–20, 2020. 1

[37] Y. Zhang and B. D. Davison. Adversarial continuous learning

in unsupervised domain adaptation. In Pattern Recognition.

ICPR International Workshops and Challenges: Virtual Event,

January 10–15, 2021, Proceedings, Part II, pages 672–687.

Springer International Publishing, 2021. 2

[38] Y. Zhang, H. Tang, K. Jia, and M. Tan. Domain-symmetric

networks for adversarial domain adaptation. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 5031–5040, 2019. 6

[39] Y. Zhang, S. Xie, and B. D. Davison. Transductive learning

via improved geodesic sampling. In Proceedings of the 30th

British Machine Vision Conference, 2019. 1, 2, 6

[40] Y. Zhang, J. Xing, and M. Zhang. Mixture probabilistic prin-

cipal geodesic analysis. In Multimodal Brain Image Analysis

and Mathematical Foundations of Computational Anatomy,

pages 196–208. Springer, 2019. 3

[41] Y. Zhang, H. Ye, and B. D. Davison. Adversarial reinforce-

ment learning for unsupervised domain adaptation. In Pro-

ceedings of the IEEE/CVF Winter Conference on Applications

of Computer Vision, pages 635–644, 2021. 2

