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Figure 1: Our method generates a model of full-body texture appearance of a subject from a small multi-camera setup (3 in

the above example), capable of expressing dynamic variation in texture with respect to body pose.

Abstract

We present a novel method for modelling dynamic tex-

ture appearance from a minimal set of cameras. Previ-

ous methods to capture the dynamic appearance of a hu-

man from multi-view video have relied on large, expensive

camera setups, and typically store texture on a frame-by-

frame basis. We fit a parameterised human body model

to multi-view video from minimal cameras (as few as 3),

and combine the partial texture observations from multiple

viewpoints and frames in a learned framework to generate

full-body textures with dynamic details given an input pose.

Key to our method are our multi-band loss functions, which

apply separate blending functions to the high and low spa-

tial frequencies to reduce texture artefacts. We evaluate our

method on a range of multi-view datasets, and show that our

model is able to accurately produce full-body dynamic tex-

tures, even with only partial camera coverage. We demon-

strate that our method outperforms other texture generation

methods on minimal camera setups.

1. Introduction

Realistic human reconstruction and avatars generated

from video have a wide range of application areas, from im-

mersive content production for virtual and augmented real-

ity experiences, to applications in the gaming and entertain-

ment industries. However, reconstruction of humans from

video is still an ongoing problem; the literature now focuses

on generating increasingly detailed texture and geometry

and from fewer cameras. Various works have addressed this

problem, including methods that aim to produce human re-

constructions or avatars from single images or monocular

videos [3, 31, 23, 21, 35, 4, 5], and multi-view methods

which rely on large multi-camera studios in a controlled en-

vironment [37, 14, 2].

Typically multi-view methods achieve a higher level of

detail versus monocular methods, both in terms of geometry

and texture quality. These methods can produce complete

textures at every time instance, containing the variation in

appearance caused by changing pose [37, 11]. However,

these methods require large and expensive multi-camera

studios, reducing the ease of acquiring this type of data.

There has also been limited work addressing the problem

of parameterizing the changing texture appearance.

Conversely, monocular methods are able to produce

reasonable estimates of human shape given limited input

[3, 21] and frequently make use of model-based reconstruc-

tion or recent advances in implicit-function human shape

estimation [21, 35]. However, these methods only generate

a single static texture map, which fails to express variation

in appearance with respect to pose.

We present a method that sits between these two separate

branches of work. Our method learns to generate whole-

body dynamic texture appearance from a minimal set of

camera viewpoints. We estimate a human shape reconstruc-

tion from multi-view video, and use texture observations on

this mesh to train a dynamic texture appearance model. This

model is capable of generating complete textures for any in-



put pose in the dataset, without providing complete texture

supervision. The model is able to express the variations in

human appearance with respect to pose, such as changes

in illumination and wrinkling clothing. Furthermore, the

model greatly compresses the textures while maintaining

detail. Our contributions are as follows:

• Learning to generate full-body dynamic texture with

partial visibility from a minimal set of camera views

• Reproduction of high-resolution dynamic texture from

3D pose input

• A novel training schema that exploits the separation of

texture into high and low spatial frequency bands

Finally, we include a comparative evaluation with previ-

ous texture generation methods, demonstrating a quantita-

tive and qualitative improvement in texture detail.

2. Related Work

There has been extensive work on estimating textured

3D human models from single images [3, 31, 23, 21, 35]

and monocular video [4, 5]. Detailed textured reconstruc-

tions of humans in clothing are created from single images

in [31, 35], however these methods are restricted to single

poses. The methods in [3, 21, 23] use a learned approach to

generate an animatable textured avatar, and make use of the

SMPL model [29]. The meshes produced are high quality,

as these methods estimate a more detailed surface beyond

the level of detail prescribed by the SMPL model. However,

the textures on the back of the model are only estimated by

a neural network, and thus usually lack finer detail.

Monocular video of a human in motion is used to gen-

erate avatars in [4, 5]. These methods also use the SMPL

model as the basis for their avatars, but combine multiple

frames to refine the shape and texture estimates. These

methods generate a static texture over the whole sequence,

which lacks the dynamic appearance required of a realistic

avatar. The methods in [40, 18] pre-compute a personalised

template, which is fit to monocular video. This results in a

detailed geometry, but these methods also fail to capture the

dynamic variation in texture with respect to changing pose.

All of these methods are able to produce detailed geome-

try and texture, given limited camera views. However, there

is a significant loss of detail in the texture in unseen regions.

Additionally, none are able to produce a dynamically vary-

ing texture that captures the changes in shading and clothing

appearance with varying body pose.

Multi-view methods can create more detailed recon-

structions, but usually require constrained environments

[36, 14, 17, 37, 20]. Extensive multi-camera setups are used

for volumetric performance capture in [17, 14, 37], which

can be used to generate highly detailed shape and texture re-

constructions. However, these methods all assume that full

texture coverage is available every frame, and do not model

the dynamic texture with respect to pose.

The work in [20] targets volumetric performance capture

from minimal cameras, by using deep learning to generate

plausible geometry where traditional methods fail. How-

ever, they do not address the issue of generating full textures

when the number of cameras has been reduced.

A neural texture appearance rendering method is pre-

sented in [36], which steps outside the traditional mesh-

based pipeline. A network is trained on multi-view videos

of a single subject, which learns to generate regions of tex-

ture, and learns a mapping of these regions into an image

given an input 3D pose. This method is able to produce ren-

derings of an avatar given a pose input, however, it fails to

model dynamic texture appearance.

4D video textures [11] are a layered texture representa-

tion that compresses view-dependent variation in appear-

ance. However it requires separate texture stacks each

frame, meaning there is no temporal compression.

In [9], PCA is used to compress texture observations

across different poses and camera views, using an optical

flow solution to correct for misalignment between textures.

This model is able to accurately reproduce textures from

the input dataset, but there is no way to reproduce textures

given an input pose. That is, appearance variation is param-

eterized with respect to the PCA basis functions.

The first use of variational autoencoders (VAEs) to

model dynamic textures appears in [28]. This work focuses

on face modelling, and uses a multi-camera rig to generate

view-specific textures. Their conditional autoencoder learns

to generate view-dependent texture maps for any input pair

of viewing direction and latent vector. Their method uses a

40-camera rig, whereas our method aims to reduce the re-

liance on such extensive hardware.

Recent research uses GANs to predict posed face images

from a single image of a face in a neutral pose [30]. The

network is able to predict the texture for unseen regions like

the inside of the mouth, but the results become increasingly

deformed as the viewing angle differs from the input image.

The multi-view methods discussed can produce detailed

texture appearance with complete coverage, but require a

large number of cameras to do so. Few address the com-

pression or modelling of the resultant textures, and none

parameterise them with respect to body pose. Conversely,

monocular methods are able to produce full-body texture,

but these are static, and lack detail in unseen regions. Our

work aims to address this gap in the literature with a model

that expresses full-body pose-based variation in human ap-

pearance, generated from only a minimal set of viewpoints.

Multi-view texturing techniques combine observations

from different cameras using a weighted average [15, 33, 7].

The weights are typically computed from various factors,

including the size of the mesh region in each camera, or

the angle between the surface normal and the camera di-



Figure 2: Overview of our method. We reconstruct the body shape from a minimal multi-camera setup. Our network is

trained on partial texture observations to generate full dynamic texture maps for any pose in the input dataset. We employ a

novel supervision method that exploits multi-frequency-band texture blending.

rection. When creating view-dependent textures, the an-

gle between the camera direction and the viewing direction

is also used [15, 38]. More sophisticated techniques are

used in [6, 34, 32, 25, 41, 16] to alleviate artefacts caused

by misaligned textures, different camera settings, or inac-

curate geometry. The methods in [6, 13] employ a multi-

band blending approach, whereby the images are separated

into frequency bands, which are each weighted separately,

which helps to reduce ghosting artefacts. The methods in

[41, 16] correct misalignment by warping the images, using

grid-based warping or optical flow respectively. However,

these methods all require full camera coverage of the sub-

ject at each time-frame in order to generate complete tex-

tures. Additionally, these methods only produce textures on

a per-frame basis.

In this work, we advance on traditional texturing tech-

niques to produce a model of dynamic texture appearance

in an approach that learns the full-body surface appearance

from a minimal set of views, and synthesises dynamic tex-

ture with respect to pose for any pose in the input dataset.

3. Methodology

We introduce a method to generate a pose-driven model

of dynamic human appearance from a minimal set of cam-

eras. Our trained model can produce complete full-body

dynamic textures for every pose in the dataset, even when

complete texture supervision is not available. Using multi-

view video of a single subject in a range of poses but with

minimal camera coverage, we generate a temporally con-

sistent reconstruction, from which we are able to produce

partial texture maps from every camera. These are used to

train a VAE that learns to output a complete texture for a

given pose in the dataset, containing pose-dependent vari-

ation including shading and wrinkling of clothing. A full

overview of our method can be seen in Figure 2. We de-

scribe the generation of training data in Section 3.1, and the

method by which we train the network in Section 3.2.

3.1. Data Pre­processing

3.1.1 Model-based Human Body Reconstruction

Our method requires a temporally consistent texture map

layout. To achieve this with a minimal camera setup, we

use the SMPL model [29] to provide a coarse estimate of

the body shape. The SMPL model is a statistical body

model representing unclothed humans, parameterised by

body shape β and pose θ. We employ a method based on

[19] to align the SMPL model to pose detections in the in-

put videos [10]. The energy function given in Equation 1

is minimised to align the SMPL model to the multi-view

video sequence.

EM (β, θ, t) = EJ(β, θ, t) + λθEθ(θ)

+λβEβ(β) + λDCTEDCT (β, θ, t, C)
(1)

where θ and β are the SMPL pose and shape parameters

respectively, and t is the root translation. We optimise a

constant set of shape parameters over the whole sequence

to ensure temporal consistency. EJ is the joint fitting term

that minimises the distance from the projected SMPL model

joints to their corresponding 2D joint estimates. EDCT is

a discrete cosine transform smoothing term, which min-

imises the distance between the reconstructed joint trajec-

tories and a low-dimensional DCT approximation with 10

coefficients, C. Finally, Eθ is a Gaussian-mixture model

pose prior, and Eβ is a body-shape prior, as in [19]. The

optimized meshes and pose parameters θ are used to train

the pose-driven texture model.

3.1.2 Texture & Map Generation

We produce partial texture maps for every frame and camera

view of the reconstructed sequences by projecting the input



(a) Partial texture (b) Viewing an-

gle map (ωdot)

(c) Semantically

segmented texture

(d) Consensus se-

mantic texture

(e) Semantic con-

sistency map (ωcon)

Figure 3: The partial textures and maps used for supervision.

images on to the reconstructed body (Figure 3a).

In multi-view texturing algorithms [6, 34, 32, 25], the

observations from different cameras are combined using a

weighted blending function, which can depend on a range

of parameters. This is because in practice there will be dif-

ferences in the observed surface appearance between view-

points, due to non-Lambertian lighting, and different cam-

era settings, which can cause seams in the combined texture

map. Additionally, inconsistencies between the estimated

and ground truth surface can result in ghosting artefacts.

We take inspiration from this approach in training our net-

work, by generating maps that that represent the weights of

the blending function, which we use to weight the losses

between different texture observations (Section 3.2.2). We

adopt a weighting function that favours texture observations

on the faces of our mesh that are oriented towards the cam-

era. We do this by means of generating a map that encodes

the dot product between the normals of the mesh and the

viewing direction of the camera (Figure 3b).

The texture maps contain misprojection artefacts, since

the SMPL model is only capable of representing unclothed

humans thus will not perfectly align with the input im-

ages. This means that the texture maps may contain regions

of background texture, body parts may project onto each

other, and textures from different cameras will not directly

align (see Figure 4). To ensure that these erroneous regions

are not used in supervision, we produce masks that elim-

inate semantic inconsistencies in the textures. We gener-

ate semantic body-part segmentation images [24], which we

project onto the SMPL model to produce semantic texture

maps (Figure 3c), which we one-hot encode to produce an

S-channel map, where S is the number of semantic labels.

We combine the semantic texture maps across all cameras

and all frames into a single ‘consensus’ semantic map (Fig-

ure 3d) by computing a pixel-wise average. The ‘consensus’

map represents the ‘probability’ of each pixel belonging to a

particular semantic label. We then produce semantic weight

maps by computing a pixel-wise dot product between the

‘consensus’ map and the partial maps from each frame (Fig-

ure 3e). These maps allow us to down-weight the mispro-

jected texture regions during training. A similar approach

is taken in [4], in which clothing segmentation is utilised to

Figure 4: An example of misalignment between texture ob-

servations from two cameras.

reduce texture spilling. However, this approach generates a

single clothing label for each pixel in their consensus map.

By generating probabilities for multiple semantic labels, we

are able to avoid significantly reducing the amount of su-

pervision provided at the edges semantic regions, where the

predicted semantic label tends to fluctuate.

Our final map is a visibility map, which denotes whether

a point is observable from a particular camera. We combine

our various maps into a single weighted map which we use

during training:

Wc
θ = ωc

dot,θ ⊙ ωc
con,θ ⊙ ωc

vis,θ (2)

where ωdot is the viewing-angle map, ωcon is the semantic

consistency map, ωvis is the visibility map, and ⊙ denotes

an element-wise multiplication.

We also use the combined weight maps W to generate an

average texture map M , which is a weighted median across

the partial texture maps from all cameras and frames.

3.2. Model & Training

Our pose-driven texture model is a variational encoder-

decoder pair, which takes a 3D human body pose as in-

put, and returns a map of pose-dependent texture offsets

(Section 3.2.1). The offsets are added to a median tex-

ture computed over the whole dataset to produce a com-

plete texture map with pose-dependent details. We super-

vise our network with the visible texture regions from each

camera. To learn to reproduce high resolution texture de-

tail from partially overlapping texture maps, we incorporate

techniques from the image-based rendering and projective

texturing literature into our loss functions, to teach the net-

work to combine texture observations from different camera



images without losing high-frequency detail or introducing

artefacts. We explain the network architecture in Section

3.2.1, discuss our dual-band filtering approach in Section

3.2.2, and we describe the loss functions used to train our

network in Section 3.2.3.

3.2.1 Architecture

We employ a VAE for its smooth distribution within the la-

tent space. This assists the network in filling unobserved

texture regions, since it can benefit from the supervision of

these regions in similar poses. Our network comprises an

encoder which takes our input pose θ and produces a la-

tent space z(θ), followed by a decoder, which returns a 512

× 512 offset texture map that is added to a pre-computed

median texture. The encoder features 4 fully connected lay-

ers, which generate a 128-dimensional latent vector. The

decoder uses 2 more linear layers, followed by 7 decoder

blocks, each of which comprises an up-sampling function

following by a residual block, with 3 × 3 convolutions

throughout. Our pose input comprises joint rotation matri-

ces concatenated with 3D joint-positions, with length 252.

We elect to output a 512 × 512 texture map, as this is

enough to capture the detail in our evaluation datasets.

3.2.2 Multi-banded Texture Blending

Multi-band blending is employed in [6], whereby the im-

ages are decomposed into high and low frequency bands,

and different weights are used to blend each component.

Multi-band blending helps to reduce seams in the low-

frequencies while avoiding ghosting artefacts in the high-

frequencies. In [6] the low-frequency band output is a

weighted average of all images, and in the high-frequency

band the output pixel values are taken from the image with

the maximum blending weight. To apply multi-band blend-

ing in our loss function, we separate both the ground truth

partial texture and the network output into two frequency

bands. A partial convolution [26] is applied using a Gaus-

sian kernel of size 21 × 21px and standard deviation σ of 4.

A mask constrains the partial convolution to pixels within

the observed partial texture map. The low-frequency tex-

ture is subtracted from its full-band counterpart to produce a

high-frequency band texture. The blending function is then

applied as a weighted loss. The low-frequency textures are

weighted according to the viewing-angle map. However in

a differentiable framework, we are unable to use a max op-

erator on the high-frequency band as in [6]. Instead, we nar-

row the blending transition region in the high-frequencies

by using an exponentiated version of the original viewing

angle map. We find that an exponent of 3 produces the best

results, providing a balance of reduced ghosting in high-

frequencies without reducing high-frequency supervision in

the blended regions altogether.

3.2.3 Loss Functions

In section 3.1.2 we described the generation of ground truth

partial textures Icθ , where θ is the pose and c is the camera

used to generate the texture. These partial textures are used

as a ground truth for training our texture model, using our

combined blending weight maps Wc
θ (Equation 2) to deter-

mine their relative influence on the loss functions.

We use mean squared error (MSE) as our principal re-

construction loss, which we apply to the low and high fre-

quency bands separately:

LMSE =
∑

θ,c

‖Wc
θ ⊙ (Ôθ +M − Icθ)‖

2

(3)

where Ôθ is the reconstructed texture offset for pose θ,

which are added to the median texture M . Icθ is the par-

tial texture observation for pose θ from camera c.

We also use a perceptual loss [22] whereby we minimise

the difference between features extracted from the recon-

structed and target texture. We extract features from a pre-

trained VGG-16 network at layer relu3 3. This loss is given

by:

Lper =
∑

θ,c

‖V (Wc
θ ⊙ (Ôθ +M))− V (Wc

θ ⊙ Icθ)‖
2

(4)

where V denotes the VGG-16 network [27]. Again, this loss

is applied to the high and low frequency bands separately.

Our final reconstruction loss minimises the offset values

produced by the network. This stops the resultant textures

from deviating too far from the median texture. We imple-

ment this as another perceptual loss, given by:

Lmedian =
∑

θ,c

‖V (Ôθ)− V (0)‖2 (5)

where 0 is a zero-valued image of the same shape as Ôθ. We

find that this extra supervision aids the network in produc-

ing plausible results in texture regions with comparatively

less supervision.

Finally, we incorporate a KL-divergence loss, given by:

LKLD = KL
(

N
(

µz
θ, σ

z
θ

)

‖N
(

0, I
)

)

(6)

where µz
θ and σz

θ are the latent mean and standard deviation

for pose θ. Our total loss is then computed as:

Ltotal = λ1LMSE + λ2Lper+

λ3Lmedian + λ4LKLD

(7)

In our experiments we use values of λ1=300, λ2=500,

λ3=15 and λ4=1e-4.

Dataset Sub-sequences Frames

Roxanne [37] 10 461

Dan [11] 13 1286

Tomas [8] 4 214

Table 1: Properties of the three evaluation datasets.



Figure 5: Qualitative results on the Roxanne, Dan and Thomas datasets for the 3-camera arrangement. From left to right:

ground truth image, Metashape [1], video inpainting [12], PCA model, static median texture, and our proposed method.

Roxanne [37] Dan [11] Thomas [8] Average

Cameras 8 4 3 8 4 3 8 4 3 8 4 3

Static 0.544 0.537 0.530 0.417 0.415 0.416 0.633 0.625 0.615 0.531 0.525 0.520

PCA 0.555 0.465 0.506 0.450 0.424 0.410 0.670 0.631 0.617 0.558 0.507 0.511

Metashape [1] 0.678 0.559 0.514 0.559 0.452 0.396 0.725 0.599 0.559 0.654 0.537 0.490

Video inpainting [12] 0.723 0.565 0.523 0.609 0.480 0.422 0.767 0.608 0.564 0.700 0.551 0.503

Proposed 0.598 0.566 0.549 0.462 0.437 0.426 0.668 0.633 0.618 0.576 0.546 0.531

Table 2: The SSIM scores for all methods on the Roxanne, Dan and Thomas datasets, computed on a range of camera setups.

4. Experiments and Results

We evaluate our method on three public multi-view

datasets, Roxanne [37], Dan [11], and Tomas [8]. Each

dataset features multiple sub-sequences of a subject under-

going various actions. Details of each dataset are presented

in Table 1. We select 8 equispaced cameras from each

dataset to use as our baseline, from which we select smaller

subsets for evaluation.

There are no methods in the literature, to our knowledge,

that aim to address our specific problem of full dynamic

texture generation from partial observations. Instead, we

compare to four texture generation methods: Metashape [1],

a commercial multi-view texturing software; a static median

texture map; a PCA model; and a partial texture map that

with video-based inpainting [12] used to fill in the unseen

regions.

Metashape: Agisoft Metashape is a state-of-the-art com-

mercial photogrammetry and texturing software. We use

only its texturing capability, by providing it with camera

calibration plus our generated meshes. Its texturing algo-

rithm employs several processing steps to provide a high-

quality reconstruction, including color calibration, texture

mosaicing with multi-band blending, hole-filling and a

ghosting filter. The algorithm performs well at dealing with

artefacts caused by misaligned geometry, but it only gener-

ates textures on a per-frame basis, meaning it is unable to

exploit other frames to fill unobserved regions.

Median Texture Map: We also compare against a single,

static texture map, which is generated using observations

over the whole dataset. This is computed as a weighted me-

dian, using the weighting maps described in Section 3.1.2.

Although this method provides complete texture coverage,

it does not account for the large changes in surface texture



with varying body pose.

PCA model: We build a PCA model with 8 components

(matching the compression ratio of our trained model). The

PCA model is built using the partial textures imputed with

median pixel values. A PCA model is capable of compress-

ing the textures across a dataset, but lacks the advantage of

being driven by pose, and cannot learn to fill unseen regions

with pose-dependent details.

Video Inpainting: This method combines the partial tex-

tures using a traditional multi-band blending technique. The

unobserved regions in each frame are then filled using a

video inpainting method [12]. The video inpainting method

advances on standard inpainting networks by exploiting in-

formation from a window of frames. We apply the inpaint-

ing method to windows of 9 frames (the maximum our GPU

allows).

4.1. Quantitative Evaluation

We evaluate on three datasets, with a varying number of

cameras used as input. A separate network is trained for

each subject and each camera arrangement. We evaluate on

arrangements of 8, 4, and 3 cameras. In theory, our dy-

namic texture model could be trained using fewer, or even

a single camera; in practice we find that our reconstruction

method and state-of-the-art monocular methods, provide a

reconstruction result that is too temporally unstable. Our

method does not require complete texture observations in

every pose, however we do require every surface point to be

observed in at least one sub-sequence in order to generate

a median texture. Therefore in datasets where the subject

remains facing in one direction throughout, we change our

camera selection between sub-sequences to provide texture

coverage of every body part in at least one sequence.

We evaluate the full pipeline of reconstruction, textur-

ing and model training for each subset of cameras. We

use the structural similarity index (SSIM) [39] as an eval-

uation metric, to compare the reprojected textured models

with the original input images. Thus the metric is a mea-

sure of both the quality of the reconstruction, as well as

the quality of the dynamic texture appearance model. We

compute the SSIM score only in the overlapping regions

between the projected mesh and the ground truth segmen-

tation. We evaluate against the cameras that were not used

for training, meaning the metric represents the ability for

the method to infer correct pose-dependent texture in un-

seen regions.

We use the mesh computed in our pipeline as the proxy

geometry for all four texturing methods. We compute the

SSIM scores on all three datasets, and for sets of 8, 4 and 3

cameras. The results are presented in Table 2.

These results show that for 3, and often 4 cameras,

our method outperforms the other texture generation tech-

niques. This is because our method is able to produce more

Figure 6: Dynamically varying texture maps in the Roxanne

and Dan datasets, from 3 cameras. Our output textures, and

the difference from the median texture.

plausible results in the unobserved texture regions. As the

number of cameras increases, the Metashape and video in-

painting methods achieve better results as they receive a

fuller texture coverage but do not compress the textures as

our method does. We consistently outperform the static tex-

ture method, showing that dynamic texture details are nec-

essary to accurately depict a subject in varying pose. De-

spite having the same compression ratio, our model over-

whelmingly outperforms the the PCA model.

4.2. Qualitative Results

We qualitatively compare our results against the four tex-

ture generation methods, as well as the ground truth images.

These results are presented in Figure 5 for the 3-camera

setup on all three datasets. The results demonstrate that our

method is able to capture the dynamic clothing and shading

details from only partial observations, and reproduce these

given an input pose. Our method loses some high-frequency

detail, which is a well known problem with VAEs, but man-

ages to correct for misprojection and misalignment artefacts

that are still present in other methods. The metashape tex-

tures contain artefacts where the algorithm has failed to de-

tect misprojections or fill unseen regions; the video inpaint-

ing results have fewer artefacts, but the inpainted regions



are still not totally plausible. The static median method

produces a complete texture without artefacts, but loses all

pose-dependent variation and high-resolution detail. The

PCA model has slightly more detail than the median tex-

ture, however the finer details are lost in comparison to our

model. Overall, the results show that our method is the best

at filling in unseen texture regions, while maintaining a high

level of pose-dependent detail.

The dynamically varying texture appearance over a short

sequence from the Thomas dataset [9] can be seen in Figure

1, which was generated from 3 cameras. The model is ca-

pable of expressing the variation in shading and wrinkling

on the t-shirt with respect to the pose of the subject. Ours

and the video inpainting method are the only approaches

to exploit temporal information in generating textures for

every frame. However, the video inpainting method relies

on changing camera coverage in a short window of frames,

whereas our model is able to exploit texture observations

across the entire dataset. Further examples of dynamic vari-

ation in texture can be seen in Figure 6, although the dynam-

ically varying texture effects are best viewed in our video,

which is included in the supplementary material.

4.3. Compression

Our model is effective at expressing the dynamic texture

appearance of a dataset, as shown in Section 4.1. However,

it is also able to compress the dataset size significantly. We

compute the size of each full dataset (one 512 × 512 tex-

ture map per frame), and compare it to our 12.5 MB texture

model. The uncompressed dataset sizes and compression

ratios are presented in Table 3. Additionally, inference of a

complete texture map using our model only takes 4.5 ms on

average on an NVIDIA 1080Ti GPU, making our method

suitable for real-time playback of a sequence. We chose

the number of components for our PCA model such that it

matched the compression ratio of our model, however the

results in Table 2 and Figure 5 show that our model pro-

duces much more detailed results.

Dataset Frames Size (MB) Compression

Roxanne [37] 461 135 10.8

Dan [11] 1286 376 30

Tomas [8] 214 63 5

Table 3: Compression ratios of the three evaluation datasets

using our model.

4.4. Ablation Study

We justify our multi-band loss function with an ablation

study, the results of which are presented in Table 4 and Fig-

ure 7. As well as quantitatively improving results, Figure

7 clearly demonstrates how our multi-banded filtering helps

to avoid seam artefacts in the network output.

Figure 7: Results on the Roxanne dataset with our multi-

band filtering (left) and without (right).

Cameras 8 4 3

Proposed 0.576 0.546 0.531

Proposed w/o filtering 0.553 0.534 0.526

Table 4: Ablation study on multi-band filtering loss.

5. Discussion & Conclusions

We have proposed a novel method for the modelling of

dynamic texture appearance of a subject captured from a

minimal multi-camera setup. From as few as 3 cameras

we are able to reconstruct their geometry, and generate

full-body textures for every pose in the dataset that con-

tain dynamically varying appearance, including wrinkling

of clothing and changes in shading. Our method employs

a novel multi-band blending loss function and blend-weight

maps to reduce texture artefacts and preserve detail, and our

quantitative and qualitative evaluation demonstrate that our

method is capable of producing better results than previous

texture generation methods.

Our model is capable of compressing the temporally

varying textures of the datasets, and our total network takes

up only 12.5 MB, allowing us to achieve high compression

ratios. Furthermore, our network is capable of texture infer-

ence at faster than real-time, making it well-suited to real-

time graphics applications.

The current network can generate textures for poses in

the training dataset, and plausible textures for very similar

poses. However it is likely that a larger dataset would be

necessary in order to allow the network to generalise to a

wider range of poses. Future work could address the limita-

tions of VAEs, which are known for producing blurry out-

puts - this could pertain to investigating GANs or hybrid

VAE-GANs. Currently we are using the unclothed SMPL

model, which does not account for loose clothing or long

hair, so future work could also incorporate a more detailed

human shape estimation stage.

Acknowledgements

This work was funded by EPSRC Grant EP/N50977/1.



References

[1] Agisoft Metashape Professional (Version 1.6.1) (Software),

2020. https://www.agisoft.com/downloads/

installer/.

[2] Naveed Ahmed, Edilson de Aguiar, Christian Theobalt, Mar-

cus A. Magnor, and Hans-Peter Seidel. Automatic genera-

tion of personalized human avatars from multi-view video.

In Virtual Reality Software and Technology, 2005.

[3] Thiemo Alldieck, Marcus Magnor, Bharat Lal Bhatnagar,

Christian Theobalt, and Gerard Pons-Moll. Learning to re-

construct people in clothing from a single RGB camera. In

IEEE Conference on Computer Vision and Pattern Recogni-

tion, 2019.

[4] Thiemo Alldieck, Marcus Magnor, Weipeng Xu, Christian

Theobalt, and Gerard Pons-Moll. Detailed human avatars

from monocular video. In International Conference on 3D

Vision, 2018.

[5] Thiemo Alldieck, Marcus Magnor, Weipeng Xu, Christian

Theobalt, and Gerard Pons-Moll. Video based reconstruc-

tion of 3D people models. In IEEE Conference on Computer

Vision and Pattern Recognition, 2018.

[6] Adam Baumberg. Blending images for texturing 3D mod-

els. In Proceedings of the British Machine Vision Confer-

ence, 2002.

[7] Fausto Bernardini, Ioana M. Boier-Martin, and Holly E.

Rushmeier. High-quality texture reconstruction from mul-

tiple scans. IEEE Trans. Vis. Comput. Graph., 7:318–332,

2001.

[8] Adnane Boukhayma and Edmond Boyer. Video based ani-

mation synthesis with the essential graph. International Con-

ference on 3D Vision, 2015.

[9] Adnane Boukhayma, Vagia Tsiminaki, Jean-Sébastien
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