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Figure 1: Our method generates a model of full-body texture appearance of a subject from a small multi-camera setup (3 in
the above example), capable of expressing dynamic variation in texture with respect to body pose.

Abstract

We present a novel method for modelling dynamic tex-
ture appearance from a minimal set of cameras. Previ-
ous methods to capture the dynamic appearance of a hu-
man from multi-view video have relied on large, expensive
camera setups, and typically store texture on a frame-by-
frame basis. We fit a parameterised human body model
to multi-view video from minimal cameras (as few as 3),
and combine the partial texture observations from multiple
viewpoints and frames in a learned framework to generate
full-body textures with dynamic details given an input pose.
Key to our method are our multi-band loss functions, which
apply separate blending functions to the high and low spa-
tial frequencies to reduce texture artefacts. We evaluate our
method on a range of multi-view datasets, and show that our
model is able to accurately produce full-body dynamic tex-
tures, even with only partial camera coverage. We demon-
strate that our method outperforms other texture generation
methods on minimal camera setups.

1. Introduction

Realistic human reconstruction and avatars generated
from video have a wide range of application areas, from im-
mersive content production for virtual and augmented real-
ity experiences, to applications in the gaming and entertain-
ment industries. However, reconstruction of humans from
video is still an ongoing problem; the literature now focuses
on generating increasingly detailed texture and geometry

and from fewer cameras. Various works have addressed this
problem, including methods that aim to produce human re-
constructions or avatars from single images or monocular
videos [3, 31, 23, 21, 35, 4, 5], and multi-view methods
which rely on large multi-camera studios in a controlled en-
vironment [37, 14, 2].

Typically multi-view methods achieve a higher level of
detail versus monocular methods, both in terms of geometry
and texture quality. These methods can produce complete
textures at every time instance, containing the variation in
appearance caused by changing pose [37, 11]. However,
these methods require large and expensive multi-camera
studios, reducing the ease of acquiring this type of data.
There has also been limited work addressing the problem
of parameterizing the changing texture appearance.

Conversely, monocular methods are able to produce
reasonable estimates of human shape given limited input
[3, 21] and frequently make use of model-based reconstruc-
tion or recent advances in implicit-function human shape
estimation [21, 35]. However, these methods only generate
a single static texture map, which fails to express variation
in appearance with respect to pose.

We present a method that sits between these two separate
branches of work. Our method learns to generate whole-
body dynamic texture appearance from a minimal set of
camera viewpoints. We estimate a human shape reconstruc-
tion from multi-view video, and use texture observations on
this mesh to train a dynamic texture appearance model. This
model is capable of generating complete textures for any in-



put pose in the dataset, without providing complete texture
supervision. The model is able to express the variations in
human appearance with respect to pose, such as changes
in illumination and wrinkling clothing. Furthermore, the
model greatly compresses the textures while maintaining
detail. Our contributions are as follows:

e Learning to generate full-body dynamic texture with

partial visibility from a minimal set of camera views

* Reproduction of high-resolution dynamic texture from
3D pose input

* A novel training schema that exploits the separation of
texture into high and low spatial frequency bands
Finally, we include a comparative evaluation with previ-
ous texture generation methods, demonstrating a quantita-

tive and qualitative improvement in texture detail.

2. Related Work

There has been extensive work on estimating textured
3D human models from single images [3, 31, 23, 21, 35]
and monocular video [4, 5]. Detailed textured reconstruc-
tions of humans in clothing are created from single images
in [31, 35], however these methods are restricted to single
poses. The methods in [3, 21, 23] use a learned approach to
generate an animatable textured avatar, and make use of the
SMPL model [29]. The meshes produced are high quality,
as these methods estimate a more detailed surface beyond
the level of detail prescribed by the SMPL model. However,
the textures on the back of the model are only estimated by
a neural network, and thus usually lack finer detail.

Monocular video of a human in motion is used to gen-
erate avatars in [4, 5]. These methods also use the SMPL
model as the basis for their avatars, but combine multiple
frames to refine the shape and texture estimates. These
methods generate a static texture over the whole sequence,
which lacks the dynamic appearance required of a realistic
avatar. The methods in [40, 18] pre-compute a personalised
template, which is fit to monocular video. This results in a
detailed geometry, but these methods also fail to capture the
dynamic variation in texture with respect to changing pose.

All of these methods are able to produce detailed geome-
try and texture, given limited camera views. However, there
is a significant loss of detail in the texture in unseen regions.
Additionally, none are able to produce a dynamically vary-
ing texture that captures the changes in shading and clothing
appearance with varying body pose.

Multi-view methods can create more detailed recon-
structions, but usually require constrained environments
[36, 14, 17,37, 20]. Extensive multi-camera setups are used
for volumetric performance capture in [17, 14, 37], which
can be used to generate highly detailed shape and texture re-
constructions. However, these methods all assume that full
texture coverage is available every frame, and do not model

the dynamic texture with respect to pose.

The work in [20] targets volumetric performance capture
from minimal cameras, by using deep learning to generate
plausible geometry where traditional methods fail. How-
ever, they do not address the issue of generating full textures
when the number of cameras has been reduced.

A neural texture appearance rendering method is pre-
sented in [36], which steps outside the traditional mesh-
based pipeline. A network is trained on multi-view videos
of a single subject, which learns to generate regions of tex-
ture, and learns a mapping of these regions into an image
given an input 3D pose. This method is able to produce ren-
derings of an avatar given a pose input, however, it fails to
model dynamic texture appearance.

4D video textures [1 1] are a layered texture representa-
tion that compresses view-dependent variation in appear-
ance. However it requires separate texture stacks each
frame, meaning there is no temporal compression.

In [9], PCA is used to compress texture observations
across different poses and camera views, using an optical
flow solution to correct for misalignment between textures.
This model is able to accurately reproduce textures from
the input dataset, but there is no way to reproduce textures
given an input pose. That is, appearance variation is param-
eterized with respect to the PCA basis functions.

The first use of variational autoencoders (VAEs) to
model dynamic textures appears in [28]. This work focuses
on face modelling, and uses a multi-camera rig to generate
view-specific textures. Their conditional autoencoder learns
to generate view-dependent texture maps for any input pair
of viewing direction and latent vector. Their method uses a
40-camera rig, whereas our method aims to reduce the re-
liance on such extensive hardware.

Recent research uses GANS to predict posed face images
from a single image of a face in a neutral pose [30]. The
network is able to predict the texture for unseen regions like
the inside of the mouth, but the results become increasingly
deformed as the viewing angle differs from the input image.

The multi-view methods discussed can produce detailed
texture appearance with complete coverage, but require a
large number of cameras to do so. Few address the com-
pression or modelling of the resultant textures, and none
parameterise them with respect to body pose. Conversely,
monocular methods are able to produce full-body texture,
but these are static, and lack detail in unseen regions. Our
work aims to address this gap in the literature with a model
that expresses full-body pose-based variation in human ap-
pearance, generated from only a minimal set of viewpoints.

Multi-view texturing techniques combine observations
from different cameras using a weighted average [15, 33, 7].
The weights are typically computed from various factors,
including the size of the mesh region in each camera, or
the angle between the surface normal and the camera di-
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Figure 2: Overview of our method. We reconstruct the body shape from a minimal multi-camera setup. Our network is
trained on partial texture observations to generate full dynamic texture maps for any pose in the input dataset. We employ a
novel supervision method that exploits multi-frequency-band texture blending.

rection. When creating view-dependent textures, the an-
gle between the camera direction and the viewing direction
is also used [15, 38]. More sophisticated techniques are
used in [6, 34, 32, 25, 41, 16] to alleviate artefacts caused
by misaligned textures, different camera settings, or inac-
curate geometry. The methods in [6, 13] employ a multi-
band blending approach, whereby the images are separated
into frequency bands, which are each weighted separately,
which helps to reduce ghosting artefacts. The methods in
[41, 16] correct misalignment by warping the images, using
grid-based warping or optical flow respectively. However,
these methods all require full camera coverage of the sub-
ject at each time-frame in order to generate complete tex-
tures. Additionally, these methods only produce textures on
a per-frame basis.

In this work, we advance on traditional texturing tech-
niques to produce a model of dynamic texture appearance
in an approach that learns the full-body surface appearance
from a minimal set of views, and synthesises dynamic tex-
ture with respect to pose for any pose in the input dataset.

3. Methodology

We introduce a method to generate a pose-driven model
of dynamic human appearance from a minimal set of cam-
eras. Our trained model can produce complete full-body
dynamic textures for every pose in the dataset, even when
complete texture supervision is not available. Using multi-
view video of a single subject in a range of poses but with
minimal camera coverage, we generate a temporally con-
sistent reconstruction, from which we are able to produce
partial texture maps from every camera. These are used to
train a VAE that learns to output a complete texture for a
given pose in the dataset, containing pose-dependent vari-
ation including shading and wrinkling of clothing. A full
overview of our method can be seen in Figure 2. We de-

scribe the generation of training data in Section 3.1, and the
method by which we train the network in Section 3.2.

3.1. Data Pre-processing
3.1.1 Model-based Human Body Reconstruction

Our method requires a temporally consistent texture map
layout. To achieve this with a minimal camera setup, we
use the SMPL model [29] to provide a coarse estimate of
the body shape. The SMPL model is a statistical body
model representing unclothed humans, parameterised by
body shape S and pose §. We employ a method based on
[19] to align the SMPL model to pose detections in the in-
put videos [10]. The energy function given in Equation 1|
is minimised to align the SMPL model to the multi-view
video sequence.

EM(/87 a, t) = EJ(B, 0, t) + /\QEQ(G)

+AsE5(8) + ApcrEpcr(B,0,t,C)

where 6 and g are the SMPL pose and shape parameters
respectively, and ¢ is the root translation. We optimise a
constant set of shape parameters over the whole sequence
to ensure temporal consistency. E; is the joint fitting term
that minimises the distance from the projected SMPL model
joints to their corresponding 2D joint estimates. Epcr is
a discrete cosine transform smoothing term, which min-
imises the distance between the reconstructed joint trajec-
tories and a low-dimensional DCT approximation with 10
coefficients, C. Finally, Fy is a Gaussian-mixture model
pose prior, and Eg is a body-shape prior, as in [19]. The
optimized meshes and pose parameters 6 are used to train
the pose-driven texture model.

(1

3.1.2 Texture & Map Generation

We produce partial texture maps for every frame and camera
view of the reconstructed sequences by projecting the input
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images on to the reconstructed body (Figure 3a).

In multi-view texturing algorithms [6, 34, 32, 25], the
observations from different cameras are combined using a
weighted blending function, which can depend on a range
of parameters. This is because in practice there will be dif-
ferences in the observed surface appearance between view-
points, due to non-Lambertian lighting, and different cam-
era settings, which can cause seams in the combined texture
map. Additionally, inconsistencies between the estimated
and ground truth surface can result in ghosting artefacts.
We take inspiration from this approach in training our net-
work, by generating maps that that represent the weights of
the blending function, which we use to weight the losses
between different texture observations (Section 3.2.2). We
adopt a weighting function that favours texture observations
on the faces of our mesh that are oriented towards the cam-
era. We do this by means of generating a map that encodes
the dot product between the normals of the mesh and the
viewing direction of the camera (Figure 3b).

The texture maps contain misprojection artefacts, since
the SMPL model is only capable of representing unclothed
humans thus will not perfectly align with the input im-
ages. This means that the texture maps may contain regions
of background texture, body parts may project onto each
other, and textures from different cameras will not directly
align (see Figure 4). To ensure that these erroneous regions
are not used in supervision, we produce masks that elim-
inate semantic inconsistencies in the textures. We gener-
ate semantic body-part segmentation images [24], which we
project onto the SMPL model to produce semantic texture
maps (Figure 3c), which we one-hot encode to produce an
S-channel map, where .S is the number of semantic labels.
We combine the semantic texture maps across all cameras
and all frames into a single ‘consensus’ semantic map (Fig-
ure 3d) by computing a pixel-wise average. The ‘consensus’
map represents the ‘probability” of each pixel belonging to a
particular semantic label. We then produce semantic weight
maps by computing a pixel-wise dot product between the
‘consensus’ map and the partial maps from each frame (Fig-
ure 3e). These maps allow us to down-weight the mispro-
jected texture regions during training. A similar approach
is taken in [4], in which clothing segmentation is utilised to

Figure 4: An example of misalignment between texture ob-
servations from two cameras.

reduce texture spilling. However, this approach generates a
single clothing label for each pixel in their consensus map.
By generating probabilities for multiple semantic labels, we
are able to avoid significantly reducing the amount of su-
pervision provided at the edges semantic regions, where the
predicted semantic label tends to fluctuate.

Our final map is a visibility map, which denotes whether
a point is observable from a particular camera. We combine
our various maps into a single weighted map which we use
during training:

c__ , .c c c
Wé‘ - o‘}dot,(f © wcon,() © wvis,(i (2)

where wq,; 1s the viewing-angle map, w,,, is the semantic
consistency map, w,;s is the visibility map, and ® denotes
an element-wise multiplication.

We also use the combined weight maps V to generate an
average texture map M, which is a weighted median across
the partial texture maps from all cameras and frames.

3.2. Model & Training

Our pose-driven texture model is a variational encoder-
decoder pair, which takes a 3D human body pose as in-
put, and returns a map of pose-dependent texture offsets
(Section 3.2.1). The offsets are added to a median tex-
ture computed over the whole dataset to produce a com-
plete texture map with pose-dependent details. We super-
vise our network with the visible texture regions from each
camera. To learn to reproduce high resolution texture de-
tail from partially overlapping texture maps, we incorporate
techniques from the image-based rendering and projective
texturing literature into our loss functions, to teach the net-
work to combine texture observations from different camera



images without losing high-frequency detail or introducing
artefacts. We explain the network architecture in Section
3.2.1, discuss our dual-band filtering approach in Section
3.2.2, and we describe the loss functions used to train our
network in Section 3.2.3.

3.2.1 Architecture

We employ a VAE for its smooth distribution within the la-
tent space. This assists the network in filling unobserved
texture regions, since it can benefit from the supervision of
these regions in similar poses. Our network comprises an
encoder which takes our input pose 6 and produces a la-
tent space z(6), followed by a decoder, which returns a 512
x 512 offset texture map that is added to a pre-computed
median texture. The encoder features 4 fully connected lay-
ers, which generate a 128-dimensional latent vector. The
decoder uses 2 more linear layers, followed by 7 decoder
blocks, each of which comprises an up-sampling function
following by a residual block, with 3 x 3 convolutions
throughout. Our pose input comprises joint rotation matri-
ces concatenated with 3D joint-positions, with length 252.
We elect to output a 512 x 512 texture map, as this is
enough to capture the detail in our evaluation datasets.

3.2.2 Multi-banded Texture Blending

Multi-band blending is employed in [6], whereby the im-
ages are decomposed into high and low frequency bands,
and different weights are used to blend each component.
Multi-band blending helps to reduce seams in the low-
frequencies while avoiding ghosting artefacts in the high-
frequencies. In [6] the low-frequency band output is a
weighted average of all images, and in the high-frequency
band the output pixel values are taken from the image with
the maximum blending weight. To apply multi-band blend-
ing in our loss function, we separate both the ground truth
partial texture and the network output into two frequency
bands. A partial convolution [26] is applied using a Gaus-
sian kernel of size 21 x 21px and standard deviation o of 4.
A mask constrains the partial convolution to pixels within
the observed partial texture map. The low-frequency tex-
ture is subtracted from its full-band counterpart to produce a
high-frequency band texture. The blending function is then
applied as a weighted loss. The low-frequency textures are
weighted according to the viewing-angle map. However in
a differentiable framework, we are unable to use a max op-
erator on the high-frequency band as in [6]. Instead, we nar-
row the blending transition region in the high-frequencies
by using an exponentiated version of the original viewing
angle map. We find that an exponent of 3 produces the best
results, providing a balance of reduced ghosting in high-
frequencies without reducing high-frequency supervision in
the blended regions altogether.

3.2.3 Loss Functions

In section 3.1.2 we described the generation of ground truth
partial textures I, where 6 is the pose and c is the camera
used to generate the texture. These partial textures are used
as a ground truth for training our texture model, using our
combined blending weight maps W§ (Equation 2) to deter-
mine their relative influence on the loss functions.

We use mean squared error (MSE) as our principal re-
construction loss, which we apply to the low and high fre-
quency bands separately:

Luse =YW © (Og + M - I§)|? 3)
6,c

where Og is the reconstructed texture offset for pose 6,
which are added to the median texture M. I§ is the par-
tial texture observation for pose 6 from camera c.

We also use a perceptual loss [22] whereby we minimise
the difference between features extracted from the recon-
structed and target texture. We extract features from a pre-
trained VGG-16 network at layer relu3_3. This loss is given
by:

Lper = Z IVW§ © (Op + M)) = V(W5 © I{)||? )
6,c
where V denotes the VGG-16 network [27]. Again, this loss
is applied to the high and low frequency bands separately.
Our final reconstruction loss minimises the offset values
produced by the network. This stops the resultant textures
from deviating too far from the median texture. We imple-
ment this as another perceptual loss, given by:

Lnedian = Z HV(OA@) - V(O)H2 &)
0,c

where 0 is a zero-valued image of the same shape as Op. We
find that this extra supervision aids the network in produc-
ing plausible results in texture regions with comparatively
less supervision.

Finally, we incorporate a KL-divergence loss, given by:

Lico = KL(N (5. 05)IN(0.T))

where 117 and o are the latent mean and standard deviation
for pose . Our total loss is then computed as:

Liotat = A1LMSE + )\ZLper+
)\3Lmedian + A4LKLD

In our experiments we use values of A;=300, A2=500,
A3=15 and \y=1e-4.

)

Dataset Sub-sequences | Frames
Roxanne [37] 10 461
Dan[11] 13 1286
Tomas [8] 4 214

Table 1: Properties of the three evaluation datasets.



Figure 5: Qualitative results on the Roxanne, Dan and Thomas datasets for the 3-camera arrangement. From left to right:

ground truth image, Metashape [ 1], video inpainting [12], PCA model, static median texture, and our proposed method.

Roxanne [37] Dan [11] Thomas [8] Average
Cameras 8 4 3 8 4 3 8 4 3 8 4 3
Static 0.544 0537 0530 0417 0415 0416 0633 0.625 0.615 0531 0.525 0.520
PCA 0.555 0465 0506 0450 0424 0410 0.670 0.631 0.617 0558 0.507 0.511
Metashape [1] 0.678 0.559 0.514 0559 0452 039 0725 0.599 0559 0.654 0.537 0.490
Video inpainting [12]  0.723  0.565 0.523 0.609 0.480 0422 0.767 0.608 0.564 0.700 0.551 0.503
Proposed 0598 0.566 0.549 0462 0437 0426 0.668 0.633 0.618 0576 0.546 0.531

Table 2: The SSIM scores for all methods on the Roxanne, Dan and Thomas datasets, computed on a range of camera setups.

4. Experiments and Results

We evaluate our method on three public multi-view
datasets, Roxanne [37], Dan [11], and Tomas [8]. Each
dataset features multiple sub-sequences of a subject under-
going various actions. Details of each dataset are presented
in Table 1. We select 8 equispaced cameras from each
dataset to use as our baseline, from which we select smaller
subsets for evaluation.

There are no methods in the literature, to our knowledge,
that aim to address our specific problem of full dynamic
texture generation from partial observations. Instead, we
compare to four texture generation methods: Metashape [ 1],
a commercial multi-view texturing software; a static median
texture map; a PCA model; and a partial texture map that
with video-based inpainting [12] used to fill in the unseen
regions.

Metashape: Agisoft Metashape is a state-of-the-art com-
mercial photogrammetry and texturing software. We use
only its texturing capability, by providing it with camera
calibration plus our generated meshes. Its texturing algo-
rithm employs several processing steps to provide a high-
quality reconstruction, including color calibration, texture
mosaicing with multi-band blending, hole-filling and a
ghosting filter. The algorithm performs well at dealing with
artefacts caused by misaligned geometry, but it only gener-
ates textures on a per-frame basis, meaning it is unable to
exploit other frames to fill unobserved regions.

Median Texture Map: We also compare against a single,
static texture map, which is generated using observations
over the whole dataset. This is computed as a weighted me-
dian, using the weighting maps described in Section 3.1.2.
Although this method provides complete texture coverage,
it does not account for the large changes in surface texture



with varying body pose.

PCA model: We build a PCA model with 8§ components
(matching the compression ratio of our trained model). The
PCA model is built using the partial textures imputed with
median pixel values. A PCA model is capable of compress-
ing the textures across a dataset, but lacks the advantage of
being driven by pose, and cannot learn to fill unseen regions
with pose-dependent details.

Video Inpainting: This method combines the partial tex-
tures using a traditional multi-band blending technique. The
unobserved regions in each frame are then filled using a
video inpainting method [12]. The video inpainting method
advances on standard inpainting networks by exploiting in-
formation from a window of frames. We apply the inpaint-
ing method to windows of 9 frames (the maximum our GPU
allows).

4.1. Quantitative Evaluation

We evaluate on three datasets, with a varying number of
cameras used as input. A separate network is trained for
each subject and each camera arrangement. We evaluate on
arrangements of 8, 4, and 3 cameras. In theory, our dy-
namic texture model could be trained using fewer, or even
a single camera; in practice we find that our reconstruction
method and state-of-the-art monocular methods, provide a
reconstruction result that is too temporally unstable. Our
method does not require complete texture observations in
every pose, however we do require every surface point to be
observed in at least one sub-sequence in order to generate
a median texture. Therefore in datasets where the subject
remains facing in one direction throughout, we change our
camera selection between sub-sequences to provide texture
coverage of every body part in at least one sequence.

We evaluate the full pipeline of reconstruction, textur-
ing and model training for each subset of cameras. We
use the structural similarity index (SSIM) [39] as an eval-
uation metric, to compare the reprojected textured models
with the original input images. Thus the metric is a mea-
sure of both the quality of the reconstruction, as well as
the quality of the dynamic texture appearance model. We
compute the SSIM score only in the overlapping regions
between the projected mesh and the ground truth segmen-
tation. We evaluate against the cameras that were not used
for training, meaning the metric represents the ability for
the method to infer correct pose-dependent texture in un-
seen regions.

We use the mesh computed in our pipeline as the proxy
geometry for all four texturing methods. We compute the
SSIM scores on all three datasets, and for sets of 8, 4 and 3
cameras. The results are presented in Table 2.

These results show that for 3, and often 4 cameras,
our method outperforms the other texture generation tech-
niques. This is because our method is able to produce more

Figure 6: Dynamically varying texture maps in the Roxanne
and Dan datasets, from 3 cameras. Our output textures, and
the difference from the median texture.

plausible results in the unobserved texture regions. As the
number of cameras increases, the Metashape and video in-
painting methods achieve better results as they receive a
fuller texture coverage but do not compress the textures as
our method does. We consistently outperform the static tex-
ture method, showing that dynamic texture details are nec-
essary to accurately depict a subject in varying pose. De-
spite having the same compression ratio, our model over-
whelmingly outperforms the the PCA model.

4.2. Qualitative Results

We qualitatively compare our results against the four tex-
ture generation methods, as well as the ground truth images.
These results are presented in Figure 5 for the 3-camera
setup on all three datasets. The results demonstrate that our
method is able to capture the dynamic clothing and shading
details from only partial observations, and reproduce these
given an input pose. Our method loses some high-frequency
detail, which is a well known problem with VAEs, but man-
ages to correct for misprojection and misalignment artefacts
that are still present in other methods. The metashape tex-
tures contain artefacts where the algorithm has failed to de-
tect misprojections or fill unseen regions; the video inpaint-
ing results have fewer artefacts, but the inpainted regions



are still not totally plausible. The static median method
produces a complete texture without artefacts, but loses all
pose-dependent variation and high-resolution detail. The
PCA model has slightly more detail than the median tex-
ture, however the finer details are lost in comparison to our
model. Overall, the results show that our method is the best
at filling in unseen texture regions, while maintaining a high
level of pose-dependent detail.

The dynamically varying texture appearance over a short
sequence from the Thomas dataset [9] can be seen in Figure
1, which was generated from 3 cameras. The model is ca-
pable of expressing the variation in shading and wrinkling
on the t-shirt with respect to the pose of the subject. Ours
and the video inpainting method are the only approaches
to exploit temporal information in generating textures for
every frame. However, the video inpainting method relies
on changing camera coverage in a short window of frames,
whereas our model is able to exploit texture observations
across the entire dataset. Further examples of dynamic vari-
ation in texture can be seen in Figure 6, although the dynam-
ically varying texture effects are best viewed in our video,
which is included in the supplementary material.

4.3. Compression

Our model is effective at expressing the dynamic texture
appearance of a dataset, as shown in Section 4.1. However,
it is also able to compress the dataset size significantly. We
compute the size of each full dataset (one 512 x 512 tex-
ture map per frame), and compare it to our 12.5 MB texture
model. The uncompressed dataset sizes and compression
ratios are presented in Table 3. Additionally, inference of a
complete texture map using our model only takes 4.5 ms on
average on an NVIDIA 1080Ti GPU, making our method
suitable for real-time playback of a sequence. We chose
the number of components for our PCA model such that it
matched the compression ratio of our model, however the
results in Table 2 and Figure 5 show that our model pro-
duces much more detailed results.

Dataset Frames | Size (MB) | Compression
Roxanne [37] 461 135 10.8
Dan [11] 1286 376 30
Tomas [8] 214 63 5

Table 3: Compression ratios of the three evaluation datasets
using our model.

4.4. Ablation Study

We justify our multi-band loss function with an ablation
study, the results of which are presented in Table 4 and Fig-
ure 7. As well as quantitatively improving results, Figure
7 clearly demonstrates how our multi-banded filtering helps
to avoid seam artefacts in the network output.

Figure 7: Results on the Roxanne dataset with our multi-
band filtering (left) and without (right).

Cameras 8 4 3
Proposed 0.576 0.546 0.531
Proposed w/o filtering  0.553 0.534 0.526

Table 4: Ablation study on multi-band filtering loss.

5. Discussion & Conclusions

We have proposed a novel method for the modelling of
dynamic texture appearance of a subject captured from a
minimal multi-camera setup. From as few as 3 cameras
we are able to reconstruct their geometry, and generate
full-body textures for every pose in the dataset that con-
tain dynamically varying appearance, including wrinkling
of clothing and changes in shading. Our method employs
a novel multi-band blending loss function and blend-weight
maps to reduce texture artefacts and preserve detail, and our
quantitative and qualitative evaluation demonstrate that our
method is capable of producing better results than previous
texture generation methods.

Our model is capable of compressing the temporally
varying textures of the datasets, and our total network takes
up only 12.5 MB, allowing us to achieve high compression
ratios. Furthermore, our network is capable of texture infer-
ence at faster than real-time, making it well-suited to real-
time graphics applications.

The current network can generate textures for poses in
the training dataset, and plausible textures for very similar
poses. However it is likely that a larger dataset would be
necessary in order to allow the network to generalise to a
wider range of poses. Future work could address the limita-
tions of VAEs, which are known for producing blurry out-
puts - this could pertain to investigating GANs or hybrid
VAE-GANSs. Currently we are using the unclothed SMPL
model, which does not account for loose clothing or long
hair, so future work could also incorporate a more detailed
human shape estimation stage.
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