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Abstract

We present a novel method to learn temporally consis-

tent 3D reconstruction of clothed people from a monocu-

lar video. Recent methods for 3D human reconstruction

from monocular video using volumetric, implicit or para-

metric human shape models, produce per frame reconstruc-

tions giving temporally inconsistent output and limited per-

formance when applied to video. In this paper we in-

troduce an approach to learn temporally consistent fea-

tures for textured reconstruction of clothed 3D human se-

quences from monocular video by proposing two advances:

a novel temporal consistency loss function; and hybrid rep-

resentation learning for implicit 3D reconstruction from

2D images and coarse 3D geometry. The proposed ad-

vances improve the temporal consistency and accuracy of

both the 3D reconstruction and texture prediction from

a monocular video. Comprehensive comparative perfor-

mance evaluation on images of people demonstrates that

the proposed method significantly outperforms the state-of-

the-art learning-based single image 3D human shape esti-

mation approaches achieving significant improvement of re-

construction accuracy, completeness, quality and temporal

consistency.

1. Introduction

Parsing humans from images is a fundamental task in

many applications including AR/VR interfaces [13], char-

acter animation [36], autonomous driving, virtual try-on

[10] and re-enactment [30]. There has been significant

progress in 2D human pose estimation [8, 2], 2D human

segmentation [14, 49] and 3D human pose estimation from

monocular video [25, 48, 45] to understand the coarse ge-

ometry of the human body. Recent research has learnt to

estimate full 3D human shape from a single image with im-

pressive results [41, 43, 52, 20, 46, 6]. However temporally

consistent textured 3D reconstruction of clothed humans

from monocular video remains a challenging problem due

Figure 1. Given an monocular video of a subject (middle), the pro-

posed method creates an accurate and temporally consistent 3D

reconstruction (top) with texture (bottom).

to the large variation in action, clothing, hair, camera view-

point, body shape and pose. This paper addresses this gap in

the literature by exploiting a temporally consistent monoc-

ular training loss between wide-time separated frames and

hybrid implicit-volumetric representation, as shown in Fig.

1.

Traditional multi-view reconstruction methods [34, 28,

12, 50] have demonstrated the advantages of temporally

consistent reconstruction [27, 37, 35]. However, tempo-

rally consistent 3D human reconstruction from a monocular

RGB video remains an open challenge. Parametric model-

based 3D human shape estimation methods have been pro-

posed that exploit temporal neural network architectures

[23, 24] for a temporally consistent 3D output. Exist-

ing parametric models only represent the underlying naked

body shape and lack important geometric variation of cloth-

ing and hair. Augmented parametric model representations

proposed to represent clothing [4] are limited to tight cloth-

ing which maps bijectively to body shape and do not accu-

rately represent general apparel such as dresses and jackets.

Recent model-free approaches have achieved impressive

results in 3D shape reconstruction of clothed people from

a single image using learnt volumetric [52, 20, 38, 39],

point cloud [11], geometry image [42] and implicit [43, 44]

surface representations. [7] proposed multi-view supervi-



sion to learn complete and view-consistent 3D human re-

construction. ARCH [17] proposed robust 3D reconstruc-

tion for arbitrary poses from a single color image and Li et

al.[29] proposed 3D human reconstruction from video but

process frame-by-frame. These methods are trained only

with single-image and 3D model pairs without exploiting

temporal information between frames.

We address this problem by proposing a learning frame-

work for textured 3D human reconstruction using tempo-

ral consistency for video across wide-timeframes, together

with a hybrid 3D volumetric-implicit representation for

high resolution textured 3D shape reconstruction. A vol-

umetric shape representation is learnt using a novel tem-

poral loss function between wide-time separated frames

which ensures accurate single-view reconstruction of oc-

cluded surface regions. The novel loss function learns to in-

corporate surface photo-consistency cues in the monocular

reconstruction which are not present in the observed image

or 3D ground-truth shape. Temporal consistency can only

be minimized when the predictions of the trained model are

consistent and plausible across all temporal views. The pro-

posed method predicts both high resolution 3D geometry

and colored texture from a single view for both visible and

unseen human parts. The contributions of this work include:

• A novel learning framework for temporally consistent

reconstruction of detailed shape and texture for clothed

people from monocular video

• Temporal consistency loss based on wide-timeframe

coherence of the shape and appearance reconstruction

• A hybrid representation for learning 3D shape which

combines the advantages of explicit volumetric repre-

sentation of occupancy with implicit shape detail

• The first realistic synthesized video dataset of 400 peo-

ple with ground-truth 3D models

The proposed approach learns a temporally consistent hy-

brid representations giving significant improvement in the

accuracy and completeness of reconstruction compared to

the state-of-the-art methods for single image human recon-

struction [52, 43, 44, 29, 7].

2. Related Work

2.1. Monocular 3D Human Reconstruction

Parsing 3D humans from a single image can be catego-

rized into model-based and model-free 3D human recon-

struction. The first group of approach use parametric hu-

man model such as SMPL [32, 3] to estimate the body pose

and shape parameters in an iterative manner using either

2D joints locations [22], 2D joints and silhouettes [5] or

3D joints and mesh coordinates [41]. To improve the ac-

curacy of the models, an iterative optimization stage was

added to the regression network [26]. Even though para-

metric model-based methods are able to reliably estimate

the human body from a single image in the wild, estimated

shapes are the naked human body without hair, clothing or

other surface details. Recent approaches have extended this

to tight-fitting clothing [33].

Model-free non-parametric 3D human reconstruction ap-

proaches reconstruct clothed people, an overview is given

in Table 1. Model-free methods such as Bodynet [46], SiC-

loPe [38], DeepHuman [52] and MCNet [7] draw a direct

inference of volumetric 3D human shape from a single im-

age. However representing 3D human shape in voxels lim-

its the surface resolution for clothing and hair details. Im-

plicit function networks were introduced to obtain high-

resolution 3D reconstruction from a single image. PIFU

[43] estimates 3D human reconstruction from a single im-

age by proposing an implicit decoder which takes pixel-

wise image and depth features and predicts occupancy val-

ues of 3D points in the encapsulated volume. Following

this, PIFUHD [43] improves the previous method by adding

features extracted from surface normal maps to the implicit

decoder to reconstruct shape detail on the 3D human. How-

ever, both methods can not handle large variations in human

pose, clothing and hair. ARCH [17] proposed a variation of

the implicit function network using a parametric model fit-

ted to human silhouettes to improve the 3D reconstruction

for arbitrary human poses. Among previous methods, PIFU

and ARCH not only reconstruct the 3D geometry of human

from a single image, but they also predict the complete tex-

ture appearance for the reconstruction.

Previous methods consider only a single image without

any temporal information or consistency. This results in

inconsistent reconstruction of shape and appearance when

applied to video sequences. We propose a novel method to

learn 3D reconstruction of clothed human from a monocular

video using image-3D model pairs together with temporal

consistency between video frames and 3D models.

Table 1. Comparison of Single View 3D Reconstruction Methods.
3D Temporal Training 3D Human

Represent. Coherency Data Geom. / Text.

Bodynet [46] Voxel No Image Yes / No

SiCloPe [38] Voxel No Image Yes / No

DeepHuman [52] Voxel No Image Yes / No

3DPeople [42] Geo. Image No Image Yes / No

Mould.Hum. [11] Point Cloud No Image Yes / No

PIFU [43] Implicit No Image Yes / Yes

ARCH [17] Implicit No Image Yes / Yes

PIFU-HD [44] Implicit No Image Yes / No

MCNet [7] Voxel No Image Yes / No

Geo-PIFU [15] Hybrid No Image Yes / No

Proposed Hybrid Yes Video Yes / Yes

2.2. Temporal Consistency in Neural Networks

Previous methods in applications other than 3D shape

estimation enforce temporal consistency through a tempo-

ral consistency loss in the context of style transfer [16],

video-to-video synthesis [47] or monocular depth estima-

tion [51, 40]. Temporal consistency loss in training or test-



Figure 2. The Proposed Framework for Temporally Consistent 3D Human Reconstruction Learning from Video

ing encourages similar values along the temporal correspon-

dences estimated from the input video. Existing temporally

coherent 3D reconstruction methods [27, 37, 35] require

multi-view input videos. Applying single-image 3D shape

estimation methods independently to each frame in a video

often produces flickering results. To address this model-

based methods have exploited temporal coherency [23, 24].

However, our aim is to predict temporally consistent model-

free 3D clothed human reconstructions from a video, Table

1. A feed-forward network is used to perform single-view

3D human reconstruction for monocular videos and simul-

taneously maintain 3D temporal consistency between video

frames. Our feed-forward network is trained by enforcing

the output 3D reconstruction of temporally distant frames

to be both accurate and temporally consistent. Monocular

video of a moving person provides significant additional in-

formation. The body/clothing shape and appearance of the

person should be temporally consistent.

2.3. Learning Hybrid 3D Representations

Model-free single-image 3D human reconstruction

methods use various 3D representations-voxel, point cloud,

geometry image, and implicit, as seen in Table 1. Using

voxel representation increases computational cost and lim-

its the 3D surface resolution but it keeps global topology

and locality of 3D reconstruction. Implicit surface function

representation loses the global topology of the 3D human

body during inference, but reconstruct the surface with a

high level of shape detail. Recent research has combined

multiple 3D representations to exploit their relative advan-

tages in the context of 3D deep learning [31, 15]. [31] rep-

resents the 3D input data in points to reduce the memory

consumption, while performing the convolutions in voxels

to reduce the irregular, sparse data access and improve the

locality. On the other hand, [15] combine latent voxel fea-

tures and implicit function learning for 3D geometry pre-

diction. However [9] shows that using latent features limits

ability to learn complex geometry, like articulated shapes,

and latent feature approaches do not preserve 3D surface

details. Therefore, [9] proposes an improved 3D shape en-

coding which is a rich encoding of 3D data through sub-

sequently convolving it with learned convolutions. In the

proposed paper, we design a hybrid implicit-volumetric de-

coder using the shape encoding from temporally coherent

3D voxel reconstruction and image features to predict both

3D geometry and texture of clothed human in an implicit

function learning framework.

3. Temporally Consistent 3D Reconstruction

This section explains the novel proposed method for

temporally consistent textured 3D human reconstruction

from a monocular video. An overview of the approach is

presented in Fig. 2. N frames from a monocular video of

a dynamic human with arbitrary pose, clothing, and view-

point are given as input to the pipeline, and the network pre-

dicts the textured 3D human reconstruction in a temporally

consistent manner.

Figure 3. This figure shows Hybrid Implicit 3D Reconstruc-

tion Network (H3DN) and Hybrid Implicit 3D Texture Network

(H3dTexN).

3.1. Learning 3D Surface Reconstruction

We propose a method to learn 3D surface reconstruc-

tion from a monocular video (Fig. 2). In contrast to pre-

vious single-view 3D reconstruction approaches, Table 1,

that learn 3D human surface reconstruction from single im-



ages, we propose a cascaded network architecture to learn

from a monocular video. The proposed architecture consists

of Temporal Voxel Regression Network (TVRN) and Hybrid

Implicit 3D Reconstruction Network (H3DN). TVRN recon-

structs temporally consistent voxel occupancy grids from

a monocular video, and then H3DN refines the surface re-

construction. The proposed voxel regression network learns

to reconstruct human shape in a temporally consistent man-

ner: N video frames are given to the network such that each

frame is passed through its own voxel regression network

and parameters are shared between the N networks. The

voxel estimation through the TVRN network reduces incon-

sistency in the reconstruction over time. However, TVRN

lacks the high resolution surface details due to the voxel

quantisation. Hence the predicted voxel reconstruction is

then passed to a hybrid implicit surface function decoder to

obtain high-quality surface reconstruction.

3.1.1 Learning Architecture

The proposed learning architecture shown in Fig. 2 consists

of two sub-networks, Temporal Voxel Regression Network

(TRVN) and Hybrid Implicit 3D Reconstruction Network

(H3DN). In previous works, voxel regression has been used

to address complete 3D reconstruction of people in a wide

variety of poses from a single image [52, 7, 20]. Inspired

by these approaches we use a voxel regression network ar-

chitecture to reconstruct the complete topology of the 3D

human from single image. To obtain a temporally consis-

tent reconstruction, we introduce a novel learning frame-

work to exploit the temporal consistency between recon-

structions from video frames through the proposed TVRN

architecture (Fig. 2). TVRN network consists of multiple

parallel stacked hourglass networks with shared parameters.

This architecture allows the introduction of a temporal loss

function between 3D reconstructions from the input video

frames. As seen in the Fig. 2, N frames are used to train

the TVRN network, including the current frame It at time t

and N − 1 other frames at different time. The TVRN net-

work learns temporally consistent 3D shape and predicts the

voxel occupancy grid, V for all frames using the proposed

loss function which is computed between predicted voxel

occupancy grids for different time frames (Sec. 3.1.2).

However, the temporally consistent output of TVRN has

limited surface detail due to the voxel quantisation. To rep-

resent high-resolution shape detail we propose Hybrid Im-

plicit 3D Reconstruction Network (H3DN) to refine the tem-

porally consistent voxel occupancy grids. Methods have

been proposed in the literature to learn and predict implicit

surface representation from a single image [43, 44, 17].

These implicit reconstruction methods give a high-level of

details on 3D surface. However, all previous methods lose

the complete topology of the human body because of the

sampling scheme during training. In this paper we address

this limitation of previous methods by using the voxel occu-

pancy grids as input to the implicit representation instead of

a single input image. This allows us to to reconstruct a high-

level of surface detail and keep the complete shape topology

of the clothed human body due to implicit function learning

and input voxel occupancy grids respectively. The implicit

surface is obtained using the proposed novel hybrid implicit

function network which takes as input multiple feature en-

codings and predicts the occupancy of a 3D point. In the

network, feature encoders from three different inputs (im-

age, voxel and depth) and a Multi-Layer-Perceptron (MLP)

as the decoder to predict occupancy values.

As illustrated in Fig. 3, each sampled 3D point (X) is

projected on the input image (x) and pixel-wise image fea-

tures are extracted by concatenating intermediate layer out-

puts of the hourglass network [43]. We denote the pixel-

wise image feature as H(I(x)). The second input to the

decoder are point-wise features extracted from outputs of

the TVRN network, i.e. voxel occupancy grids. For a sam-

pled 3D point, we apply multi-scale shape encoding [9] in

the aligned voxel occupancy grid using trilinear interpola-

tion within the neighborhood of sampled point. Shape en-

coding for a 3D sampled point (X) is denoted as S(X).
The last input to the proposed decoder is the depth value of

sampled 3D points (X) with respect to the camera, denoted

D(X). Overall hybrid implicit surface function is formal-

ized as fgeometry:

fgeometry(S(X),H(I(x)),D(X)) = s : s ∈ R, s ∈ [0, 1]
(1)

The implicit function predicts occupancy values for the

sampled 3D points. Marching cubes is applied to obtain

a high-quality surface reconstruction.

3.1.2 Loss Functions

The proposed network is supervised from the ground-truth

3D human models rendered from temporal frames and self-

supervised between time distant frames from a monocular

video. In order to train the TVRN network we combine 3D

loss LV oxel
3D and temporal consistency loss LV oxel

TC . The 3D

loss function LV oxel
3D computes error between the estimated

3D voxel occupancy grid (V̂t) and 3D ground-truth (Vt) for

time frame t. As stated in Equation 2, the binary cross en-

tropy [19] is computed after applying a sigmoid function on

the network output. In particular, we used weighted binary

cross entropy loss and γ is a weight to balance occupied and

unoccupied points in the voxel volume:

LV oxel
3D =

N∑

t=1

L(Vt, V̂t) (2)



L(Vt, V̂t) =
∑

x

∑

y

∑

z

γVxyz
t log V̂xyz

t

+ (1− γ)(1− Vxyz
t )(1− log V̂xyz

t )

where Vxyz is the occupancy value of a voxel grid V at posi-

tion (x, y, z). Training a network with only binary cross en-

tropy loss gives temporally inconsistent reconstruction for

the dynamic parts of the human body as shown in Fig. 2. In

order to improve 3D model accuracy and completeness, we

propose a second loss function, temporal consistency loss

(LTC) between reconstructions from multiple video frames.

With the temporal consistency loss, the representation can

learn features robust to temporal changes, self-occlusion

and flickering between frames. 3D voxel occupancy grids

estimated per frame and the temporal correspondences be-

tween vertices are transformed to voxel correspondences as

shown in Fig. 4. The temporal consistency loss is defined in

Equation 3, L2 loss is computed between voxel occupancy

estimates V̂ from one time frame and N − 1 other frames.

LV oxel
TC =

N∑

t=1

N∑

l=1
l 6=t

L̂(V̂t, V̂l) (3)

L̂(V̂t, V̂l) =
∑

x

∑

y

∑

z

‖V̂xyz
t − V̂

P(xyz)
l ‖

2

where P is the transformation operator between 3D point

correspondences.

In order to train Hybrid Implicit 3D Reconstruction Net-

work, we take 3D point samples around the surface of 3D

human models and their occupancy values. To create train-

ing point samples, we sample a number n ∈ N of points

pi ∈ R
3, i ∈ 1, . . . , n by sampling points on the ground-

truth surfaces for every 3D human model, and adding ran-

dom displacements ni ∼ N (0, σ), i.e. ps
i := pi+ni. Then

we compute the ground truth occupancy values of the sam-

pled points, o(ps
i ) ∈ {0, 1}. If ps

i is inside the mesh sur-

face, the corresponding o(ps
i ) = 1 and if not, o(ps

i ) = 0.

We train the geometry prediction network (Equation 1) by

minimizing the average mean squared error:

LHybrid
3D =

1

n

n∑

i=1

‖fgeo(S(Xi),H(I(xi)),D(Xi))− o(Xi)‖2

Both the trained networks are then used to estimate tempo-

rally consistent 3D reconstruction from a monocular video.

The next section describes estimation of temporally consis-

tent texture for each 3D shape estimation.

3.2. Learning Textured 3D Reconstruction

In order to reconstruct complete 3D human models, we

propose a temporally consistent texture prediction network

in addition to geometry reconstruction, i.e. Hybrid Implicit

3D Texture Network (H3DTexN) The proposed method (Fig.

3) predicts the color values for each vertex on the recon-

structed surface from a monocular video. Different from

Figure 4. This figure shows temporal 3D vertex correspondences

between time distant frames from a monocular video to train the

proposed networks: TVRN and H3DTexN (Sec. 3)

the previous approaches [43, 29], H3DTexN learns texture

prediction in a temporally consistent manner using the pro-

posed novel hybrid architecture and loss function.

3.2.1 Learning Architecture

The overall method is illustrated in Fig. 3, which con-

tains N stacked hybrid encoder-decoder networks, where

N is number of input video frames to the H3DTexN net-

work to learn temporally consistent texture. The parameters

are shared between the hybrid encoder-decoder networks.

Each hybrid encoder-decoder takes multiple feature encod-

ings as input and predicts the RGB color of the sampled

3D point using a Multi-Layer-Perceptron (MLP) decoder to

predict color values. During training, as illustrated in Fig.

3, a sampled 3D point (X) is projected on the input image

(x) and pixel-wise image feature is extracted by concatenat-

ing intermediate layer outputs of a modified Resnet network

architecture [21]. We denote the pixel-wise image feature

H(X). The second input to the decoder is point-wise fea-

tures extracted from output of Hybrid Implicit 3D Recon-

struction Network, i.e. point-wise occupancy values. For

a sampled 3D point, we apply multi-scale shape encoding

[9] in the predicted occupancy values within the neighbor-

hood of sampled point using trilinear interpolation. Shape

encoding for a sampled point (X) is denoted as S(X). The

last input to the proposed decoder is the depth value of the

sampled 3D point (X) with respect to the camera, denoted

as D(X). Overall hybrid implicit texture function is fcolor:

fcolor(S(X),H(I(x)),D(X)) = c : c ∈ R
3×1 (4)

The proposed approach learns temporally consistent pre-

diction between different video frames and allows us to use

temporal consistency loss (Sec. 3.2.2). In the overall net-

work, we propose a neural network framework to learn tem-

porally consistent 3D textured human reconstruction from

video. The details of the image encoders and MLP networks

are explained in Sec. 4. In contrast to previous approaches

[17, 43], the hybrid decoder captures the global topology

of the shape with the shape encoding to predict accurate

geometry and texture for 3D reconstruction with minimum

computational cost.



3.2.2 Loss Functions

We train Hybrid Implicit 3D Texture Network (H3DTexN)

by minimizing two loss functions, LHybrid
Color and Ltemporal

Color .

In order to compute LHybrid
Color , we sample a number m ∈ N

of points pi ∈ R
3, i ∈ 1, . . . ,m by sampling points on

the ground-truth surfaces for every human model. Then, we

obtain the color values of the sampled points, c(pi) ∈ R
3.

We train the texture prediction network by minimizing the

average absolute difference error:

LHybrid
Color =

1

n

n∑

i=1

|fcolor(S(Xi),H(I(xi)),D(Xi))− c(Xi)|

(5)

In order to train the texture prediction network in a tem-

porally consistent manner, we use the temporal correspon-

dences of a sampled point, pt
i for t = {1, . . . , N − 1}, and

train the network by minimizing the L2 loss computed be-

tween color estimates, ĉ, from one time frame and N − 1
other frames:

LTemporal
Color =

n∑

i=1

n∑

l=1
l 6=t

‖ĉ(Xi
t)− ĉ(Xi

l)‖2 (6)

ĉ(Xi) = fcolor(S(Xi),H(I(xi)),D(Xi))

The overall loss function, L, is the combined loss func-

tion for geometry and color:

L = f(Lgeo,Lcolor)

Lgeo = h(LV oxel
3D ,LV oxel

TC ,LHybrid
3D )

Lcolor = g(LHybrid
Color ,LTemporal

Color )

Testing the proposed method with a monocular video in-

put is illustrated 2. Each frame from a monocular video

is first passed to TVRN. Then, every sample point inside

the occupancy volume are given as input to H3DN to pre-

dict occupancy values for each sample point. Following

this, mesh surface reconstruction is estimated from the oc-

cupancy volume by applying marching cube algorithm. For

appearance, we predict color values of each reconstructed

3D point by using trained H3DTexN with the inputs: pre-

dicted occupancy volume and a video frame.

4. Experimental Evaluation

This section presents the implementation details and

synthetic dataset generation together with qualitative and

quantitative result on both images and videos of people

with varying pose and clothing. We evaluate the proposed

method on monocular videos randomly chosen from the

datasets. For each video, we give the network video frames

and associated segmentation masks. For a given test video,

the proposed method estimates the temporally consistent

surface shape and texture appearance reconstruction based

on the framework presented in Section 3.

4.1. Datasets

The proposed temporally consistent textured reconstruc-

tion from a monocular video is supervised from ground-

truth 3D human models and temporal vertex correspon-

dences between video frames. Therefore, we generate a

new dataset using similar framework used in the public

domain synthetic human image data generation framework

3DVH[7] (Fig. 7). Since 3DVH is limited to static images of

3D humans, we generate 30-frame-length video sequences

of the 400 human models with large variations in clothing,

hair and pose, which are rendered to 100 camera views per

frame. This dataset is referred to as 3DVH Video and will

be made available for research.

4.2. Implementation Details

The proposed network is trained on the 3DVH Video

dataset, which is split into training, validation and test sets.

In the temporal voxel regression network (TVRN) network

the size of the input image is 512 × 512 × 3 and output

voxel grid resolution is 128 × 128 × 128. In the ground-

truth data the points inside and outside the occupied volume

are assigned to 1 and 0 values, respectively. During train-

ing, batch size is set to 4 and and epochs to 40. With these

settings, the network is trained for 3 days using NVIDIA

TitanX with 12GB memory. TVRN is trained on relatively

low memory GPUs restricting the resolution to 1283; how-

ever, we can achieve a higher resolution, because hybrid

implicit 3D reconstruction module can be trained with 3D

shape features extracted from higher voxel resolutions. The

Adam optimizer is used with learning rate lr = 2.5e − 4
with the decimation of the step-size every 20 epochs.

The hybrid implicit 3D reconstruction (H3DN) network

is trained with the input set of 3D voxels predicted in TVRN

and video frames. During training of this network, 3D

points are sampled around the surface of the 3D ground-

truth model (Sec.3.1.2). To train the network, we use 10000
sample points of inside and outside of 3d ground-truth sur-

face. To extract the point-wise shape features from the

voxel, we use the 3D convolution architecture from IFNET

[9] as it is explained in Sec. 3.1.1. The size of the point-

wise features is [2583 × 1]. For the image encoder, we use

an hourglass network architecture [43] to get pixel-wise fea-

tures of size [256 × 1]. For the last feature encoder, depth

encoder, we normalize the actual depth value of the sam-

ple point with respect to the camera. In order to predict the

occupancy value for the sampled 3D point, concatenation

of these features are passed through a Multi Layer Percep-

tron (MLP) consisting of 5 linear layers of input/output size

[2849, 1024, 512, 256, 128, 1], respectively.

For texture prediction network, we use the image en-

coder adapted from CycleGAN architecture [21] to extract

pixel-wise image features and MLP of 5 linear layers of in-

put/output size [2849, 1024, 512, 256, 128, 3]. Both the net-



Figure 5. Reconstruction results of Deephuman [52], MCNet [7], PIFU [43], PIFUHD [44] and the proposed method and ground-truth 3D

human models.

Figure 6. Textured reconstruction results of PIFU [43] and the pro-

posed method and ground-truth 3D human models.

Figure 7. This figure shows a sample sequence from 3DVH Video

Dataset.

works are trained for 5 days using NVIDIA TitanX with

12GB memory, with 2 batch size and 100 epochs. The RM-

Sprop optimizer is used with learning rate lr = 1e− 3 with

the decimation of the step-size every 60 epoch.

4.3. Evaluation

The proposed method is qualitatively and quantitatively

evaluated against four recent state-of-the-art deep learning-

based methods for single image 3D human reconstruction:

DeepHuman [52], PIFU [43], MCNet [7], PIFUHD [44].

To allow fair comparison, we retrain MCNet, PIFU and

Deephuman with the 3DVH Video dataset using the code

provided by the authors and use the pre-trained network of

PIFUHD (training code unavailable). Qualitative and quan-

titative comparison of the 3D shape obtained using the pro-

posed approach and the state-of-the-art methods is shown in

Fig. 5, 6 and 8, along with the ground-truth. All algorithms

are tested with monocular video input, and Fig. 5 illustrates

the 3D reconstruction results from side views. These results

shows that voxel-based methods, DeepHuman and MCNet,

are able to predict the coarse 3D reconstruction without

cloth and hair details. On the other hand, implicit surface re-

construction methods, PIFU, PIFUHD can reconstruct bet-

ter surface details while errors occur in the overall topology

of the human body for arbitrary poses. For example, Fig. 5

illustrates that PIFU and PIFUHD predict incorrect recon-

structions. Also, previous methods shows temporal incon-

sistency between adjacent reconstructions over time. For

example, the PIFU and PIFUHD methods predict inconsis-

tent 3D reconstructions of clothing, face and hair (Fig. 5).

However, the proposed method using a hybrid volumetric-

implicit representation trained with a loss-function to en-

force temporal consistency results in temporally consistent

reconstructions which correctly predicts both body shape

and surface details from a single monocular video.

Texture prediction results and comparison of the pro-

posed method with PIFU [43] is shown in Fig. 6. Textured

3D reconstruction results are shown for both visible and un-

seen part of the person. PIFU shows limited accuracy for

unseen parts while the proposed method is able to predict

high-quality temporally consistent texture appearance for

the complete surface. In PIFU, the texture prediction net-

work uses image features whereas the proposed method en-



Figure 8. [Top] Per vertex chamfer distance from reconstruction

to ground-truth model is shown. 3D error maps are illustrated for

visible and invisible sides.[Bottom]Comparison of the proposed

method with the state-of-the-art methods for different error met-

rics. CD: Chamfer Distance, 3D IoU: 3D Intersection of Union

For more details, please refer to the text.

codes also the shape features into the hybrid implicit surface

decoder. The proposed methods also addresses the temporal

consistency between frames of the video in Fig. 6.

In addition to the qualitative results, we compute two er-

ror metrics using the ground-truth 3D models to measure the

global accuracy of shape reconstruction: Chamfer Distance

(CD) and 3D Intersection of Union (3D IoU) [18]. Fig. 8

shows the comparison of results with ground-truth through

the error comparison models with the Chamfer distance er-

ror coloured from blue to red as error increases (in centime-

ters). Fig. 8 shows the accuracy of reconstructions and tem-

poral consistency between video frames. The reconstruc-

tion obtained using the proposed approach with temporal

consistency is significantly better than the 3D shapes ob-

tained using all the previous approaches: DeepHuman, MC-

Net, PIFU and PIFUHD. In addition to the improvement in

the accuracy of the reconstruction, the 3D shape estimated

using the proposed method is temporally consistent and the

exploitation of temporal redundancy in the learning frame-

work significantly improves the accuracy and completeness

of the estimated 3D shape.

Real Data Evaluation: We evaluate our method against

state-of-the-art methods, namely DeepHuman [52], PIFU

[43], MCNet [7], PIFUHD [44] on the publicly available

TV Presenter [1] dataset, which consists of multiple cam-

era captures of dynamic real humans in a controlled indoor

studio. The state-of-the-art methods in figure 9 train their

models using real datasets: specifically, DeepHuman [52] is

trained on THuman dataset, and PIFu [43] and PIFuHD [44]

use the RenderPeople dataset of real human captures. Com-

pared to these methods, the proposed network is trained on

the synthetic 3DVH dataset.

In figure 9, while DeepHuman [52] can recover the

coarse shape of human body, the coarse-to-fine approach

fails in DeepHuman [52] as limbs are missing. Although,

PIFu [43] and PIFuHD [44] can recover the surface details,

they reconstruct legs in wrong position. For textured 3D

reconstruction, while PIFu [43] performs reasonable on the

visible parts, it fails on unseen part of the human body. Un-

like the others, our method is able to recover clothed 3D

human body and predict the textured on both visible and

unseen parts.

Figure 9. Qualitative results on real image from TV presenter

dataset [1].

Limitations: Although the proposed method demonstrates

significant improvement in the reconstruction quality over

state-of-the-art methods, it suffers from the same limitations

as previous methods. The approach assumes complete vis-

ibility of the person in the scene and can not handle partial

occlusions with objects, as with previous approaches the

method also requires silhouettes of the person along with

the monocular video for 3D reconstruction.

5. Conclusion and Future Work

This paper introduces a novel method for temporally

consistent textured 3D human reconstruction from a monoc-

ular video. The approach is trained with a temporal con-

sistency loss and uses a hybrid volumetric-implicit decoder

to learn both overall body shape and surface detail. A

novel synthetic 3DVH Video dataset for training is intro-

duced comprising realistic video of 400 people with a wide

variation in clothing, hair, body shape, pose and viewpoint.

The proposed method demonstrates significant improve-

ment in the reconstruction accuracy, completeness and tem-

poral consistency and improving over state-of-the-art single

image methods. Temporal consistency loss together with

hybrid implicit decoder are demonstrated to significantly

improve the geometry and appearance reconstruction and

achieve reliable texture reconstruction of human shape from

a monocular video. Future work will exploit self-supervised

learning approach for temporally consistent 3D textured hu-

man reconstruction from in-the-wild video.
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