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Abstract

A common problem in the 4D reconstruction of people

from multi-view video is the quality of the captured dynamic

texture appearance which depends on both the camera res-

olution and capture volume. Typically the requirement to

frame cameras to capture the volume of a dynamic per-

formance (> 50m3) results in the person occupying only a

small proportion < 10% of the field of view. Even with ul-

tra high-definition 4k video acquisition this results in sam-

pling the person at less-than standard definition 0.5k video

resolution resulting in low-quality rendering. In this pa-

per we propose a solution to this problem through super-

resolution appearance transfer from a static high-resolution

appearance capture rig using digital stills cameras (>
8k) to capture the person in a small volume (< 8m3). A

pipeline is proposed for super-resolution appearance trans-

fer from high-resolution static capture to dynamic video

performance capture to produce super-resolution dynamic

textures. This addresses two key problems: colour map-

ping between different camera systems; and dynamic tex-

ture map super-resolution using a learnt model. Compar-

ative evaluation demonstrates a significant qualitative and

quantitative improvement in rendering the 4D performance

capture with super-resolution dynamic texture appearance.

The proposed approach reproduces the high-resolution de-

tail of the static capture whilst maintaining the appearance

dynamics of the captured video.

1. Introduction

The increasing popularity of VR/AR technologies has

driven a rise in the demand for 4D modelling techniques that

accurately reconstruct human performances. Video-based

capture systems have been developed recently to replace

marker-based motion capture enabling the reconstruction of

the detailed surface dynamics for complex non-rigid shapes

such as people. These systems consist of a set of cameras

that capture a scene from multiple viewpoints [12,14,47]. A

4D reconstruction of the performance of the captured scene

Figure 1: Overview of the SR transfer pipeline: a) Low-resolution

capture frame; b) High-resolution image; c) SR result.

can then be retrieved by applying stereo matching and fea-

ture tracking approaches. This reconstruction is a sequence

of 3D geometric objects of the performer, each with its own

pose and texture appearance. Unless the acquisition sys-

tem has a large number of cameras [12,20,28,40,49] or the

overall volume to capture is limited, the surface texture res-

olution resolution is limited [24]. In general, the resolution

of the captured models decreases proportionally to the in-

creasing of the capture volume size. Moreover, the colours

of the appearance are significantly influenced by the light-

ing of the capture space, which can deteriorate the appear-

ance if the illumination is not thoroughly controlled.

Whilst 4D reconstruction systems still face a number of lim-

itations, there are alternative methods that accurately pro-

vide a static 3D shape reconstruction from multiple high-

resolution DSLR camera images in a limited capture vol-

ume giving higher detail reconstruction of surface shape and

appearance [7, 8, 30, 53]. The resolution of shape detail re-

construction is dependent on the image resolution and the

3D reconstruction systems use high-resolution (HR) cam-

eras that can acquire higher resolution images of the subject.

The quality of the reconstruction is highly influenced by the

capture volume, which is usually much smaller for 3D re-

construction since the scene to capture is static. The colour

response of the acquisition cameras depends on the capture

environment, which is designed considering the objective of

the capture. The system settings of the two reconstructions

differ due to their dissimilar objectives, producing differ-

ent colour responses that cause brighter colours in the static

reconstruction. These factors lead to higher quality appear-

ance of the reconstructed model in a static capture.

In this paper we introduce Super-Resolution Appearance

Transfer (SRAT) from a human subject acquired with DSLR

cameras in a small capture volume to dynamic video perfor-



mance capture of the same subject acquired with a sparse

set of cameras in a larger capture volume. The objective of

SRAT is to enhance the appearance of the 4D reconstruc-

tion of a human performance captured in a large volume by

exploiting HR images of the same subject acquired with the

DSLR cameras. More specifically, the approach improves

the colour contrast of the appearance of the 4D reconstruc-

tion with a novel colour mapping approach and enhances

its fine details by increasing the resolution of the texture

maps through a Single-Image Super-Resolution (SISR) net-

work. Figure 1 shows how, from the input low-resolution

(LR) capture video (Figure 1a), the final appearance of the

3D model (Figure 1c) is obtained with appearance detail

similar to the HR capture (Figure 1b). The contributions

presented in this paper are:

• A novel pipeline for super-resolution appearance trans-

fer to enhance the appearance of LR dynamic perfor-

mances of people from HR images of the same subjects

acquired with static DSLR cameras in a small volume.

• A new automatic approach for colour mapping be-

tween images acquired with different systems: after

the selection of optimal image couples, the colours of

the video frames are corrected with an extension of the

colour transfer algorithm [19] to multi-view images.

2. Related Works

Colour transfer: colour transfer aims to modify the

colours of a target image taking as reference the colours

of another image. For some frameworks, there must be

pixel correspondences between target and reference im-

ages. Examples of these are classic computer vision meth-

ods [17, 25, 39, 41] and deep learning approaches such as

image-to-image translation networks [26, 51]. Due to the

necessity of pixel correspondences, these methods cannot

be applied in our case. Early techniques that do not require

pixel correspondences define a parametric affine transfer

function through statistical moments of colour distributions.

These can model only certain types of distributions [42,45].

Methodologies that use Optimal Transport (OT) framework

were then studied but they either introduce grainy artefacts

in the gradient of the corrected image [16, 18, 44] or do not

modify the image’s luminance channel [9,43]. Recent tech-

niques model the colour distribution as Gaussian Mixture

models to define correspondences between Gaussian com-

ponents of the target and reference distributions [19,27,52].

The colour transfer function is learned from a single target-

reference image pair, failing in learning a complete map for

all the colours of a 3D surface. Unsupervised cycle-in-cycle

neural networks are used to enhance the colours of images

as well [10, 22, 64]. The lack of a consistent amount of

training data deteriorates their performances. This paper

proposes a colour transfer algorithm that exploits the whole

surface of a human model to learn the transfer function from

multiple target and reference images without the need of

pixel correspondences between them.

Single-image super-resolution: image super-resolution

(SR) is an image processing techniques that aims to estimate

a perceptually plausible HR image from a LR input image

[54]. Recently, deep neural networks have shown their su-

perior performance on the SISR task. Dong et al. [15] intro-

duced the use of a convolutional neural network (CNN) to

super-resolve an image for the first time. Two main topolo-

gies of network architecture were then applied for SR: resid-

ual networks [4, 13, 21, 36, 37, 38, 60] and generative ad-

versarial networks [11, 32, 33, 48, 50]. While the former

achieve higher values of peak signal-to-noise ratio (PSNR)

and structural similarity index (SSIM) with blurrier outputs,

the second have lower figures of the mentioned metrics and

unrealistic details in the SR images. Reference-based super-

resolution (RefSR) is an alternative method that transfers

HR textures from a given reference image to super-resolve

the LR input [34]. CrossNet [62] uses optical flow to align

input and reference. To be efficient, the reference and the

LR images must have similar content and similar viewpoint.

Other approaches [61], [55] apply a “patch-match” mecha-

nism to swap the most similar features of the reference and

the LR image. Even though they perform better when the

similarity between reference and input image is low, they

still introduce unpleasant artefacts. The patch-match mech-

anism consumes significant amount of GPU memory, mak-

ing the usage of HR reference images impracticable.

To the best of our knowledge, there are only two deep learn-

ing works that aim to super-resolve 3D texture maps of ob-

jects. Li et al. [35] modified the architecture of EDSR [37]

to exploit the information of both texture maps and nor-

mal maps of objects. Richard et al. [46] combined a

redundancy-based part with a prior-based part in a network

to create new texture maps. The first method requires the

creation of normal maps, a process that introduces heavy

computational cost for a high number of frames. The sec-

ond approach is mainly oriented in the creation of texture

maps. Following these two methods, we use a residual neu-

ral network in SRAT that, differently from 2D SISR net-

works, is trained with datasets of texture maps of people.

3. Methodology

SRAT aims to improve the appearance of LR capture video

of human performance acquired with a sparse multi cam-

era system by leveraging a collection of HR images of the

same subject. The sparse multi camera system allows dy-

namic capture of human performance that covers a large

volume at the cost of reduced resolution on the subject. In

contrast, the static HR images are captured using an array

of DSLR cameras resulting in increased resolution on the

subject including fine details in the hair, skin and clothing.



Figure 2: SRAT pipeline: LR capture frames and HR images are the input. After background removal, couple between the most similar

frames and HR images are created. The colours of the frames are corrected. Their texture maps are retrieved and finally super-resolved.

To globally improve the appearance of the performance, we

first tackle the problem that these systems will have a dif-

ferent capture settings and colour response by automatically

learning a colour transfer function between the two systems

(Section 3.2). The fine details of the dynamic LR texture

maps are then enhanced by leveraging a learnt SR model

and thus, the appearance is locally improved (Section 3.3).

3.1. Overview

The input data of the proposed approach are:

• LR capture video with NLR camera. This consists of:

RGB image set of a subject {{Ii
LRl

(t)}NF

l=1}
NLR
i=1 ; NF 3D

meshes (one for every frame); NF texture maps;

• HR image set of the same subject captured with a rig

of NHR DSLR cameras {I
j

HR}
NHR
j=1

Without loss of generality, ILR is a time instant of ILR(t).
SRAT consists of 4 stages shown in Figure 2 and outlined

below.

Background elimination: to ensure an accurate result of

the colour mapping, the background of the frames and HR

images must be removed. For the former, we use silhouettes

computed via Chroma keying while for the latter the alpha

matting method proposed by Hu and Clark [23] is applied.

Colour mapping: the second stage of the pipeline is a

novel approach to map the colour features between images

acquired with different systems. It consists of two steps.

(i) Couple identification: each ILR is paired with one IHR to

create couple of similar images by performing the similarity

evaluation among partial texture maps. (ii) Colour transfer:

a colour transfer function is learned from the multiple cou-

ples of the previous step to correct the colours of all ILR.

Texture map retrieval: texture maps are retrieved by

projecting the new corrected frames to the corresponding

meshes reconstructed in a pre-processing step.

Texture map SR: the details of the texture maps are en-

hanced by super resolving them with an RCAN-style net-

work [60] trained with human texture maps.

We make 3 important assumptions that affect the design of

the pipeline and its evaluation: (i) geometric properties of

the HR static model are not exploited to avoid estimation

of geometric surface correspondence between the LR and

HR reconstructions; (ii) the color response of the cameras

within each capture system is the same; (iii) in the selection

of a subset of n < NLR cameras for evaluation we assume

evenly spaced cameras to maximise coverage of the subject.

3.2. Colour mapping of frame images

The camera responses of the two capture systems differ due

to their environment settings that are defined based on the

specific purposes of the captures. The contrast range of the

DSLR cameras allows to acquire HR images with brighter

colours and higher resolution. To obtain the same contrast

in the LR capture video, the colours of the HR images are

mapped to its frames with a novel approach that comprises

2 steps: pairs between the most similar images of the two

systems are created according to surface visibility and view-

ing angle pairs (couples identification); colours of the LR

capture frames are corrected with a colour transfer function

estimated from multi-view images (colour transfer).

Couples identification: the algorithm that learns the

colour transfer function to correct the colours of the frame

images, requires a pair of target and reference images as

input. In our case, the target images are the LR capture

frames while the reference images are the HR images. Since

a colour palette is defined from the reference images, the

algorithm performs better if the content of ILR is similar to

the content of IHR. If for instance, a reference image that

shows the back of the person has been paired with a target

frame representing the front part of the subject, the algo-



rithm may fail to transfer the colour of the face because it

is not learned from the visible colour palette (Section 4.2).

In the two systems, the camera settings are different, result-

ing in different representations of the same model. Creating

the pairs by directly comparing the original images is in-

effective and thus, we operate in the texture map domain.

We propose a new automatic method to identify the couples

between images of different systems. Since no geometric

information of the HR model is available, we reconstruct

partial texture maps of the frames {{T (Ii
LRl

)}NF

l=1}
NLR
i=1 and

of the HR images {T (I j
HR)}

NHR
j=1 by applying Densepose [6]

and unwrapping the resulting UV maps. These partial tex-

ture maps are invariant to the camera orientation and po-

sition allowing a comparison between the two systems in a

common domain. We evaluate the similarity between all the

T (Ii
LRl

) and T (I j
HR) with the SSIM metric [63]. Each ILR is

coupled with one IHR whose partial texture map is the most

similar defined by the SSIM metric as shown in Equation 1:

Ii
LRl

↔ I
j

HR where argmax

I
j
HR

{SSIM(T (Ii
LRl

),T (I j
HR))} (1)

where Ii
LRl

is the lth frame of the ith camera and I
j

HR is the

HR image of the jth camera.

Colour transfer: the idea of the colour transfer algo-

rithm applied is based on [19]. In their work, the parame-

ters of the colour transfer function are learned from a single

pair of target and reference images. In our case, the function

must learn a map from all the colours of the static acquisi-

tion to the colours of ILR: all the view-angles of the human

model must be seen during the learning stage. We therefore

extend the cited work [19] to more than two images as in-

puts. We model the colour transfer function φθ (x) as a Thin

Plate Splines function that depends on a set of parameters

θ . This set is computed by minimising the following novel

energy function with gradient descent algorithm:

θ =
1

N

N

∑
l=1

argmin
θl

{||p f ||
2 −2 < p f |pI >} (2)

where N is the number of input couples, p f is the distri-

bution of ILR with parameterised mean φθ (µ f ) and pI is

the distribution of IHR. Equation 2 is further explained in

the supplementary material. For each selected input couple,

a set of parameters is computed by minimising the energy

function. The parameters of φθ (x) are obtained averaging

these sets and used to correct the colours of all the frames.

3.3. Texture map superresolution

After having retrieved the texture maps from the corrected

frames, we treat them as 2D RGB images and we give them

as input to the RCAN-style network [60]. The residual-

in-residual RCAN network super-resolves the obtained tex-

ture maps through a channel attention mechanism that adap-

tively rescale each channel-wise feature by modelling the

interdependencies across feature channels. In its original

work, RCAN was trained augmenting 800 RGB images

from DIV2K dataset [3]. Since we aim to super-resolve

texture maps of a specific model, we first pre-train RCAN

with a set of patches of human texture maps [2]. We then

fine-tune it with the NF original texture maps of the input

model. Further details of its training are presented in the

supplementary material. We finally assign the SR texture

maps to the correspondent reconstructed meshes to obtain

the enhanced 4D reconstruction of the performance.

4. Results evaluation

We capture two subjects, one male (SingleM) and one fe-

male (SingleF), using both LR capture video acquired with

NLR = 16 cameras for NF = 440,470 frames respectively

and a subset of NHR = 64 DSLR cameras. We evaluate

the proposed approach on the 4D performances of the mod-

els reconstructed with the method proposed by Starck and

Hilton [47], applied in the pre-processing step to retrieve

the input data. Additional visual results and evaluations are

presented in the supplementary material.

4.1. Couples identification

The first study was conducted on the first part of the colour

mapping stage. We evaluate the effect of using different

similarity metrics to pair the partial texture maps of the two

acquisition systems. We compute the similarity with the

following metrics: SSIM [63], PSNR, feature based similar-

ity index (FSIM [58]), spectral angle mapper (SAM [57]),

signal to reconstruction error ratio (SRE [31]), root mean

square error (RMSE). Figure 3 shows the partial texture

maps of the HR images associated with the partial texture

map of the LR capture frames and the correspondent orig-

inal images for each of the studied metrics. In the case

of SingleF, most of the metrics create a pair with two im-

ages where the pose of the subject is significantly different.

SSIM associates the most similar HR image to the input

frame. The orientation of SingleM in the HR images paired

with other metrics do not match the one in the input frame.

In these HR images, the nose of the subject is hardly visible

oppositely from the HR image paired with SSIM.

4.2. Colour transfer input couples selection

We analyse the effect of using different numbers of input

couples in the colour transfer step. We expect the algorithm

to perform better if a complete coverage of the surface is ex-

ploited in the learning of the colour transfer function. The

effect of having 1, 2, 4, 8, 12 and 16 couples as input is

evaluated. The NLR cameras are equally distributed in a stu-

dio, with 4 cameras on each side of a square surrounding

the acquisition space. In the case of 12 couples, 3 cam-

eras from each side are selected; in the case of 8, 2 cameras

each side; in the case of 4, just 1 camera each side. With



Input frame DSLR SSIM [63] DSLR PSNR DSLR FSIM [58] DSLR SAM [57] DSLR SRE [31] DSLR RMSE

Figure 3: The first column shows the partial texture map and the LR capture frame for SingleF (first two rows) and SingleM (last two rows).

The images and partial texture maps of the other columns are acquired with the DLSR system and paired with different similarity metrics.
Original 1 2 4 8 12 16

Figure 4: Colour transfer with different numbers of input couples. In the top row SingleF model, in the bottom SingleM.

Input couples
SingleF SingleM

JS ↓ χ2 ↓ JS ↓ χ2 ↓
1 0.5452 18.8659 0.4759 21.5098

2 0.5439 14.7575 0.4691 18.3891

4 0.5435 14.9826 0.4649 22.1790

8 0.5423 13.5905 0.4609 18.0991

12 0.5321 12.9507 0.4542 15.5898

16 0.5443 14.0894 0.4624 21.3688

Table 1: JS and χ2 values for different numbers of input couples.

↓ indicates lower value is better.

less input couples (1 and 2), there is a lower surface cov-

erage and the model is not completely captured. As quan-

titative evaluation, the dissimilarity between a specific cor-

rected frame and its paired HR image is computed consid-

ering their colour histograms since the pixel-based metrics

are not effective due to the different nature of the frame and

the HR image. We compute the Jensen-Shannon (JS) diver-

gence and the Chi-Squared (χ2) distance between the nor-

malized colour histograms of all the corrected frames and of

the correspondent HR images. Even though these two met-

rics have been revealed to be the most efficient [59], they

present some drawbacks. JS focuses only on the statisti-

cal distribution of the images while χ2 only accounts for

the difference between the corresponding bins and is hence

sensitive to distortions and quantization [56]. The average

of the distances for every corrected couple is presented in

Table 1. Generally, the JS divergence decreases when the

number of couples increases for both the datasets (except

for the case with 16 couples). The χ2 distance follows the

same pattern except for the 4 couple case because of pos-

sible distortions of the corrected frames. As expected, the

worst results are given by the 1 couple case. As shown in

Figure 4, if 1 couple is the input, the face of the models

have unnatural colours. The algorithm did not learn how

to transfer the face colour as it was not seen in the input

images during learning. For the same reason, the outputs

of the 2 couple case seem blurry. Even though the lowest

figures are given by having 12 couples as input, the results

produced with 8 couples are quantitatively and qualitatively

satisfactory and we use them throughout the presented re-

sults balancing visual quality with computational complex-

ity of SRAT.



(a) Output model (b) Original LR

(c) Corrected LR (d) 2x SR

Figure 5: Detail of SingleM model rendered with the original (b),

the corrected (c) and the super-resolved (d) texture map.

Models Scale
SingleF SingleM

PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
1a 2x 48.53 0.9910 50.31 0.9935

1b 2x 48.64 0.9912 50.45 0.9937

1c 2x 48.60 0.9910 50.41 0.9937

2a 2x 47.68 0.9892 48.91 0.9914

2b 2x 47.70 0.9893 48.94 0.9915

2c 2x 47.77 0.9895 40.01 0.9916

3a 2x 47.74 0.9893 48.92 0.9915

3b 2x 47.85 0.9895 49.22 0.9918

3c 2x 28.68 0.8737 49.33 0.0019

Table 2: PSNR and SSIM results of different training configura-

tions of RCAN. ↑ indicates higher value is better.

4.3. Training models

We analyse the effect of using different trained models for

RCAN. We train the network with three datasets:

1. Original texture maps of the LR input model.

2. Original HR images of the model acquired with the

DSLR system.

3. Same as 2 but with a removal of the background.

and in three configurations:

(a) RCAN is trained with only our datasets.

(b) RCAN is trained with a dataset made of texture maps

of 7 human models [2] cropped into patches and fine-

tuned with our datasets.

(c) RCAN is trained with the DIV2K dataset as in the orig-

inal paper and fine-tuned with our datasets.

The texture maps retrieved in the 3rd stage with the methods

proposed by Allene et al. [5] are bicubic downscaled (2×)

and then super-resolved with the different trained models of

RCAN. PSNR and SSIM values are computed between SR

and HR texture maps and presented in Table 2. For both Sin-

gleM and SingleF, the 1b model achieves the highest values.

Visual results are presented in the supplementary material.

Figure 5 shows a detail of SingleM model with the corrected

SR texture map. Compared to the original model, the button

looks sharper and less blurry, showing the efficiency of SR

application to enhance fine details of the appearance.

4.4. Configuration of pipeline

Another evaluation is performed by changing the order of

the stages in SRAT. The first stage and the first step of the

second stage are not modified. The configurations are:

1. (i) Texture map retrieval; (ii) Texture map colour trans-

fer; (iii) Texture map SR.

2. (i) Texture map retrieval; (ii) Texture map SR; (iii)

Texture map colour transfer.

3. (i) Input frames colour transfer; (ii) Corrected frames

SR; (iii) Texture map retrieval.

4. (i) Input frames SR; (ii) Input frames colour transfer;

(iii) Texture map retrieval.

5. (i) Input frames SR; (ii) Texture map retrieval; (iii)

Texture map colour transfer.

We apply the output texture maps to the 3D models and

only a qualitative evaluation is performed due to the lack of

a ground-truth. Figure 6 shows SingleF and SingleM mod-

els for each configuration. Compared to the original model,

the appearance is improved, with brighter colours and more

visible details. If the colour transfer is done after the texture

map retrieval (configurations 1 and 2), the dress presents

artefacts (3rd and 6th rows). If the SR stage is applied be-

fore the texture map retrieval (configurations 3, 4 and 5),

noise is introduced as seen on the face (2nd and 5th rows).

Performance evaluation: the SR stage requires more

time (∼ 128s/197s per texture map/frame) than the colour

transfer for LR images (∼ 8s/14s) and for SR images (∼
35s/56s). The 1st configuration is the fastest and least

computationally expensive: the colour transfer and the SR

stages are applied to the texture maps, which are less in

number than the frames. The slowest and the most com-

putationally expensive configuration is the 4th one because

the two stages are applied to the input frame (16 images of

the video cameras for every frame).

4.5. Comparison with related works

We compare the colour transfer algorithm and the SR net-

work used in SRAT with related works.

Colour transfer approaches: the JS and χ2 values of

5 colour transfer frameworks are shown in Table 3. Fin-

layson [17] and Vander [29] require pixel correspondences.

Pitie [42] introduces a parametric colour transfer function

and CycleGan [64] is an unsupervised deep learning tech-

nique trained with our frames and HR images. The last

method is the framework TPS [19] without any modifica-

tions. As shown in Figure 7, Vander, Finlayson and Cy-

cleGan cannot transfer the colours from the HR image to



Original SRAT(ours) Configuration1 Configuration2 Configuration3 Configuration4 Configuration5

Figure 6: Visual results of different configurations of SRAT for SingleF (top) and SingleM (bottom) models.
Original SRAT(ours) Vander [29] Finlayson [17] Pitie [42] CycleGAN [64] T PS [19]

Figure 7: Outputs of different colour transfer approaches. In the top row SingleF model, in the bottom SingleM.

Methods
SingleF SingleM

JS ↓ χ2 ↓ JS ↓ χ2 ↓
Vander [29] 0.8323 1.90568 0.8142 48.6026

Finlayson [17] 0.7949 50.4117 0.6375 121.647

Pitie [42] 0.7886 38.9494 0.7445 88.2087

CycleGan [64] 0.5776 584.419 0.6158 336.151

T PS [19] 0.5029 120.177 0.4479 191.874

SRAT(ours) 0.5435 13.5905 0.4609 18.0991

Table 3: JS and χ2 values for different colour transfer algorithms.

the frames while Pitie outputs are too bright. If TPS is

applied, a different function for every frame of each cam-

era is learned. Therefore, the corrected frames of the same

scene and the ones of two consecutive frames have different

colours. W.r.t. the quantitative analysis, the JS divergence

is the lowest when TPS is applied. TPS learns the colour

transfer function by modelling the statistical distributions

of the input images. The JS divergence focuses on the dif-

ference between statistical distributions and it is lower if

these distributions are learned for every frame and not only

for 8 selected couples as in our case. The χ2 of TPS is the

second highest. Its lowest figure is obtained when Vander

is applied for SingleF and ours for SingleM. Vander colour

transfer produces wrong outputs and the low χ2 value is in-

fluenced by its sensitiveness to image distortion.

SR approaches: the top part of Table 4 shows quan-

titative comparisons for 2× SR with a classic computer

vision approach (Bicubic) and 7 deep learning meth-

ods: DBPN [21], SRFBN [36], CSNLN [38], NLR and



Corrected GT patch SRAT(ours) RCAN [60] RCANtext CSNLN [38]

Figure 8: Visual comparison of 2× SR networks. At the bottom, heatmaps of the above SingleF texture map portion.

Methods
SingleF SingleM

PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

S
IS

R
2
×

Bicubic 45.96 0.9807 47.39 0.9885

DBPN [21] 20.91 0.3000 19.73 0.1188

SRFBN [36] 17.12 0.7583 17.67 0.7381

CSNLN [38] 48.12 0.9900 49.36 0.9920

NLR [35] 44.95 0.9856 46.73 0.9888

NHR [35] 34.81 0.9788 42.48 0.9862

RCAN [60] 48.14 0.9900 49.35 0.9919

RCANtext 47.51 0.9886 48.50 0.9904

SRAT(ours) 48.64 0.9912 50.45 0.9937

R
ef

S
R

4
× CrossNet [62] 37.16 0.9155 38.96 0.9438

TTSR [55] 41.29 0.9427 43.00 0.9648

TTSR-l2 42.86 0.9622 44.75 0.9759

SRNTT [61] 42.92 0.9542 43.86 0.9677

SRNTT-l2 44.11 0.9626 45.26 0.9760

SRAT(4×) 44.42 0.9636 45.57 0.9770

Table 4: Quantitative results of different SR approaches.

NHR [35], RCAN [60] and RCANtext. For testing with

NLR and NHR, the normal maps were retrieved with

Blender2.8 [1]. RCAN is the original version and RCAN-

text is RCAN trained with the human texture map dataset

but not fine-tuned with the original texture maps as done

in SRAT, which outperforms all the tested methods for

both the datasets. The four best network outputs and the

heatmaps of the difference with the ground-truth are shown

in Figure 8: SRAT heatmap presents more blue pixels con-

firming its superiority. We then compare SRAT with 3 state-

of-the-art RefSR methods (4× super-resolution). Since no

training dataset of texture maps with relative references has

been available online, we train Cross-net [62], TTSR [55]

and SRNTT [61] with CUFED5 [61] dataset as done in their

papers. During inference, we select a HR image for each

model as reference and we downscale it (6×) for the prob-

lem of GPU memory consumption. For the same reason,

the LR texture maps are cropped into patches (64x64 size).

We train SRNTT and TTSR with only the reconstruction

loss (indicated with the suffix l2) for a fair comparison with

SRAT. In the bottom part of Table 4, the PSNR and SSIM

figures confirm the superiority of SRAT to RefSR methods.

4.6. More complex scenarios

Interaction scenario: we apply SRAT to an interaction

scene where SingleF and SingleM perform at the same time.

A colour transfer function is learned for each model using

the same couples of SRAT as input. The colours of the

frames are then corrected by applying the two functions to

(a) Interaction: original (b) Interaction: SRAT

(c) Unseen pose: SingleF (d) Unseen pose: SingleM

Figure 9: Complex scenarios with multiple performers captured

simultaneously (a,b) and unseen poses (c,d)

their correspondent models selected with a mask. For each

model, its texture maps are retrieved for each frame and

super-resolved with the two fine-tuned SR networks.

Unseen Poses: the proposed pipeline aims to enhance

the appearance of a human perfomance. Therefore, it has to

handle multiple poses of the performers. SRAT is effective

also when it is applied to frames that were not used to learn

either the colour transfer function or the SR model.

Figure 9 shows the results of these complex scenarios.

5. Conclusion

This paper proposes a novel pipeline to enhance the dy-

namic appearance of low-resolution capture video of human

performance using a collection of static high-resolution im-

ages of the same subject. The pipeline enables multi-view

performance capture systems to increase the capture vol-

ume without sacrificing the output reconstruction quality.

A novel automatic colour mapping improves the global ap-

pearance by correcting the colours of LR capture frames

while fine-scale surface details are transferred by an RCAN-

style network from the high-resolution images to the super-

resolved texture maps. A limitation of the proposed pipeline

is that it does not enforce any temporal coherence between

the super-resolved texture maps of consecutive frames. This

as well as geometric detail transfer between the models of

the two systems will be investigated as future works.
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François Aujol. Regularized discrete optimal transport.

SIAM Journal on Imaging Sciences, 7(3):1853–1882, 2014.

[17] Graham D Finlayson, Michal Mackiewicz, and Anya Hurl-

bert. Color correction using root-polynomial regression.

IEEE Transactions on Image Processing, 24(5):1460–1470,

2015.

[18] Daniel Freedman and Pavel Kisilev. Object-to-object color

transfer: Optimal flows and smsp transformations. In 2010

IEEE Computer Society Conference on Computer Vision and

Pattern Recognition, pages 287–294. IEEE, 2010.

[19] Mairead Grogan and Rozenn Dahyot. L2 divergence for ro-

bust colour transfer. Computer Vision and Image Under-

standing, 181:39–49, 2019.

[20] Kaiwen Guo, Peter Lincoln, Philip Davidson, Jay Busch,

Xueming Yu, Matt Whalen, Geoff Harvey, Sergio Orts-

Escolano, Rohit Pandey, Jason Dourgarian, et al. The re-

lightables: Volumetric performance capture of humans with

realistic relighting. ACM Transactions on Graphics (TOG),

38(6):1–19, 2019.

[21] Muhammad Haris, Gregory Shakhnarovich, and Norimichi

Ukita. Deep back-projection networks for super-resolution.

In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 1664–1673, 2018.

[22] Mingming He, Dongdong Chen, Jing Liao, Pedro V Sander,

and Lu Yuan. Deep exemplar-based colorization. ACM

Transactions on Graphics (TOG), 37(4):1–16, 2018.

[23] Guanqing Hu and James Clark. Instance segmentation based

semantic matting for compositing applications. In 2019 16th

Conference on Computer and Robot Vision (CRV), pages

135–142. IEEE, 2019.

[24] Zeng Huang, Tianye Li, Weikai Chen, Yajie Zhao, Jun Xing,

Chloe LeGendre, Linjie Luo, Chongyang Ma, and Hao Li.

Deep volumetric video from very sparse multi-view perfor-

mance capture. In Proceedings of the European Conference

on Computer Vision (ECCV), pages 336–354, 2018.

[25] Youngbae Hwang, Joon-Young Lee, In So Kweon, and Seon

Joo Kim. Color transfer using probabilistic moving least

squares. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 3342–3349, 2014.

[26] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A

Efros. Image-to-image translation with conditional adver-

sarial networks. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 1125–1134,

2017.

[27] Kideog Jeong and Christopher Jaynes. Object matching in

disjoint cameras using a color transfer approach. Machine

Vision and Applications, 19(5-6):443–455, 2008.

[28] Hanbyul Joo, Hao Liu, Lei Tan, Lin Gui, Bart Nabbe,

Iain Matthews, Takeo Kanade, Shohei Nobuhara, and Yaser

Sheikh. Panoptic studio: A massively multiview system for

social motion capture. In Proceedings of the IEEE Inter-

national Conference on Computer Vision, pages 3334–3342,

2015.



[29] Allen Klinger. The vandermonde matrix. The American

Mathematical Monthly, 74(5):571–574, 1967.

[30] Zorah Lahner, Daniel Cremers, and Tony Tung. Deepwrin-

kles: Accurate and realistic clothing modeling. In Pro-

ceedings of the European Conference on Computer Vision

(ECCV), pages 667–684, 2018.
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