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(a) Video Capture (b) Video of Repeated Action (c) Reconstruction Results

Figure 1: We derive a novel method for reconstructing a clothed human body shape that is consistent across frames from videos capturing

a repeatable action from a few viewpoints (a,b). We show the use of reconstructed human body shape for free-viewpoint rendering (c).

Abstract

We introduce a novel method for reconstructing the 3D

human body from a video of a person in action. Our method

recovers a single clothed body model that can explain all

frames in the input. Our method builds on two key ideas:

exploit the repeatability of human action and use the hu-

man body for camera calibration and anchoring. The input

is a set of image sequences captured with a single cam-

era at different viewpoints but of different instances of a

repeatable action (e.g., batting). Detected 2D joints are

used to calibrate the videos in space and time. The sparse

viewpoints of the input videos are significantly increased by

bone-anchored transformations into rest-pose. These vir-

tually expanded calibrated camera views let us reconstruct

surface points and free-form deform a mesh model to extract

the frame-consistent personalized clothed body surface. In

other words, we show how a casually taken video sequence

can be converted into a calibrated dense multiview image

set from which the 3D clothed body surface can be geomet-

rically measured. We introduce two new datasets to validate

the effectiveness of our method quantitatively and qualita-

tively and demonstrate free-viewpoint video playback.

1. Introduction

Image-based 3D human body reconstruction has a wide

variety of applications. For instance, it can enable person-

alization of avatars and product designs, health and fitness

monitoring, and visual media content creation such as free-

viewpoint replay. Deep methods, in particular, have demon-

strated remarkable progress by harnessing the power of

learned priors of the human body structure both in its shape

and articulation. Recent works (e.g., [43]) have shown that

detailed clothed body shape including its unseen side can be

recovered from a single image.

Recovering a person in action from a video is, however,

not as trivial as applying these single-image methods to

each frame as it would result in frame-varying, inconsistent

reconstructions. This shape consistency, i.e., that we ob-

tain a single shape that explains pose-varying body shapes

in all frames, is critical for video-based 3D human shape re-

construction. Without such a consistent 3D human model,

modified geometry (e.g., pose) in one frame will not match

that in another frame let alone what the person would actu-

ally look like.

Consistent 3D human body shape reconstruction from

video is, however, challenging, as it fundamentally requires

simultaneous reconstruction of shape and action. These



two need to be decoupled such that we arrive at a single

3D shape model that explains all articulations of it in all

frames of the video. Kanazawa et al. [24] take a princi-

pled step in this direction by using a statistical shape model

(SMPL [31]) and an adversarial posed-body loss to tame

the wide variability of human body shape and articulation

with learned priors. The results are convincing, but the re-

covered human bodies are inherently naked. Recovering

clothed human body shape with the same approach, how-

ever, is nontrivial as it would entail learning a statistical hu-

man clothed body model whose variation would unlikely

have strong enough structural regularities for even a com-

plex deep network to learn.

In this paper, we tackle the challenging problem of re-

covering a consistent 3D clothed human body model from

a casually taken video of a person in action. We ask, in-

stead of learning structural variations that seems infeasible

for clothed shapes, can we actually “measure” the clothed

body shape? Just from a short video of a person in tempo-

rally changing poses, can we recover one detailed clothed

surface of the person such that it can be posed into every

frame?

We realize this by exploiting the repeatability of actions.

Many actions are repeatable. For instance, sports actions

such as golf swings and baseball pitching can be repeated

with more or less the same body movements. Even if the

body action may not be repeatable as a whole, its atomic

parts such as gesticulation are often repeatable. In fact, the

repetition of body movements has been exploited for 3D

pose estimation in the past [4,30,41]. In contrast, our goal is

to simultaneously recover the dense 3D human body shape

in clothes as well as its frame-by-frame articulation.

The input to the method is a set of videos each capturing

a different instance of the repeated action from a distinct

viewpoint. Such input data can be captured with a single

camera, for instance, by having a friend capture one swing

at a time as she moves around you while you repeat your

batting swing. The video set collectively provides multi-

view data albeit an uncalibrated one. Each sequence is from

a different viewpoint but of a different action instance that

can have spatio-temporal variations in its execution.

Our key idea is to leverage the human body itself to cal-

ibrate this casually captured repeatable action video. We

use the joints and bones of the target person to spatio-

temporally localize the cameras and virtually transform

their frame instances into a dense calibrated multiview set-

ting. We first detect 2D joints in each frame and recover the

3D skeleton of the target while calibrating the cameras spa-

tially (i.e., extrinsic camera calibration) and temporally (i.e.,

temporal alignment of videos across viewpoints). Next, for

each bone of the 3D skeleton model, the camera location

of each frame of each sequence is associated with the bone

and rotated into the rest pose (i.e., T-pose) bone orienta-

tion. Finally, we use geometric contour intersection to ro-

bustly recover the 3D body shape, i.e., geometrically mea-

sure body surface points. To convert these 3D intersections

into a dense body surface, we free-form deform a generic

3D body model. Hands, feet, and face are out of the scope

of this work and are simply replaced with generic shapes.

We demonstrate the effectiveness of our method quan-

titatively on synthetic data and qualitatively on real data

and show comparisons with per-frame learning-based re-

construction as well as related video-based methods. The

results show that the method successfully reconstructs a

pose-consistent 3D surface model faithful to the clothing

and body shape of each target. We also demonstrate its ap-

plication to free-viewpoint video that enables better exami-

nation of, for instance, a sports action, which directly show-

cases practical use of the method. We believe our method,

particularly its ease of capture, opens new avenues of usage

and would find applications in a variety of domains includ-

ing entertainment, communication, and health.

2. Related Work

Multiview Reconstruction Starting from the pioneering

work by Kanade et al. [23], many studies have been pro-

posed for 3D human shape reconstruction from multiview

images. Inspired by early studies on representative recon-

struction cues such as photoconsistency [23] and silhouette

constraints [8,9,33], most past methods combine these cues

to leverage their complementary advantages, e.g., accurate

reconstruction by photoconsistency and robust initializa-

tion by silhouette constraints [11, 21, 29, 45, 49]. While

the majority of such approaches are tailored to indoor en-

vironments, Mustafa et al. [34] proposed an outdoor cap-

ture pipeline using synchronized and calibrated multiview

cameras. These methods realize frame-wise 3D reconstruc-

tion of arbitrary body shapes. Because of their bottom-up

and data-driven nature, they can reconstruct humans with

additional items [23] and humans wearing complex cloth-

ing [45]. In these approaches, up to 100 synchronized cam-

eras are used [45].

Single-Image Reconstruction Since estimating the 3D

shape from its single 2D projection is an ill-posed problem,

single-image reconstruction methods rely on prior knowl-

edge of the target 3D shape. The use of a dedicated 3D

shape model, i.e., a 3D scan of the target itself, is a sim-

ple but effective means to build such priors [13, 48]. These

methods deform a 3D shape of the target such that pho-

toconsistency and silhouette constraints from sparse mul-

tiview cameras are satisfied.

Owing to the proliferation of 3D scanners and RGB-D

sensors, various 3D human shape datasets and statistical

3D human models have been introduced [1, 3, 7, 14, 31, 37].

These statistical human 3D models allow single-image 3D



(a) a video set of
repeatable action

(b) 3D pose sequence,
camera parameters,

and temporal alignment

(c) transformed
cameras

(d) body part
visual hulls

(e) mesh
(f) textured

mesh

Figure 2. Overview of our approach. From a set of videos each capturing a different instance of a repeated action from a distinct viewpoint

(a), we simultaneously recover human pose sequences, camera parameters, and temporal alignment (b). The 3D bones serve as anchors to

the (bone-relative) viewpoint of each frame in each of the videos of different camera locations (each cone in distinct color, respectively)

(c). These bone-anchored relative cameras are transformed into a common coordinate frame, which is used to construct a visual hull for

each body part (d). A generic body surface model is free-form deformed to fit these visual hulls, resulting in a consistent clothed 3D body

shape mesh model of the target person that can be rendered from a novel viewpoint with and without textures (e,f).

estimation, including silhouette-based [12, 18] and joint-

based [6] approaches. Recent advances in deep learning

also enabled single-image 3D shape estimation methods

[19, 22, 24, 26, 27, 36, 42, 43, 47, 51] that implicitly encode

the statistical knowledge on the 3D human shape and pose

in neural networks. For example, Xiang et al. [51] intro-

duced a method for monocular 3D human shape estimation

including face and hands, and Saito et al. [42, 43] intro-

duced a single-image clothed body estimation method and

its extension to multiview inputs. Garau et al. [17] utilized

this single-image approach for extrinsic camera calibration

by estimating the relative posture between 3D shapes re-

constructed at each view capturing the same target syn-

chronously.

Repeating Motion As well known for static shape recon-

struction, a moving camera orbiting around the target or a

stationary camera capturing the target rotating in front of

it can also provide multiview data for stereo or silhouette-

based 3D reconstruction [2, 38, 44, 50]. Alldieck et al. [2]

introduced 3D human body shape estimation from a single-

view video by capturing a person in a static pose rotating in

front of a camera. The method, however, cannot be applied

to dynamic objects as the target would change its shape and

pose.

If the target repeats a periodic motion, e.g., walking,

while being captured, for each frame in a period, we can

find corresponding frames in different periods that capture

the same 3D shape from different viewpoints effectively.

Belongie and Wills used this temporal periodicity for trian-

gulating 3D human joints [4]. Ribnick and Papanikolopou-

los reconstructed 3D trajectory of points of interest by ex-

ploiting the periodicity in 3D [41]. Li et al. proposed an

algorithm that handles moving camera calibration and a-

periodic target motions [30]. Dong et al. synchronize videos

of repeated action using 3D pose estimates from a single

camera, and improves the 3D poses with iterative optimiza-

tion [15]. We show that dense clothed body surface can be

recovered from the repetition of an action as a whole.

3. Repeatable Action

One key idea of our method is to exploit the repeatabil-

ity of human actions. Many actions performed by people,

especially those that may benefit from close examination

afterwards, can be repeated with more or less spatially and

temporally similar body movements. Examples include golf

swings, skateboard tricks, baseball pitches, and soccer shots

for sports, greeting a person, opening and entering a door,

rising from bed, and sitting down on a chair for daily ac-

tions. We call these repeatable actions.

If we capture a repeated repeatable action one instance

at a time from a fixed viewpoint, but from a distinct one

for each instance, we already have sparse multivew data.

We typically use 4 viewpoints. This multivew data is, how-

ever, very sparse and uncalibrated both in terms of the cam-

era locations as well as the actual action of the person as

each repeatable action instance is not exactly the same. We

later show that this sparse multivew uncalibrated data can

be turned into a dense calibrated multivew dataset. If we

capture K instances of a repeatable action each with, on

average, N frames of video, we show that we can obtain

K × N views for each part of the body. That is, we show

how the actual sparse views can be multiplied by tens com-

ing from the number of frames in each video (e.g., 4 views

turned into 360 views with 3 seconds 30fps videos).

Capturing such repeatable action is easy and can be done

in a casual setting as it does not require synchronized simul-

taneous image capture. It can be done with a single camera

moved to different vantage points around a person for each

instance. That can be done by a friend with a phone camera

or even alone with access to a tripod.

We make only two mild assumptions for capturing re-
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Figure 3. (a) We temporally calibrate repeatable action videos by

evaluating and searching for the maximum inlier number of Samp-

son Distance [20] between pose sequences, which is used as the

confidence of hypothesized temporal linear stretch and offset, and

essential matrix (Eq. 1). (b) These confidence values show a clear

global optimum corresponding to the correct spatio-temporal cali-

bration of the videos.

peatable actions. First, we assume that the instances of a

repeatable action vary in temporal duration but not in their

local speeds. That is, we assume that the action can be re-

peated with linear stretches in their overall duration (i.e.,

change in global speed), in addition to of course their start

(i.e., temporal offsets). This is a reasonable assumption as

we capture the same person repeating the same action. Sec-

ond, we assume that the camera intrinsics are known, which

can be easily satisfied by pre-calibrating the camera.

4. Calibration with The Human Body

Given the repeatable action videos, our first step is to es-

timate the camera viewpoints while temporally aligning the

sequences. We achieve this spatio-temporal calibration by

leveraging the human body, in particular, its joints as cali-

bration targets. The human body is unique in that its joints

and bones form a rigid structure that can be articulated. That

is, the relative distances between the joints do not vary as

they move in coordination. We exploit this fact to spatially

calibrate the multiple views and also estimate the temporal

stretch and offsets of the videos.

Spatio-Temporal Camera Calibration We first detect

2D human joints using OpenPose [10]. For each camera

pair that captures, for instance, N frames of J 2D joints,

we have J×N potential correspondences if the frames are

temporally aligned. From these potential correspondences,

we estimate the relative viewpoint of one camera to another

by using the 5-point algorithm [35] on the 2D joints be-

tween the two sequences. We use random sampling con-

sensus (RANSAC) [16] when computing the essential ma-

trix, which implicitly takes care of the spatial variation of

the repeated action across the two sequences.

We temporally calibrate the video sequences by estimat-

ing the offset and linear stretch of each video. As depicted

in Fig. 3, we achieve this by explicitly evaluating the con-

fidence defined as the number of inliers of the estimated

essential matrix for each possible combination of temporal

stretch a and offset b

argmax
a,b

N
∑

n

J
∑

j

C(xn,k1,j ,xan+b,k2,j , c) , (1)

where xn,k,j is the 2D position of the j-th joint in the n-

th frame n of the k-th video, and C denotes the number of

2D joint pairs whose Sampson distance [20] is lower than a

threshold c for the essential matrix estimated with temporal

stretch a and offset b. By evaluating the temporal align-

ment with sequence-to-sequence scores, we have far more

correspondence points than frame-to-frame scores. In the

experiments, we search for a from 0.7 to 1.3 and b from

−1.5 seconds to 1.5 seconds.

The 2D search in temporal parameter space gives us the

temporal calibration and initialization of the camera pose

and the 3D joints. These frame-wise 3D joints have tempo-

ral noise, and the bone lengths are not necessarily tempo-

rally consistent. We refine 3D joints and camera poses with

bundle adjustment [46]. To account for the spatial varia-

tion (i.e., slight difference of each repetition), inconsistent

bone length, and noisy 3D pose, we formulate bundle ad-

justment with additional regularization. Our objective func-

tion consists of a weighted sum of four terms: reprojection

errors of the 3D joint Ereproj, temporal variances Ebone and

left-right symmetry Esym of the bone lengths, and temporal

smoothness of the joint motions Esmooth

Epose =Ereproj + λboneEbone+

λsymEsym + λsmoothEsmooth .
(2)

We define the reprojection error term Ereproj as the sum

of the reprojection error of each of the J joints at all N

frames in K viewpoints:

Ereproj =

N
∑

n=1

K
∑

k=1

J
∑

j=1

‖Πk(Xj,n)− xn,k,j‖
2
, (3)

where Xj,n denotes the 3D position of the jth joint at frame

n, Πk(·) projects a 3D point to the kth viewpoint, and xn,k,j

is the 2D position of the jth joint at frame n detected in the

image of the kth viewpoint.

We define the variance of the bone length term Ebone as

Ebone =
∑

b∈B

Varn(Lb), Lb =
∥

∥

∥
Xjb,n −Xj′

b
,n

∥

∥

∥

2

, (4)

where b ∈ B denotes each bone in the skeleton model, Lb

denotes the length of bone b whose endpoints are jb and j′b,

and Varn(·) denotes the variance over time, i.e., n ∈ [1 :
N ]. Similarly, we define the bone symmetry term Esym as

Esym =

N
∑

n

∑

〈b,b′〉∈S

‖Lb − Lb′‖
2 , (5)



where 〈b, b′〉 ∈ S denotes each of the symmetric bone pairs

in the model such as, for example, the left and right fore-

arms. The smoothness term evaluates the temporal conti-

nuity of the joint motion by the magnitude of its second

derivative

Esmooth =

N−1
∑

n=2

J
∑

j

‖−Xj,n−1+2Xj,n−Xj,n+1‖
2 . (6)

Consistent 3D Skeleton Once the videos are spatially and

temporally calibrated, we fit a 3D skeleton model (i.e., rep-

resentation of bone length and rotation) to the 3D joints in

each frame to extract a consistent structural model of the

human body across all videos and their frames. We employ

an inverse kinetics model with a penalty term that prevents

impossible joint angles. That is, we optimize the joints of

the 3D skeleton X̂j,n(θ, τ ) parameterized by the joint angle

vector θ of the whole body and global translation parameter

τ by minimizing

EIK,n(θ, τ ) = E3D,n(θ, τ ) + λpriorEprior(θ) , (7)

where E3D,n(θ, τ ) denotes the sum of the distances be-

tween the skeleton joint X̂j,n(θ, τ ) and the corresponding

joint Xj,n obtained from Eq. (2) for the n-th frame

E3D,n(θ, τ ) =

J
∑

j

‖X̂j,n(θ, τ )−Xj,n‖
2 . (8)

Eprior(θ) is the reconstruction loss of a variational au-

toencoder pretrained on the AMASS dataset [32] and λprior

weights its contribution. The reconstruction loss is eval-

uated with the poses inside a temporal window (5 frame)

around the n-th frame. We initialize θ and τ by matching

three joints, the neck and the left and right hip joints, which

we experimentally found to always result in fast and stable

convergence.

Finally, we reduce the remaining spatial discrepancies

between reprojected 3D joints of the 3D skeleton model

and the detected 2D joints in each viewpoint. Using the

fit skeleton model, we absorb the reprojection errors by ad-

justing the skeleton pose for each viewpoint at each frame

by evaluating a reprojection loss specific to the viewpoint k

in addition to the inverse kinematics loss

EIK,n,k(θ, τ ) =E3D,n(θ, τ ) + λreprojEreproj,n,k(θ, τ )

+ λpriorEprior(θ) ,
(9)

where, using camera projection Π,

Ereproj,n,k(θ, τ ) =

J
∑

j

‖Πk(X̂j,n(θ, τ ))− xn,k,j‖
2 .

(10)
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Figure 4. Bone-anchored camera transformation. A static camera

capturing a bone in motion (a) can be transformed into a bone-

anchored coordinate frame and collectively form a multiview sys-

tem for each body part (b). These bone-anchored camera trans-

forms virtually create a dense multview image capture for each

body part (c) as shown in Fig. 2.

5. Clothed 3D Body Reconstruction

Given the spatially and temporally calibrated repeatable

action videos and the consistent 3D skeleton model that ex-

plains the articulations in each frame of every video, we are

now ready to recover the clothed body surface of the target

person. We achieve this by virtually transforming the sparse

viewpoints of each frame into a common coordinate frame

with a rest-pose body by attaching and rotating each of the

camera viewpoints to each of the bones. This effectively

turns the original sparse multiview data into a dense cali-

brated multiview image set that can be used for conventional

3D geometric measurements. Note that due to the move-

ments of the body, color consistency cannot be assumed and

matching-based multiview methods are not applicable.

Bone-Anchored Camera Transformation Our key in-

sight is to reinterpret an articulated 3D human body in front

of a fixed camera view (Fig. 4 (a)) as virtual cameras an-

chored to static bones of a 3D human body in rest shape

rotating around the body (Fig. 4 (b)). We anchor cam-

eras to the 3D bones and independently transform the 3D

bone into the rest pose along with the cameras that capture

the bone. Virtually duplicated and transformed cameras are

now capturing a single static 3D body in rest pose, just like

in a multiview studio (Fig. 4 (c)).

This means that if we have K repeatable action videos

each with N frames, each of the M body parts will have a

maximum of K×N viewpoints observing its shape in the

common coordinate frame of the rest pose. In other words,

we will have a virtual multiview capture with K×N cam-

eras for each of the M parts. The camera transformation

can be easily computed as the inverse transformation of the

3D bone transformation matrix computed from 3D skeleton

kinematics.

Body Part Visual Hulls Given the cameras transformed

into a common coordinate frame, we can “measure” the
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Figure 5. Sample images in S-RAD, a dataset consists of clothed

3D shapes of human performing repeatable actions. We use S-

RAD for quantitative evaluations of our method.

body shape with well-established multiview methods. We

adopt visual hull reconstruction, known as Shape from Sil-

houette, as it is robust to the appearance changes inherent to

a body in action. Although the majority of the spatial and

temporal variations have already been absorbed, visual hull

reconstruction can result in over-carving by even one frame

of incorrect virtual camera position that can arise from re-

maining pose errors or 2D joint detection errors. To combat

this sensitivity, we automatically select the views used for

visual hull reconstruction. We use the reprojection error be-

tween the 3D joints of the posed skeleton model as well as

the confidence values returned by the 2D joint detector to

select the views.

For each body part, we create a visual hull. Using se-

lected images from transformed virtual cameras as depicted

in Fig. 4 (c), we take an intersection volume of the body part

silhouettes of the images. The visual hull is constructed

based on a grid volume (50×50×50) defined around the

body part of interest, and then converted into a mesh surface

representation [28]. We first create a 3D point grid around

the body part and project the points into each of the selected

images of transformed cameras. 3D points that fall outside

the silhouettes in any of the images are eliminated from the

grid. By limiting the point grid to each body part region

and also by only using selected images of each camera dra-

matically reduces the computation while ensuring detailed

reconstruction of the body surface. Note that this multiview

reconstruction has more or comparable number of cameras

(K×N ) to existing multiview studios with actual cameras

(e.g., 3 to 100 cameras, according to [45]).

3D Body Surface Model We extract a dense body sur-

face model from the visual hulls each representing a set of

point samples of the body part surface in rest pose. For

this, we fit a body surface model to the point samples. Un-

like learned statistical models that can only represent body

shapes within the range of training data, we can freely de-

form the surface model to fit the reconstructed visual hulls

so that they capture the detailed clothed body shape. We di-

rectly optimize mesh vertex positions v ∈ V of the SMPL

model [31] by minimizing the Chamfer loss, the edge loss,

the normal loss, and the Laplacian loss implemented in Py-

Torch3D [40]. The crucial point here is that we have actu-

ally measured the clothed body surface to which we fit the

3D body surface model.

6. Experimental Results

We introduce two new datasets to thoroughly evaluate

the effectiveness of our method: the Real Repeatable Ac-

tion Dataset (R-RAD) and the Synthetic Repeatable Action

Dataset (S-RAD). These two datasets are complementary

in that results on R-RAD demonstrate our method’s perfor-

mance in real-world settings, and S-RAD lets us quantita-

tively evaluate our method and compare with related meth-

ods on ground truth data.

Real Repeatable Action Dataset R-RAD consists of

videos of people repeating natural repeatable actions cap-

tured with tripod-mounted 7 Sony DSC-RX0 cameras run-

ning at 120Hz in a studio (4 for reconstruction and 3 for

testing). The original videos are temporally cut roughly into

individual instances of repeated actions. To produce the ran-

domness of this rough cut, we manually align the offset of

the videos and shift the alignment by uniformly sampled

random values from [−0.5, 0.5] second. Randomness of the

temporal stretch is introduced naturally from the repeated

action. Silhouette is extracted with an existing background

removal method [39]. The simultaneous multiview capture

provides different variations of repeatable action videos and

enables evaluation of reconstruction accuracy on views not

used in the input set. In the following experiments, our

method only uses one distinct view for each repeated in-

stance.

Synthetic Repeatable Action Dataset Fig. 5 shows S-

RAD, a dataset of repeatable action videos of synthetic

humans. As it is nearly impossible to obtain accurate

ground truth 3D surface of a person in action, such synthetic

dataset becomes crucial for rigorous quantitative evaluation.

We combine motion capture data with the MG-dataset [5]

which contains textured mesh and its SMPL registration of

clothed human. Our motion capture data were created from

videos of people performing various repeatable actions cap-

tured from 7 viewpoints. We manually synchronized the

videos and triangulate and optimize joints with a temporal

smoothness term, and fit a 3D skeleton to each frame. This

motion capture data provide 3 repeatable actions each with

8 repetitions. Each instance is spatially and temporally dif-

ferent as the action is performed by a human. We picked 3

models from the MG-dataset and rendered them with these

repeated actions from a different viewpoint. The resulting

dataset allows us to compare reconstructions with ground

truth body surface geometry.
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Figure 6. Qualitative reconstruction results of different subjects performing different actions on R-RAD. We show example frames from

the input videos (left column), the reconstructed mesh (middle column), and the textured mesh (right column). In the middle column, left-
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novel viewpoints. At the right column, we excluded head reconstruction, which is not articulate and out of the scope of our paper. Since

our reconstruction is registered to the SMPL model, we can substitute these parts with the results estimated by another specialized method.
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Figure 7. Ablation study of the number of views. The more views

we have, the more accurate the reconstruction becomes. In prac-

tice, four viewpoints are sufficient for reasonable accuracy.

Metrics We evaluate the reconstructed 3D pose with the

Procrustes-Analysis Mean Per Joint Position Error in cen-

timeters (PA-MPJPE). We evaluate the reconstructed shape

with the Bidirectional Chamfer Distance (Chamfer) of the

ground truth shape and result in centimeters.

Qualitative Evaluation We qualitatively evaluate the ef-

fectiveness of our method with R-RAD. Fig. 6 shows that

our method successfully reconstructs body shapes in vari-

ous actions and of different subjects. Our reconstructions

accurately overlap the input images and are consistent with

other views. Even though every action is a challenging

pose sequence, the reconstruction result explains the input

frames well.

Ablation Studies We evaluate the effect of varying the

number of viewpoints for repeatable action video capture.

Table 1. Ablation study of pose and shape evaluated on all frames

and all subjects in S-RAD. ↓ means smaller is better. The results

show that the reconstruction improved with our method includ-

ing temporal alignment in the spatio-temporal calibration and view

adapted 3D pose optimization (Eq. 9).

Method PA-MPJPE↓ Chamfer ↓

w/o temporal calibration 4.50 9.82

w/o view adaptation 2.54 6.14

Ours 2.48 5.40

As the number of viewpoints increases, the reconstruction

error decreases. Fig. 7 shows the results. The results show

that 4 viewpoints are sufficient, which is a very small num-

ber for multiview geometry reconstruction. Thanks to the

bone-anchored camera transforms, the effective number of

viewpoints are substantially increased by the number of

frames of each instance sequence, enabling this reduction

in physical viewpoints and thus practical and casual image

capture.

We also conducted ablation studies to evaluate the im-

portance of each step of our method. Table 1 shows the

results. These results clearly show that the temporal and

spatial variations in the repeatable actions are properly ac-

counted for with our spatio-temporal calibration using the

human body and all steps are important for recovering ac-

curate body shape.



Input View Test View Ours PIFu HMMR DeepHuman

Figure 8. Qualitative comparison with other methods. We render

the resulting shape from a novel view that does not exist in the

input (test view). Our result is geometrically more consistent than

other methods in that one shape matches the image from another

viewpoint. Unlike single-image methods, our method does not

suffer from inherent depth ambiguity.

Table 2. Quantitative comparison of reconstructed pose and shape

(see text for metrics) on sparsely sampled 5 frames of all subjects

in S-RAD. We compare our method with single image and single

video methods. * indicates that the method uses their own clothed

3D shape as training data. Our method outperforms existing meth-

ods, while it does not require any training data of human body

shape.

Method Input Chamfer ↓

PIFu* [42]
single image

7.48

DeepHuman* [52] 8.10

HMMR [25] video 7.83

Ours video (repeated action) 4.77
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Figure 9. Evaluation of temporal consistency of the reconstructed

clothed 3D human body shape. We compute the Bidirectional

Chamfer Distance for sparsely sampled 5 frames of pitching ac-

tion in S-RAD, to compare per-frame execution of single-image

methods (PIFu [42], DeepHuman [52]), a video-based method

(HMMR [25]), and our method (Ours). Single-image methods can

reconstruct the shape when the person is in standing-like poses

as they have less ambiguity and are likely closer to poses in their

learning data (first frame). Our method reconstructs a consistent

shape over time.

Comparison with Other Methods Fig. 8 shows qualita-

tive comparison of our method with other methods. Our

method exhibits geometrically accurate shape even from a

different view that does not exist in the input videos. In

contrast, other methods fail to infer or reconstruct the body

shape that explains those in unseen views. Table 2 shows

quantitative comparison of our method with other meth-

ods. Since there is no other method for shape reconstruc-

tion from repeatable action captured with a single camera,

we compare our method with single-image methods. The

results show that our method can accurately reconstruct the

shape. Furthermore, our method does not rely on 3D ground

truth clothed body shape data.

Evaluation on Temporal Consistency Fig. 9 shows the

temporal change of the evaluation score of the estimated

shape. Unlike single-image methods applied separately to

every frame, our method can reconstruct a temporally con-

sistent shape (i.e., a single surface model) that matches the

ground truth articulated shape of every frame.

Outdoor Capture We apply our method to repeatable ac-

tion videos of a person pitching a ball outdoors. As shown

in Fig. 1, our method works with a single camera in an out-

door setting.

7. Conclusion

In this paper, we tackled the challenging problem of con-

sistent 3D clothed human body shape recovery from casu-

ally taken images by fully leveraging the repeatability of

actions and the human articulated body for spatio-temporal

calibration and multivew view expansion. The experimen-

tal results show that the proposed method successfully re-

constructs a consistent clothed body shape that matches all

frames in the video. Each of the key steps builds on well-

established multiview geometry concepts. The main contri-

bution of our framework lies in the very idea of turning a

casually taken video sequence into a fully calibrated mul-

tiview data to achieve body part-based reconstruction so

that these established geometric methods can be exploited

to arrive at an actual measurement of the unique clothed

body shape of the person in the video. Unlike learning-

based methods, our method produces a clothed, consistent

3D human model based on geometric measurements. We

believe our method complements learning-based methods

and clearly demonstrates what purely geometric approaches

can still offer.
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