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This document presents additional details and qualitative
results for the SRAT pipeline introduced in the main paper.
Section 1 further explains Equation 2 of the paper. Section 2
explains the training procedure for RCAN [10]. Section 3
defines the metrics used for evaluating our pipeline stages.
Section 4 presents the limitations of SRAT and Section 5
offers further evaluations of the SRAT stages. Visual re-
sults of the colour mapping stage are shown in Section 5.1.
Other results for the super-resolution (SR) stage are pre-
sented in Section 5.2. In Section 5.3, there are additional
considerations on the performances of different configura-
tions of SRAT.

1. Colour transfer algorithm

To learn the colour transfer function �✓(x) that aims to
transfer the appearance from a high-resolution (HR) static
capture of a human subject to a dynamic video performance
capture of the same subject, we introduce a parametric en-
ergy function (Equation 2 in the main paper):
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pf is the distribution of the input frame image ILR while
pI is the distribution of the correspondent HR image IHR.
These two images are paired during the first step of the sec-
ond stage of SRAT (couples identification).
pf is a Gaussian mixture distribution of parameter K de-
fined by the Normal distribution N (0;�✓(µf ), h2

I) com-
puted at 0 with parameterised mean �✓(µf ) and covariance
h
2
I (h is a control bandwidth and I is the identity matrix).

pI is a Gaussian Mixture distribution of parameter K as

well, but its mean µI is not parameterised.
In Equation 2, the norm is computed as the subtraction of
the parameterised mean of two cluster i and k of pf while in
Equation 3 the mean of pI is subtracted to the parameterised
one of pf . The weights ⇡(i)

f i=1,...,K
as well as ⇡(k)

I k=1,...,K

are chosen equiprobable with ⇡
(i)
f

= 1/K and ⇡
(k)
I

= 1/K
respectively.
K is a fixed number defining the K variable of the K-means
algorithm. K-means selects K clusters in the colours of the
input images to define their Gaussian mixture distributions
pf and pI before the minimization step [2].
In other words, the algorithm first selects K clusters in the
colours of the target (ILR) and of the reference (IHR) im-
age. Then, it models the colour distribution as a Gaussian
mixture distribution whose mean is parameterised only for
ILR. Finally, the energy function of Equation 1 is mini-
mized and �✓(x) is defined from a set of input couples of
ILR and IHR.

2. Implementation of RCAN

In this work we use RCAN-style network [10] to super re-
solve texture map. In order to achieve this, we adapt the
training protocol and utilise datasets of human texture maps
to train and fine-tune RCAN.

Training datasets: RCAN presents a very deep archi-
tecture and the larger the architecture, the more data is
needed to produce viable results. A common problem de-
rives from the lack of human texture maps available for
training.
We first train RCAN with a dataset made of texture maps
of 7 human models downloaded from [1]. To augment
the training data and to ease the training, we crop the tex-
ture maps into patches with the size of 256x256. The final
dataset presents 1872 patches.
To enhance RCAN performances, we fine-tune it with orig-
inal texture maps of the input model retrieved in a pre-
processing stage. In particular, we use 410 texture maps
for SingleF model and 441 for SingleM. For every differ-



ent input model of SRAT, RCAN can be fine-tuned with the
original texture maps of the specific model.

Training process: RCAN was trained for 800 epochs
with the patches of texture maps and then fine-tuned for 200
epochs with the original texture maps of the input model.
In each training batch, 16 low-resolution (LR) color patches
(48x48 in size) are extracted as inputs. The learning rate is
initially set to 10�4 and then halved every 105 iterations
of back-propagation. ADAM optimizer [4] is used with
�1=0.9, �2=0.999 and ✏ = 108.

3. Evaluation metrics

Colour transfer stage: to evaluate the effect of the
colour transfer from the HR images to the input frames, we
consider their normalized colour histograms. We compute
the Jensen-Shannon (JS) divergence and the Chi-Squared
(�2) distance. Specifically, we measure the dissimilarity of
the colour histogram of a frame with the colour histogram of
the HR image which was paired with the frame in the colour
correction step of the colour mapping stage of SRAT. The
JS divergence measures the similarity of two statistical dis-
tributions by subtracting the average of the two distribution
entropies with the entropy of their average [9]:
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The �2 distance weights with higher importance the dissim-
ilarity between two small bins of the histograms [9]:
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where, for both the equations, H is the normalized colour
histogram of the frame, H 0 is the normalized colour his-
togram of the HR image, N is the the number of bins of
each histogram and Hi is the value of the i

th bin of H [9].
We select N = 64. The presented results are computed
considering all the frames of SingleF (7040) and SingleM
(7520) models.

Texture-map SR stage: the SR texure maps are eval-
uated with PSNR and SSIM [13] on Y channel of trans-
formed YCbCr space. These metrics are computed by test-
ing the network with 104 texture maps of SingleF and with
113 texture maps of SingleM.

4. Limitations

SRAT only enhances the appearance of the model. There-
fore, if the initial reconstruction produces low quality 3D
shapes, our pipeline is not able to modify the geometry of
the model and the final output will still have a low quality
shape. Another limitation is during the couple identification
step of the colour mapping stage when Densepose is not

(a) (b) (c)

Figure 1: Failure cases: (a) 4D reconstruction, (b) SingleM colour
transfer, (c) SingleF colour transfer.

able to detect the human model. The partial texture map is
in this case a black image and the couple cannot be created.
If the selected couples for learning the colour transfer func-
tion do not cover the surface entirely, the corrected frames
present unnatural colours. Figure 1 illustrates some of these
limitations.

5. Further results evaluation

In this section, additional visual results are shown for the
evaluation studies of the main paper. A detailed analysis of
the performances of different configurations is undertaken
as well.

5.1. Colour mapping stage evaluation

Input couple selection: visual results of failure cases
caused by not giving as input to the colour transfer algo-
rithm enough couples to cover the whole surface are shown
in Figure 2 for 1 input couple and Figure 3 for 2 input cou-
ples for SingleF. For SingleM model, the results with 1 cou-
ple as input are illustrated in Figure 4 and with 2 couples in
Figure 5. In the learning stage not all the colours of the
model are present in the input couples and in the reference
palette some colours of the model are therefore missing.
The outputs show how the colours of the specific parts of
the subject that were not seen during the learning stage are
unnatural and influenced by the colours of other parts of the
subject.

Comparison with TPS [2]: our colour transfer algo-
rithm is based on TPS [2]. This method, as explained in the
main paper, learns the colour transfer function from only
a pair of target and reference image. Therefore, the algo-
rithm learns a different function for every input frame be-
cause it models the colour distributions applying K-means
algorithm. The learned colour transfer function can vary ev-
ery time K-means is applied. The colours of the corrected
outputs may differ for consecutive frames as well as for the
same frame of different cameras. Examples of the former
case are shown in Figure 6 for SingleF and Figure 8 for Sin-
gleM. The second failure case is illustrated in Figure 7 for
SingleF and Figure 9 for SingleM. If TPS is applied, the
colours of the clothes and face of the models change in con-
secutive frames and when they are acquired with different
cameras. On the contrary, the colours do not change if our
method is applied in the aforementioned cases .
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SingleF
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Total time

SingleM

(hours)
SRAT (ours) 14.13 128.49 354.57 43.33 46.29

1 8.45 128.49 136.94 16.73 17.87
2 35.16 128.49 63.65 20 21.36
3 14.13 197.19 3381.12 413.24 441.42
4 56.71 197.19 4062.4 496.51 530.36
5 35.16 197.19 759.75 389.91 416.49

Table 1: Performance of SRAT pipeline configurations.

5.2. Texture-map super resolution stage evaluation:

Different training models of RCAN: Figure 10 shows
the outputs of all the considered training models of RCAN
for SingleF while Figure 11 for SingleM. A portion of
the texture-map and its correspondent heatmap are illus-
trated. The heatmap highlights the dissimilarity between the
ground-truth and the SR texture map: in a scale from blue
to red colours, the blue one indicates that two correspon-
dent pixels of the ground-truth and the SR texture maps are
the most similar while the red colour represents the pixels
which are most dissimilar. The heatmap of the best case
(1b) adopted in our pipeline presents more blue and less
green/red pixels compared to the others.

Comparison with SR networks: Figure 12 shows a por-
tion of the texture-map and its correspondent heatmap for
SingleF and Figure 13 for SingleM for the considered SR
networks. Also in this case, the SRAT heatmap shows more
blue pixels for both the models.

Final model outputs: Figure 14 shows details of the
SingleF 3D model when the output SR texture maps of
SRAT are rendered to the meshes. Figure 15 illustrates Sin-
gleM. As it is possible to see in the hairs and in the band
of SingleF and in the button of SingleM, the details of the
super resolved models appear less blurry than their LR ver-
sion.
Figure 16 shows the output 3D models of SRAT, whose ap-
pearance is significantly enhanced compared to their origi-
nal version, with brighter colours.

5.3. Different configurations of SRAT

Table 1 presents the performances of the studied configura-
tions of SRAT (Section 4.4 of the main paper). We measure
the time in seconds (s) to complete the colour transfer step
and the SR texture map stage for both SingleF and SingleM
models. The average time to process a single frame on the
two stages is also presented. In this case, there are 16 input
images (one for each camera) and 1 texture map per frame.
In addition, we compute the total time (in hours) to pro-
cess all the frames for each performance. SingleF has 440
frames per camera and 7040 total frame images and 440 tex-
ture maps in total. SingleM presents 470 frames per camera
(7520 frame images and 470 texture maps). The size of the
input frame images is 3840x2160 pixels (7680x4320 pixels
when super resolved by a factor of 2) and the texture map

size is 2048x2048 pixels (4096x4096 pixels when super-
resolved by a factor of 2). For the super-resolution stage
an NVIDIA GeForce RTX 2070 was used. If the colour
mapping stage was processed with multiple CPUs and the
SR stage with multiple GPUs, the processing time would be
lower than the one shown in Table 1. We do not measure the
time of the other stages because is constant in all the config-
urations. The fastest configurations are the 1st and the 2nd
but their outputs present visible artefacts as shown in the
main paper. The proposed SRAT pipeline is the third fastest
and produces the best visual results.
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1 Input couple

Corrected

Figure 2: On the right, 1 input couple to the colour correction step of SRAT. On the left, the corrected output for SingleF.

2 Input couples

Corrected

Figure 3: On the right, 2 input couples to the colour correction step of SRAT. On the left, the corrected output for SingleF.



1 Input couple

Corrected

Figure 4: On the right, 1 input couple to the colour correction step of SRAT. On the left, the corrected output for SingleM.

2 Input couples

Corrected

Figure 5: On the right, 2 input couples to the colour correction step of SRAT. On the left, the corrected output for SingleM.



Figure 6: Consecutive corrected frames for TPS [2] (top row) and SRAT (bottom row) of SingleF model.

Figure 7: Same corrected frame of different cameras for TPS [2] (top row) and SRAT (bottom row) of SingleF model.



Figure 8: Consecutive corrected frames for TPS [2] (top row) and SRAT (bottom row) of SingleM model.

Figure 9: Same corrected frame of different cameras for TPS [2] (top row) and SRAT (bottom row) of SingleM model.
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Figure 10: Portion of SingleF texture maps and correspondent heatmaps for different trained models of RCAN.
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Figure 11: Portion of SingleM texture maps and correspondent heatmaps for different trained models of RCAN.
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Figure 12: Portion of SingleF texture maps and correspondent heatmaps for different SR networks.
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Figure 13: Portion of SingleM texture maps and correspondent heatmaps for different SR networks.
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Figure 14: Details of the SR output texture map applied to SingleF model considering different upscaling factors.



Output model LR
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Figure 15: Details of the SR output texture map applied to SingleM model considering different upscaling factors.
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Figure 16: Comparison between input and output models.


