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Abstract

Hardware-aware neural architecture designs have been

predominantly focusing on optimizing model performance

on single hardware and model development complexity,

where another important factor, model deployment com-

plexity, has been largely ignored. In this paper, we ar-

gue that, for applications that may be deployed on multiple

hardware, having different single-hardware models across

the deployed hardware makes it hard to guarantee con-

sistent outputs across hardware and duplicates engineer-

ing work for debugging and fixing. To minimize such de-

ployment cost, we propose an alternative solution, multi-

hardware models, where a single architecture is developed

for multiple hardware. With thoughtful search space design

and incorporating the proposed multi-hardware metrics

in neural architecture search, we discover multi-hardware

models that give state-of-the-art (SoTA) performance across

multiple hardware in both average and worse case scenar-

ios. For performance on individual hardware, the single

multi-hardware model yields similar or better results than

SoTA performance on accelerators like GPU, DSP and Ed-

geTPU which was achieved by different models, while hav-

ing similar performance with MobilenetV3 Large Minimal-

istic model on mobile CPU. 1

1. Introduction

Developing efficient on-device neural networks has be-

come an important topic in computer vision with many real-

world applications. Having models that can be fully de-

ployed on device not only enables fast, real-time results,

but also avoids exposing personal data to public servers.

Given the resource constraints of a portable device, such

as latency, energy and memory footprint, on-device models

need to be fast and small. While the number of multiply-

1Multi-hardware models (Multi-AVG and Multi-MAX) are available at

https://github.com/google- research/google- research/tree/master/tunas and https://

github.com/tensorflow/models/blob/master/official/vision/beta/modeling/backbones/

mobilenet.py

and-add operations (MAdds) and the number of param-

eters have been widely used to optimize efficient mod-

els [11, 17, 26, 30, 33], recent research has shown that im-

provements on theoretical MAdds or number of parame-

ters do not always translate into better latency on real hard-

ware, and can actually be counterproductive in some cases

[25,28]. Thus, optimizing directly on latency measurements

becomes important when we want to find a fast model on

device [3, 14].

Unlike MAdds or the number of parameters, latency is

highly dependent on hardware (and its associated software).

A neural network optimized for a specific hardware plat-

form may perform sub-optimally on a different one in terms

of inference efficiency. Therefore, different models have

been developed to achieve the best performance on each in-

dividual hardware [4, 7, 8, 27].

However, for application developers who want to de-

ploy their application on multiple hardware, using differ-

ent single-hardware models for each hardware introduces

deployment overhead from multiple aspects. For example,

one needs to tune multiple models and dependent compo-

nents in the system to guarantee consistent application out-

puts across hardware. In addition, duplicated debugging

and fixing work are needed for any issue or update of the

application and the complexity increases linearly with the

number of deployed hardware.

To solve these problems, we propose multi-hardware

models, where a single model is developed by optimizing

on multiple hardware. It minimizes model deployment cost

while still performs reasonably good on each targeted hard-

ware. The contributions of this paper can be summarized as

follows.

• It is the first work exploring the feasibility of multi-

hardware models.

• It proposes a complementary search method that can

be used by any existing neural architecture search

(NAS) algorithms to find multi-hardware models.

• It proposes multi-hardware metrics to evaluate overall

efficiency among multiple hardware.

1
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Figure 1: ImageNet test accuracy v.s. average latency (Mobilenet Normalized Average Latency in the left figure) and worst case latency

(Mobilenet Normalized Max Latency in the right figure) over 5 hardware in Pixel4: CPU float, CPU uint8, GPU, DSP and EdgeTPU. See

Section 6.2 for details of how the average and worst case latency on x-axis are calculated. Multi-MAX and Multi-AVG are discovered

multi-hardware models which yield the SoTA accuracy-latency tradeoff w.r.t. both average and worst case performance.

• The discovered multi-hardware models via proposed

method achieve SOTA performance across targeted

hardware and can be generalized to other hardware as

well.

2. Related Work

Hardware-aware neural architecture designs have been

a popular research area in recent years. NetAdapt [28] uses

empirical latency tables of the target hardware to greedily

adapt a model to its highest accuracy under a target latency

constraint. MnasNet [25] also uses latency tables, but ap-

plies reinforcement learning to do hardware-aware archi-

tecture search. FBNet [27] and ChamNet [8] find the best

architecture for targeted hardware by incorporating latency

table and resource predictive models in architecture search

respectively. MoGA [7] optimizes a model for GPU. Once-

for-all [4] proposes a pre-trained super-model where differ-

ent sub-models can be extracted for different hardware.

Neural architecture search (NAS) has been widely used

in hardware-aware architecture designs as the unpredictable

hardware performance of a model makes it challenging to

optimize models by hand [3,19,22,25,29,32,33]. This tech-

nique uses reinforcement learning [32], evolutionary search

[23], differentiable search [20, 21] or other algorithms [10]

to find the best neural architecture according to a prede-

fined reward function which incorporates both model per-

formance and hardware efficiency [19].

3. Why Multi-Hardware Models

Existing hardware-aware architecture designs have pri-

marily focused on single-hardware models which aim to de-

liver the best model for each single hardware. With the re-

cent advance of NAS [29] and smart training algorithms [4],

the cost of architecture search and model training have been

significantly reduced. However, the outcome of N models

for N hardware introduces much overhead for application

developers who want to deploy the application on multiple

hardware.

First overhead comes from the component level tuning

when deploying the model. For example, when using the

classification results to suggest a user action, like scanning

text in the image, or blurring background of a portrait photo,

one needs to tune a score threshold to determine when to

give that suggestion. Then, if N models are used for N

hardware, multiple score thresholds need to be tuned to en-

sure consistent performance across hardware.

Moreover, having different models on different hardware

for the same application makes it hard to keep consistent

model performance across hardware. Besides the overhead

of tuning multiple models to have the same accuracy, it is

almost impossible to make sure that all models give the ex-

actly same output for every image it received.

In addition, when unexpected performance occurs, such

as the model false triggers or misses certain images, one

needs to first determine whether it is a universal issue, or

it only happens on some hardware as different models are

used. Every debugging and fix step needs to be done N

times for each different model used for this application.

Last but the not the least, having a single model for mul-

tiple hardware on the same device, like CPU and EdgeTPU

on Pixel4, enables seamless transition of workload from one

hardware onto another other at runtime. In addition, only

one model needs to be stored in this case.

In summary, multi-hardware model is a solution to min-

imize deployment complexity, a factor that has been largely

ignored in developing single-hardware models. We will

show in this paper that, despite the challenges, with proper
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Figure 2: Per layer profiling of MobileNetV3 minimalistic on

Pixel4 CPU uint8 and DSP (Hexagon). The leftmost is the input

layer while the output layer is on the right.

balance among hardware in search space design and met-

ric definition, multi-hardware models can still yield decent

results across a wide range of hardware.

4. Challenges of Multi-Hardware Models

Diverse design preferences: Due to the unique design of

each hardware, their specialties are usually different, which

may yield different directions of optimization. To demon-

strate this, we take the MobilenetV3 Large minimalistic

(min) model [1] and run per layer profiling on CPU (uint8)

and DSP (Qualcomm 855 Hexagon) to get the latency per-

centage of each layer over the whole model (Figure 2). On

CPU, a larger fraction of the model’s total latency comes

from the earlier layers of the network, while on DSP, a

larger fraction of the total latency comes from the later lay-

ers. Therefore, when optimizing on CPU, one may focus

mainly on the early layers, while later layers may gain more

attention when optimizing for DSP.

Different supported operations: While new operations

and model blocks have been proposing to improve accu-

racy and latency trade-offs [14–16, 31], not all of them

are equally efficient on different hardware. For example,

the depthwise separable convolution that was proposed in

MobileNet [15] to replace the regular convolution reduces

MAdds and makes model inference more efficient on CPU.

However, a decrease in MAdds does not always lead to

a decrease in on-device latency, especially for accelera-

tors which have been optimized specifically to handle large

number of computations as long as they follow certain pat-

tern [6]. For example, [12] indicates that EdgeTPU favors

regular convolution over depthwise separable convolution

in certain layers of the model as the former can utilize the

hardware resources better and gives better latency-accuracy

trade-offs. This makes it hard to manually decide what op-

eration to use at which layer if we want to have a single

model that works well on both CPU and EdgeTPU.

Diverse latency relationship: It is well known that a model

has different latencies when running on different hardware,

but is the relationship similar for all models? That is, if

a model runs 2× faster than another on one hardware, 1)

will it still run faster on another hardware? 2) if faster,

will it still be 2× faster? To answer this questions, we take

four mobile models, MobileNetV1 [15], MobileNetV2 [24],

Figure 3: Latency of different models on different hardware in

Pixel4 phone.

MobileNet EdgeTPU [12], ProxylessNAS mobile [5], and

benchmark them on different hardware to see whether the

latency ratio among them are the same. Figure 3 shows

the results, where the latency ratio among different hard-

ware are obviously different for each model. Furthermore,

while EdgeTPU runs MobileNet-EdgeTPU model faster

than ProxylessNAS-Mobile, CPU executes ProxylessNAS-

Mobile faster than MobileNet-EdgeTPU.

5. Problem Formulation

Due to the challenges listed in previous section, manu-

ally handcrafting a single model to accommodate the traits

of multiple hardware is very difficult. Instead, we leverage

neural architecture search to find multi-hardware models in

this paper, where a multi-hardware search space is proposed

to be compatible to all examined hardware, and two metrics

are introduced to compare models under multi-hardware en-

vironment.

5.1. Multi­Hardware Search Space

Let H = {H1, H2, ..., HN} be the set of hardware we

want to optimize for. For 0 < i ≤ N , Si denotes the set

of neural network architectures that Hi can support, i.e., the

entire network can fully run on this hardware without falling

back to another slower hardware. Then, a multi-hardware

search space, denoted as SH, is a set of neural network

architectures that belongs to the intersection of supported

architectures of the set of examined hardware. Mathemati-

cally,
SH ⊆ S1 ∩ S2 ∩ · · · ∩ SN . (1)

Note that, we allow the multi-hardware search space to be a

subset of instead of equal to the intersection of all supported

architectures, by taking into account the practical size limit

for efficient architecture search.

5.2. Multi­Hardware Metrics

In order to find a single model optimized for multiple

hardware, we need metrics to determine what is a better

model. Without loss of generality, we examine models’

accuracy and latency to compare different models, as the

Pareto optimal on these two metrics has been broadly used

in single-hardware architecture optimizations [3, 15, 25].

Specifically, model a is better than model b in single-

hardware optimization iff
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La < Lb when Aa = Ab, (2)

where (La, Aa) and (Lb, Ab) are the (latency, accuracy)

measurements of model a and b on the examined single

hardware, respectively.

When considering multi-hardware optimization, the

biggest challenge is how to compare models given their

latency measurements on various hardware. Let La =
{La,1, La,2, . . . , La,N} denote the latency of model a on H,

similarly for model b. We need some overall metric function

fH(·) such that, if

fH(La) < fH(Lb) when Aa = Ab, (3)

we say that model a is better than model b.

As shown in Section 4, latency on different hardware

may have different scales, thus La,i needs to be normal-

ized before any calculation. In this paper, we propose two

intuitive metrics to measure the average and worst case per-

formance of a model on multiple hardware. Specifically, the

normalized average latency over H is defined as

fH

avg(La) ,
1

N

N
∑

i=1

La,i

Ci

, (4)

and the normalized max latency over H is defined as

fH

max(La) , max
i

(

La,i

Ci

)

, (5)

where C = {C1, C2, . . . , CN} are normalization factors.

While there are many ways of choosing C, we discuss two

common cases as follows.

1. C can be chosen as the latency of a reference model on

H to represent the latency scaling relationship among

hardware. In addition, if the normalized average la-

tency of a model is 0.5, it implies that, on average, the

model runs in half of the time of the reference model.

2. On top of the natural latency scaling difference among

hardware, one can further re-weight C with the impor-

tance of each hardware in H. An extreme case would

be to set all norm factors to be ∞ except one C1 = 1.

Then fH(La) = La,1, which regresses the problem to

a single hardware optimization.

Remark: This paper mainly focuses on mobile models

as cross device application is the most common use case

of multi-hardware models. However, the methodology in-

troduced here can be easily generalized to discover multi-

hardware server sized models when needed.

6. Case Study

With the essential concepts defined above, we use an

on-device case study to demonstrate how to find multi-

hardware models via architecture search. Here, we consider

five hardware inside a Pixel4 phone: CPU float, CPU uint8,

GPU (Qualcomm Adreno 640), DSP (Qualcomm Snap-

dragon 855), EdgeTPU (Google). We choose this set of

hardware because

• it covers various types of hardware from different man-

ufacturers for mobile;

• the obtained multi-hardware model is useful in appli-

cation: Because it performs well on all hardware on

Pixel4, it can be used as a default model for any appli-

cation deployed on Pixel4 regardless of its particular

inference hardware.

We use TuNAS [3] as the NAS infrastructure to use in this

paper, while the proposed method can be applied on many

existing NAS algorithms to get multi-hardware models.

6.1. Multi­Hardware Search Space on Device

In order to optimize for multiple hardware, multi-

hardware search space needs to be both exclusive enough

so that each searched operation is supported by all exam-

ined hardware, and inclusive enough so that it searches over

a variety of effective (and supportive) operations for each

examined hardware.

• We center the search space at MobilenetV3 Large

model’s architecture as it is one of the SoTA mobile

models.

• We remove squeeze and excite (SE) and h-swish be-

cause they are not supported in EdgeTPU.

• Filter sizes are adjusted to be integer multiples of 32

due to a preference of DSP [2].

• Similar to TuNAS MobilenetV3 Large search space

[3], we search over the number of repeated blocks per

stage from {1, 2, 3, 4}, the expansion ratio from {1, 2,

3, 4, 5, 6}, and the input/output filter size ratios from

{0.5, 0.625, 0.75, 1.0, 1.25, 1.5, 2.0}.

• We do not search the input/output filter sizes in the

model head because in early experiments we found

that, the RL controller was biased towards using large

numbers of filters in the model head which blew up the

model size but with marginal accuracy improvement.

• Each block can choose either regular inverted bottle-

neck or fused inverted bottleneck, which replaces ex-

pansion 1x1 convolution (conv) and depthwise conv

with a single regular conv, as it has been shown to be

effective for EdgeTPU [13].

• Convolution kernels can choose from 3x3 and 5x5 be-

cause bigger kernels than 5x5 are not widely supported

by DSPs.

6.2. Mobilenet Normalized Avg and Max Metrics

Given we are optimizing for mobile models, we choose

to use MobilenetV1 as the reference model to calculate the

overall metrics, i.e., use its latency on the examined hard-

ware as the normalization factors C in equation (4) and (5).

More specific reasons to choose this reference model are:

• existed for a few years and yet still widely used;
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• publicly available in multiple formats (TFLite, Caffe,

etc.) for ML researchers to run benchmarks with;

• simple enough that can run on a wide variety of hard-

ware.

We do not have a particular preference on having better per-

formance on some of the optimized hardware, so no extra

re-weights were assigned to these normalization factors.

The reward function used in architecture search needs to

be adjusted with these new metrics too. In TuNAS, single

hardware search maximizes the following reward function

[3]:

r(α) = A(α) + β
∣

∣

∣

L(α)

L0

− 1
∣

∣

∣
, (6)

where α represents an architecture, r(·), A(·) and L(·) are

reward, accuracy and latency of the architecture, respec-

tively. | · | is absolute function. L0 denotes latency target.

β < 0 is an application-specific constant.

To search for multi-hardware models, the reward func-

tion becomes

ravg(α) = A(α) + β|fH

avg(α)− 1|

= A(α) + β
∣

∣

∣

1

N

N
∑

i=1

Li(α)

Ci

− 1
∣

∣

∣
, (7)

when optimizing for average performance; and

rmax(α) = A(α) + β|fH

max(α)− 1|

= A(α) + β
∣

∣

∣
max

i

Li(α)

Ci

− 1
∣

∣

∣
, (8)

when optimizing for worst case performance. Note that

when optimizing for average performance, the reward func-

tion implies a prior that the searched architecture should, on

average, have latency close to that of the reference model

MobilenetV1.

7. Experiments

7.1. Experimental Setup

Latency benchmarks: In this paper, three phones with

totally ten different hardware are used in either search-

ing for the multi-hardware model or evaluating the model

on unsearched hardware. The driver’s versions for these

phones are: Pixel4 uses QQ1B.200205.003; Pixel3 uses

QQ1A.200205.002; MediaTek Dimensity 1000 5G uses

QP1A.190711.020.

The delegates used for accelerators are: GPU’s latency

is obtained from Jet delegate using OpenCL; DSP’s latency

is from Hexagon delegate which directly calls the Qual-

comm’s binary with less overhead than Android NNAPI;

EdgeTPU’s latency and APU’s latency are obtained by us-

ing NNAPI delegate.

TF-Lite models with single-thread and batch size of 1 are

used to get all benchmarking results. When getting CPU’s

(a) CPU float (b) CPU uint8 (c) GPU (d) EdgeTPU (e) DSP

Figure 4: True cost/latency (x-axs) v.s. predicted cost/latency (y-

axis) on unseen architectures from the search space for each of the

trained cost models. Latency numbers are in millisecond unit.

latency, only the large cores were used. When benchmark-

ing on CPU uint8, DSP, EdgeTPU and APU, where quan-

tized models are needed, fake quantization is applied [18]2.

Cost models: To save hardware communication cost in

search, we pre-train linear cost models for target hardware

so that the latency of any architecture sampled during search

can be inferred from them. When training cost models, 9K

pairs of (architecture, latency) data were used to train the

cost model for each hardware, except for EdgeTPU where

we used 20K to achieve the similar quality. Figure 4 shows

that trained cost models have good correlations between

predicted and true latency on unseen architectures.

Architecture search and training: We use ImageNet

data [9] to search, train and evaluate. Input resolution is

224×224 and ResNet data preprocessing is used. Cloud

TPU v2-32 is used in both search and standalone model

training, where per core batch size is 128. For standalone

model training, we use the same hyper-parameters as in [3],

where 0.25 is set as the dropout rate when training models

for 360 epochs to get the test accuracy.

For architecture search, we increase the search length

from what was used in [3] as it shows some benefits when

optimizing DSP and TPU. Specifically, 1) per core learning

rate is halved from 0.0825 to 0.04125; 2) the warmup time

where only shared model weights are trained without up-

dating RL controller is increased from 25% to 50%; 3) we

search for 360 epochs instead of 90 epochs.

Baseline models: To make fair comparisons, we re-

implemented all baseline models in the training setup so that

they use the same hyper-parameters with multi-hardware

models. We have found similar trends as [3] that the re-

implemented MobilenetV1 and MobilenetV2 have higher

accuracy numbers than the published ones in the original

papers.

7.2. Main Results

We conduct two multi-hardware architecture searches

using TuNAS to find models that perform well on all hard-

ware in Pixel4, regarding average performance and worst

case performance, respectively. Both of them use the same

multi-hardware search space proposed in Section 6.1. Re-

ward functions used in these two searches are equation (7)

2In order to have consistency across multiple hardware, accuracy in this

paper is always measured on the float model.
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Figure 5: Accuracy-latency trade-offs of multi-hardware model v.s. baseline models on each optimized hardware. The horizontal axis is

end-to-end real time latency benchmarks in milliseconds and the vertical axis is test accuracy.

Table 1: Performance of multi-hardware models comparing with baseline models on Pixel4 phone. ‘wm’ is short for ‘width multiplier’.

‘×’ means that the model is not supported on that hardware. ‘MN-Norm’ is the mobilenet normalized metrics proposed in Section 6.2

where lower is better. Top-1 item within each column has been marked bold.

Accu Params MAdds CPU MN-Norm
Model wm

(%) (M) (M) float uint8
GPU DSP EdgeTPU

avg max

MobilenetV1 1.25 75.1 6.25 883 54.7 18.2 7.12 3.72 2.84 1.36 1.49

MobilenetV2 1.25 75.3 5.01 487 38.8 16.6 5.74 4.97 2.93 1.28 1.62

MobilenetV3Large 1.0 75.3 5.45 217 20.3 13.2 5.61 4.51 × × ×
MobilenetV3Large min 1.25 74.9 5.73 346 27.7 12.6 4.56 3.81 2.58 1.00 1.25

ProxylessNAS-Mobile 1.0 74.9 4.05 321 27.6 14.8 5.92 3.90 3.09 1.14 1.30

Mobilenet-EdgeTPU 1.0 76.2 4.05 991 59.3 19.4 7.52 4.29 2.67 1.44 1.61

Multi-AVG 1.0 75.8 4.91 433 31.0 13.9 5.40 3.81 2.40 1.06 1.25

Multi-MAX 1.0 74.9 4.39 349 25.2 11.7 4.47 3.38 2.22 0.91 1.10

and (8) respectively. β is set to -0.07.

Figure 5 shows the accuracy-latency pareto curves of

the obtained multi-hardware models compared with (re-

implemented) baseline models. ‘Multi-MAX’ and ‘Multi-

AVG’ models are the results from searching over average

metric and max metric, respectively. Each model has three

points in the plot denoting the performance for width mul-

tiplier 0.75, 1 and 1.25.

On CPU float, except MobilenetV3 Large model, which

is particularly optimized for CPU but not supported by Ed-

geTPU, multi-hardware models perform the best among all

other baseline models. On the other four hardware plat-

forms, multi-hardware models achieves SoTA trade-off be-

tween accuracy and latency.

Specifically, on CPU uint8 and GPU, multi-hardware

models perform similarly with MobilenetV3 Large min.

However. they are much better than this baseline model

on EdgeTPU and DSP. After updating MobilenetV1’s accu-

racy with the better hyper-parameters, we found that this is

the best baseline model on DSP. However, multi-hardware

models still outperform MobilenetV1 when scaling up and

the gap is much larger on other hardware. When comparing

with Mobilenet-EdgeTPU, which is optimized particularly

for EdgeTPU, multi-hardware models give better results on

both EdgeTPU and other hardware.

Figure 1 in the Introduction shows the overall perfor-

mance where the normalization factors were taken as the la-

tency of MobilenetV1 on examined hardware. As expected,

the multi-hardware models are better than all baseline mod-

els in both average and worst case performance.

Numerically, we compare multi-hardware models with

baseline models on similar accuracy range in Table 1.

Multi-MAX model runs the fastest on all examined hard-

ware except on CPU float where it still ranks the second,

while its accuracy is only 0.4% lower than the second high-

est number in baseline models achieved by MobilenetV2

and MobilenetV3 Large. The top accuracy is achieved

by Mobilenet-EdgeTPU, which is only 0.4% higher than

Multi-AVG model but its latency on CPU float is almost

2× slower and MAdds is 2.29× more. While MobilenetV3

6



Figure 6: Accuracy-latency trade-offs on unsearched hardware3, where the discovered Multi-MAX and Multi-AVG models are Pareto-

optimal on all hardware except CPU.

Figure 7: Model visualization of Multi-AVG (left) and Multi-

MAX (right) models.

Large achieves the best CPU float latency, it is not supported

on EdgeTPU, and runs 18% slower than Multi-AVG on DSP

while also 0.5% lower on accuracy. MobilenetV2 is 0.5%

lower on accuracy than Multi-AVG and runs also slower on

all examined hardware: 25% slower on CPU float and 30%

slower on DSP.

To show how multi-hardware models generalize on un-

searched hardware, we evaluate their performance on var-

ious hardware of Pixel3 and MediaTek phones in Figure

6. Without optimizing for, multi-hardware models achieve

SoTA performance on MediaTek accelerators. For Pixel3

hardware, multi-hardware models show similar trends as

they are on Pixel4: yield the best results on Pixel3 GPU

and DSP while being the second best results on CPU float.

However, on CPU uint8, multi-hardware models do not give

the best results on Pixel3 as they do for Pixel4. This is

because Pixel3 CPU float and uint8 are similar hardware,

while Pixel4 CPU uint8 has been particularly accelerated

and performs much different from CPU float. The obser-

vation above demonstrates that one may only need to pick

representative hardware to optimize, as the multi-hardware

model will most likely have similar performance on closely

related hardware, such as the same type of chips with dif-

ferent versions.

Figure 7 shows the visualization of the discovered multi-

hardware models. The number inside each grey box is the

output filter size (number of channels) for that stage, which

is applied to each of the colored blocks inside. For example,

in Multi-AVG model, second box from top, ‘dwbottleneck

3x3 / 96.0’ indicates an inverted bottleneck block where the

kernel size of depthwise conv is 3x3, the filter size of the

expanded layer is 96 and the output filter size is 32. ‘skip’

denotes an identity operation. The ×2 strides on resolu-

tion are taken at the same places as the centered model Mo-

bilenetV3: at the beginning of 1st, 2nd, 3rd, 4th, 6th stages

respectively.

Both of the multi-hardware models have light early lay-

3ProxylessNAS-Mobile only has two data points on MediaTek hard-

ware as the model with width multiplier 1.25 is not fully supported by this

hardware.
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Table 2: Performance of single-hardware models. ‘Single-DSP’ is the searched model only optimized for DSP. Top-1 item within each

column is marked bold.

Accu CPU MN-Norm
Model

(%) float uint8
GPU DSP EdgeTPU

avg max

Single-CPU float 76.5 39.6 18.0 6.23 4.52 3.32 1.33 1.48

Single-CPU uint8 76.2 38.6 13.9 5.85 3.71 2.55 1.13 1.21

Single-GPU 76.0 33.6 15.6 5.46 4.10 2.68 1.15 1.34

Single-DSP 76.3 46.7 15.6 6.88 3.42 2.44 1.21 1.43

Single-EdgeTPU 76.0 44.0 15.4 6.03 3.98 2.47 1.20 1.30

Table 3: Compare computation cost and performance of multi-hardware search and single-hardware search. One unit of search cost is ∼90

hours of Cloud TPU v2-32 usage.

Search Accu CPU MN-Norm
Model

Cost (%) float uint8
GPU DSP EdgeTPU

avg max

Single-Hardware 5× 76.2 38.6 13.9 5.85 3.71 2.55 1.13 1.21

Multi-Hardware 1× 75.8 31.0 13.9 5.40 3.81 2.40 1.06 1.25

ers and heavy later layers, 5x5 kernels also appear later

in the network. This indicates that multi-hardware mod-

els tend to move the computation to later layers where ac-

celerators may gain more computation advantage. In addi-

tion, the observation that fused inverted bottlenecks are not

chosen for multi-hardware models indicates that operations

only effective on a small subset of examined hardware are

not preferable for multi-hardware optimization.

7.3. Multi­Hardware Search v.s. Single­Hardware
Search

To show the effectiveness of multi-hardware search com-

paring with single-hardware search, we conduct single-

hardware search, by using reward function in equation (6),

for each optimized hardware on the same multi-hardware

search space with the multi-hardware search. The results

are shown in Table 2. Note that we choose to compare the

direct search results without scaling because that represents

the best performance from each search. The following com-

parisons will implicitly consider the minor difference on ac-

curacy.

As expected, the best performance on CPU uint8, GPU

and DSP was obtained from searching for corresponding

hardware. Since the multi-hardware search space does not

contain SE and h-swish which are particularly effectively

on CPU float, Single-CPU float model searched on this

search space only gives sub-optimal performance. Single-

DSP model gives similar or even better results on EdgeTPU

than Single-EdgeTPU model does, which may due to the

high correlation between DSP and EdgeTPU. By checking

the overall latency metrics, Single-CPU uint8 model (high-

lighted) gives the best results in all single-hardware models.

Taking the best single-hardware search results and com-

paring with the multi-hardware model (we take Multi-AVG

here as they have similar accuracy) in Table 3, we can see

that the best single-hardware model performs on par, or

even slightly better than multi-hardware model on normal-

ized max metric. However, which hardware would give

the best model is unknown until we get all single-hardware

models. Therefore, though single-hardware search might

get slightly better results than multi-hardware search, its

computation cost is N× of that needed for multi-hardware

search, which scales linearly with the number of hardware

one wants to optimize on.

8. Conclusions

In this paper, we introduced an important but large ig-

nored factor in hardware-aware neural architecture designs

for applications that may be deployed on multiple hard-

ware: model deployment cost. Taking this factor into con-

sideration, we proposed a solution that minimized deploy-

ment cost, as well as development cost, while still achieving

reasonably good performance across wide variety of hard-

ware. Specifically, the concept of multi-hardware search

space that is compatible with all examined hardware has

been introduced, as well as the normalized average and max

metrics to compare models’ overall performance among

multiple hardware. The multi-hardware models found in

our experiments give SOTA performance on a majority

of the examined hardware, as well as closely correlated

un-searched hardware. Comparing with single-hardware

searches which have to be applied on each target hardware

separately, multi-hardware search gives comparable overall

performance in a single search/train session.

Acknowledgements: We would like to thank Mark Sandler,

Jaeyoun Kim, Jiahui Yu, Mingxing Tan, Ruoming Pang,

Quoc V. Le, Hartwig Adam for helpful feedback and discus-

sion; Cheng-Ming Chiang, Guan-Yu Chen, Koan-Sin Tan,

Yu-Chieh Lin from MediaTek for useful guidance on Medi-

aTek benchmarks; and QCT (Qualcomm CDMA Technolo-

gies) AI SW team for feedback on optimization.

8



References

[1] Mobilenet github.

github.com/tensorflow/models/ tree/master/research/slim/

nets/mobilenet. 3

[2] Snapdragon neural processing engine sdk reference guide.

https : / / developer. qualcomm . com / docs / snpe / limitations .

html. 4

[3] Gabriel Bender, Hanxiao Liu, Bo Chen, Grace Chu, Shuyang

Cheng, Pieter-Jan Kindermans, and Quoc V. Le. Can weight

sharing outperform random architecture search? an investi-

gation with tunas. In The IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition (CVPR), June 2020. 1,

2, 3, 4, 5

[4] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and

Song Han. Once for all: Train one network and specialize it

for efficient deployment. In ICLR, 2020. 1, 2

[5] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Di-

rect neural architecture search on target task and hardware.

CoRR, abs/1812.00332, 2018. 3

[6] Yu-Hsin Chen, Joel S. Emer, and Vivienne Sze. Eyeriss v2:

A flexible and high-performance accelerator for emerging

deep neural networks. CoRR, abs/1807.07928, 2018. 3

[7] Xiangxiang Chu, Bo Zhang, and Ruijun Xu. Moga: Search-

ing beyond mobilenetv3. CoRR, 1908.01314, 2019. 1, 2

[8] Xiaoliang Dai, Peizhao Zhang, Bichen Wu, Hongxu Yin,

Fei Sun, Yanghan Wang, Marat Dukhan, Yunqing Hu, Yim-

ing Wu, Yangqing Jia, Peter Vajda, Matt Uyttendaele, and

Niraj K. Jha. Chamnet: Towards efficient network de-

sign through platform-aware model adaptation. CoRR,

abs/1812.08934, 2018. 1, 2

[9] J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-

Fei. Imagenet: A large-scale hierarchical image database.

In 2009 IEEE Conference on Computer Vision and Pattern

Recognition, pages 248–255, June 2009. 5

[10] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter.

Neural architecture search: A survey, 2018. 2

[11] Amir Gholami, Kiseok Kwon, Bichen Wu, Zizheng Tai,

Xiangyu Yue, Peter Jin, Sicheng Zhao, and Kurt Keutzer.

Squeezenext: Hardware-aware neural network design. In

The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR) Workshops, June 2018. 1

[12] Suyog Gupta and Berkin Akin. Accelerator-aware neural

network design using automl. CoRR, abs/2003.02838, 2020.

3

[13] Suyog Gupta and Mingxing Tan. Efficientnet-edgetpu: Cre-

ating accelerator-optimized neural networks with automl.

Google AI Blog. 4

[14] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh

Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,

Ruoming Pang, Vijay Vasudevan, Quoc V. Le, and Hartwig

Adam. Searching for mobilenetv3. CoRR, abs/1905.02244,

2019. 1, 3

[15] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry

Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-

dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-

tional neural networks for mobile vision applications. CoRR,

abs/1704.04861, 2017. 3

[16] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-

works. CoRR, abs/1709.01507, 2017. 3

[17] Forrest N. Iandola, Matthew W. Moskewicz, Khalid Ashraf,

Song Han, William J. Dally, and Kurt Keutzer. Squeezenet:

Alexnet-level accuracy with 50x fewer parameters and

<1mb model size. CoRR, abs/1602.07360, 2016. 1

[18] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu,

Matthew Tang, Andrew Howard, Hartwig Adam, and Dmitry

Kalenichenko. Quantization and training of neural networks

for efficient integer-arithmetic-only inference, 2017. 5

[19] Chaojian Li, Zhongzhi Yu, Yonggan Fu, Yongan Zhang,

Yang Zhao, Haoran You, Qixuan Yu, Yue Wang, Cong Hao,

and Yingyan Lin. {HW}-{nas}-bench: Hardware-aware

neural architecture search benchmark. In International Con-

ference on Learning Representations, 2021. 2

[20] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS:

differentiable architecture search. CoRR, abs/1806.09055,

2018. 2

[21] Renqian Luo, Fei Tian, Tao Qin, and Tie-Yan Liu. Neural

architecture optimization. CoRR, abs/1808.07233, 2018. 2

[22] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff

Dean. Efficient neural architecture search via parameters

sharing. In Jennifer Dy and Andreas Krause, editors, Pro-

ceedings of the 35th International Conference on Machine

Learning, volume 80 of Proceedings of Machine Learning

Research, pages 4095–4104, Stockholmsmässan, Stockholm
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