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Abstract

Quantization techniques applied to the inference of deep

neural networks have enabled fast and efficient execution

on resource-constraint devices. The success of quantiza-

tion during inference has motivated the academic commu-

nity to explore fully quantized training, i.e. quantizing back-

propagation as well. However, effective gradient quanti-

zation is still an open problem. Gradients are unbounded

and their distribution changes significantly during training,

which leads to the need for dynamic quantization. As we

show, dynamic quantization can lead to significant memory

overhead and additional data traffic slowing down train-

ing. We propose a simple alternative to dynamic quanti-

zation, in-hindsight range estimation, that uses the quanti-

zation ranges estimated on previous iterations to quantize

the present. Our approach enables fast static quantization

of gradients and activations while requiring only minimal

hardware support from the neural network accelerator to

keep track of output statistics in an online fashion. It is in-

tended as a drop-in replacement for estimating quantization

ranges and can be used in conjunction with other advances

in quantized training. We compare our method to existing

methods for range estimation from the quantized training

literature and demonstrate its effectiveness with a range of

architectures, including MobileNetV2, on image classifica-

tion benchmarks (Tiny ImageNet & ImageNet).

1. Introduction

Deep Neural Networks (DNNs) have become the state-

of-the technique for a wide range of Computer Vision (CV)

applications, such as image recognition, object detection or

machine translation. However, as the accuracy and effec-

tiveness of these networks grow, so does their size. The

high computational cost and memory footprint can impede

the deployment of such networks to resource-constrained

devices, such as smartphones, wearables or drones. For-

tunately, in recent years low-bit network quantization for
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neural network inference has been extensively studied and

in combination with dedicated hardware utilizing efficient

fixed-point operations, they have succeeded in accelerating

DNN inference [7, 13, 11, 12, 3].

However, training DNNs still predominately relies on

floating-point format. As we move towards a world of

privacy-preserving and personalized AI, we can expect in-

creased requirements for training on edge devices that do

not have the computational resources of servers. This raises

the need for more power-efficient training techniques for

neural networks. Quantizing back-propagation can provide

considerable acceleration and power efficiency but the noise

induced by gradient quantization can be detrimental to the

network’s accuracy [25, 23]. Recent work has shown that

quantized training, can achieve accuracy within 1% − 2%
of floating-point (FP32) training in a range of CV tasks and

models [25, 19, 2]. In most cases, this is possible by quan-

tizing the weights, activations and activation gradients to

8-bits and maintaining certain operations in floating-point,

such as batch-normalization [6] or weight updates.

A key challenge present throughout the quantized train-

ing literature is how to set the quantization range for gra-

dients [2, 25, 15, 1, 21, 22]. Because gradients are un-

bounded, choosing the quantization range appropriately is

important to keep the quantization error in check. Some ex-

isting methods use the min-max range of the gradient ten-

sor [21, 22, 24] whereas others use a moving average of the

tensor’s statistics [23]. [2] goes even further and propose a

per-sample quantization of gradient tensor. However, in all

cases there is a common theme: to determine the quantiza-

tion parameters of the tensor, these methods require access

to the unquantized gradient tensor. In other words, they per-

form dynamic quantization.

Dynamic quantization can reduce the quantization error

as the quantization grid is better utilized but comes with sig-

nificant memory overhead [4, 8, 20]: the quantization range

depends on the full tensor output, therefore, the entire full

precision tensor needs to be written to memory before it can

be quantized. For typical layers in common DNNs, this can

lead up to 8× more memory transfer. In section 3.2, we

discuss in more detail the implications of dynamic quanti-



zation for fixed-point accelerator hardware and quantify the

associated overhead.

In this work, we provide a hardware-friendly alternative

to dynamic quantization for quantized training, called in-

hindsight range estimation. Our approach uses the quanti-

zation ranges from previous iterations to quantize the cur-

rent tensor. This method allows us to use pre-computed

quantization ranges to accelerate training and reduce the

memory overhead. We use a moving average of the quanti-

zation range and update the ranges with statistics extracted

from the accumulator in an online fashion.

We evaluate our proposed framework on Tiny ImageNet

and ImageNet datasets. We show that our method achieves

comparable accuracy to dynamic quantization when applied

to activations and gradients. Our approach is intended as a

drop-in replacement for estimating quantization ranges and

can be used in conjunction with other advances in quantized

training.

2. Related Work

In this section, we outline some of the relevant work in

the area of quantized training. We split the contribution into

two sections. First, we discuss general advances in quan-

tized training and, second, we focus on the details of quan-

tization range estimation by relevant work. We concentrate

on activation and gradient quantization because they rely on

dynamic quantization. Weights can be quantized offline as

they do not depend on the input data.

2.1. Quantized Training

The first attempt in fully quantized training dates back to

2015 [5]. The authors train a 3-layer convolutional network

on CIFAR-10 and MNIST and introduce stochastic round-

ing as an unbiased quantization operator. DoReFa-Net [24]

train low-bit AlexNet with BatchNorm on ImageNet but

struggle to close the gap to full precision models when

training from scratch. Range Normalization is introduced

by [1] as a fixed-point friendly alternative to BatchNorm

and they observe no accuracy drop when training ResNet-

50 on ImageNet. [15] formulate a theoretical framework

for finding the optimal bit-width for all quantized tensor

in fully quantized training and perform the weight update

in fixed-point but keep BatchNorm operations in floating-

point. WAGE [21] adopt a layer-wise scaling factor instead

of using BatchNorm and quantize gradients to 8-bits while

keeping the weight update to 16-bits. WAGEUBN [22] ex-

pand on WAGE and implement a quantized implementation

of BatchNorm for the forward and backward pass. Devia-

tion Counteractive Learning Rate Scaling [25] uses an expo-

nential decaying learning rate based on the cosine distance

between the full precision and quantized gradients to stabi-

lize training. The authors measure a 22% training time re-

duction for ResNet-50 on ImageNet and apply their training

framework to MobileNetV2 and Inception V3. Recently,

it was shown that ResNet-50 can be trained within 1% of

FP32, using a hybrid of INT4 forward quantization and a

novel Radix-4 FP4 format for the gradients [19].

2.2. Quantization Range Estimation

In earlier attempts [5], a fixed-point format with a

fixed decimal point was used for activations and gradients

throughout training. DoReFa-Net clip the activations to the

[0, 1] range and use the dynamic min-max range to quantize

the gradients. WAGE and WAGEUBN use a pre-defined

scale factor α for each layer’s activation which depends on

the network’s structure and the min-max range for the gra-

dients. [15] fix the activation range to [0, 2] and use an

exponential moving average of the gradient’s standard de-

viation to calculate the gradient bit-width. Models with

RagenNorm [1] split the activation and gradient tensor in

chunks and use the average minimum and maximum of the

chunks to estimate the quantization range. [23] use an expo-

nential moving average of the maximum absolute value for

activation and gradients. Direction sensitive gradient clip-

ping [25] periodically updates the gradient clipping range

by searching for the clipping values that minimizes the an-

gle between the FP32 and quantized gradients. To the best

of our knowledge, this is the only existing method that to an

extend avoids dynamic quantization

In all previous cases, the statistics are computed over the

complete tensor. [2] observe that per-tensor quantization of

gradients does not utilize the quantization grid efficiently

and instead propose a per-sample quantization and a Block

Householder decomposition of the gradient tensor to better

spread the signal across the tensor.

3. Problem Formulation

In this section, we outline how quantized training works

using typical fixed-point accelerator architecture and ex-

plain how dynamic quantization can lead to memory and

compute overhead. In this work, we concentrate on hard-

ware dedicated to fixed-point operations to extract the

biggest power gains from quantized tensor operations.

3.1. Quantized Training Framework

In figure 1 we present a compute graph for the forward

(left) and backward pass (right) for our quantized train-

ing framework. The forward pass is very similar to that

quantization-aware training (QAT) [9, 7]. The weights W

are typically stored in higher precision (16-bits or FP32)

to allow the accumulation of small gradients during train-

ing. The weight tensor is quantized to a low-bit represen-

tation W̃ through the quantization function QW(·) before

it is loaded into the Multiply & Accumulate (MAC) array.

The quantized input X̃ is also loaded into the MAC array
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Figure 1: Forward and backward pass for quantized training pipeline.

to compute the linear operations of the layer. As X̃ and W̃

are typically larger than the MAC array, the output is calcu-

lated over multiple compute cycles. The output of the MAC

array Y is typically in 32-bits and is thus followed by an-

other quantization step, QY(·), to convert it to the required

bit-width.

During the backward pass, the quantized activation gra-

dient G̃Y is used to calculated the weight gradient GW and

input gradient GX. The input gradient is typically quite

large and is always quantized to a low-bit representation

G̃X before it is propagated to the preceding layer. The

weight gradient can be re-quantized to a lower-bit represen-

tation, but it is also common in literature to keep it in full

precision. In this work, we also keep the weight gradient in

FP32 and we denote QGX
(·) = QG(·) for clarity.

For fully quantized training, we need to specify the quan-

tization ranges of at least three quantizers QW(·), QY(·)
and QG(·). Because the weights are independent of the

data, the quantization range for the weights can be pre-

computed and be stored in memory. However, this is not

the case for the activations and gradient, as they depend on

the current batch. To address this issue most existing tech-

niques assume dynamic quantization for these quantizers.

In the following section, we discuss what exactly is dynamic

quantization and its implications for quantized training. It

is important to be able to adjust the quantization ranges of

gradients during training because the gradient distribution

changes significantly during training [19, 25, 23].

3.2. Dynamic Quantization

Dynamic quantization uses the statistics of the full preci-

sion tensor to quantize it. Assuming a quantization range of

(qmin, qmax), then in its simplest form dynamic quantization

uses the min-max range of the full tensor G:

qmin = minG, qmax = maxG (1)

Figure 2 illustrates how matrix multiplication is computed

in a typical fixed-point accelerator. The logic consists of a

fixed-size MAC array and accumulators. Typically, in deep

learning the size of matrices that are multiplied exceed the

size of the MAC array. For this reason, the computation

takes places in slices until the whole matrix multiplication

is completed. The output of the accumulator is typically in

higher bit-width (32-bits) to avoid overflow and is normally

followed by a quantization step.

In the case of static quantization, the quantization ranges

of the output (qmin, qmax) are known in advance. Therefore,

each output from the accumulator can be quantized directly

and be stored in memory in a low-bit representation. On the

other hand, in dynamic quantization, the ranges depend on

the output itself. To extract the necessary statistics, all the

outputs of the accumulator have to first be written in mem-

ory. After the quantization ranges have been calculated, the

tensor is brought back to the compute unit to be quantized

and then stored back in memory.

It is evident, that dynamic quantization can lead to sig-

nificant memory overhead and extra data movement. Our

analysis in section 6 shows that dynamic quantization can

lead up to 8× additional memory transfer depending on the

size of the layer. A study between static and dynamic quan-

tization for an MLP in PyTorch 1.4 on a CPU also showed

that dynamic quantization leads on average to a 20% latency

increase for inference. Unfortunately, dynamic quantiza-

tion for convolutions is not implemented in PyTorch, which

might be due to the even larger overhead associated with

large feature maps.
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Figure 2: Quantized neural network accelerator diagram.

The MAC array size is fixed which means that output tensor

can only be computed in slices. In the case of static quanti-

zation the quantization parameters are know in advance and

the accumulator output is directly quantized. For dynamic

quantization all outputs have to be written to memory before

they can be quantized.

4. In-Hindsight Range Estimation

Our proposed method aims at preventing the need for

dynamic quantization during quantized training and unlock

the speed-ups provided by dedicated fixed-point hardware.

The method involves two key steps:

1. Use pre-computed quantization parameters to quantize

the current tensor.

2. Extract statistics from the current tensor in an online

fashion to update the quantization parameters for the

next iteration.

Figure 3 shows a general framework of how in-hindsight

range estimation can be implemented in hardware. The ben-

efit of this approach is that the pre-computed quantization

enables fast and efficient static quantization. The required

statistics should be easy to calculate at the accumulator or

quantization level, to reduce the computational overhead of

the method. Such statistics can be the min and max statis-

tics or the saturation ratio1. In some cases, extracting these

statistics may require appropriate hardware logic around the

accelerator.

4.1. In­Hindsight Min­Max

We propose an instance of our framework that uses the

min-max statistics, which we call in-hindsight min-max. In

1The proportion of values that lie outside the quantization grid.
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Figure 3: General framework for in-hindsight range esti-

mation. Using pre-computed quantization ranges enables

efficient static quantization of the output. Additional logic

is needed at the accumulator level update the ranges for the

next step.

this method, we define the quantization range as the expo-

nential moving average of the tensor’s min-max statistics.

To quantize the tensor at step t, we use the estimate of quan-

tization ranges from the previous iteration. While the output

is computed, appropriate logic keeps track of the min-max

statistics from the accumulator. These statistics are then

used to update the quantization ranges for the next iteration

as soon as the complete output tensor has been calculated.

The quantization ranges are calculated as:

qtmin = (1− η)minGt−1 + ηqt−1

min (2)

qtmax = (1− η)maxGt−1 + ηqt−1

max (3)

where η is the momentum term. To initialize the scheme

(t = 0), we can use the min-max range of the first batch,

namely q0min = minG0 and q0max = maxG0. If we re-

place the G
t−1 with G

t in the above equations we end up

with a dynamic quantization method called running min-

max, which is common in post-training quantization [9] and

adopted for gradient quantization by [23].

5. Experiments

To verify the effectiveness of our method we conduct ex-

periments on the Tiny ImageNet [10] and full ImageNet

[14] benchmarks. We train ResNet18 on ImageNet and a

modified version on Tiny ImageNet [18]. We also train our

own version VGG16 [17] and MobileNetV2 [16] on Tiny

ImageNet.



5.1. Range Estimation Methods Comparison

Typically, in literature, we only observe final results for

the fully quantized setting, making it difficult to assess the

impact of the individual quantization choices for each ten-

sor. In this section, we aim at better understanding the im-

pact of the individual range estimation methods for either

gradients or activations quantization at the final accuracy.

We compare our hardware friendly method, in-hindsight

min-max range estimation, to the commonly used dynamic

quantization methods: current min-max [24, 21, 22, 25] and

running min-max [9, 23] estimators.

We further compare to Direction Sensitive Gradient

Clipping (DSGC) [25]. DSGC searches for the optimal clip-

ping values that maximizes the cosine similarity between

the quantized and full precision tensor. In our implementa-

tion of the method, we use golden section search to find the

optimal quantization ranges, as the authors do not provide

implementation details. Because of the computational cost

of such optimization, the quantization range is only updated

periodically. We use an update interval of 100 iteration as

per the authors. Note, this method is a hybrid between static

quantization and dynamic quantization. It uses HW friendly

static quantization for most iterations but the update step

can be very expensive, as it requires estimating the objective

function (cosine similarity) at multiple clipping thresholds.

We also experimented with using an exponential moving

average of the gradient variance [15] to define the quanti-

zation ranges. However, we found that it made training un-

stable despite an extensive hyper-parameter search for mo-

mentum and the number of standard deviations.

Experimental Setup We conduct our study on Tiny Ima-

geNet with the modified ResNet18 and train for 90 epochs

using SGD with initial learning rate of 0.1 and momentum

of 0.9. The learning rate is reduced by a factor of 10 at

epochs 30 and 60 and we use a weight decay of 1e-4. For

all different range estimation methods on the gradient and

activations tensor, we tune the hyper-parameter (e.g. mo-

mentum term) individually and present the results with the

best hyper-parameters.

Gradient Quantization To see the effect of range estima-

tion for gradient quantization, we keep the forward pass in

full precision and only quantize the activation gradient to 8-

bit using asymmetric uniform quantization with stochastic

rounding [5].

We see that in hindsight min-max performs on par and

even better than the other dynamic quantization methods.

Its performance is also comparable to DSGC, which is a

hybrid between dynamic and static quantization method.

However, in-hindsight range estimation relies on simple

statistics, whereas DSGC requires a computationally in-

Method Static Val. Acc. (%)

FP32 n.a. 58.97 ± 0.13

Current min-max ✗ 59.14 ± 0.23

Running min-max ✗ 59.25 ± 0.55

DSGC [25] ✗ 59.35 ± 0.95

In-hindsight min-max X 59.46 ± 0.71

Table 1: Gradient quantization range estimators compari-

son. Validation accuracy (average of 5 seeds) and standard

deviation for ResNet-18 on Tiny ImageNet.

Method Static Val. Acc. (%)

FP32 n.a. 58.97 ± 0.13

Current min-max ✗ 59.00 ± 0.31

Running min-max ✗ 59.28 ± 0.25

DSGC [25] ✗ 59.09 ± 0.01

In-hindsight min-max X 59.30 ± 0.19

Table 2: Activation quantization range estimator compari-

son. Validation accuracy (average of 5 seeds) and standard

deviation for ResNet-18 on Tiny ImageNet.

tensive parameter search. We also found that under cer-

tain seeds training with DSGC can become quite unstable,

which is also reflected by the larger standard deviation of

the final result. Current min-max underperforms all other

methods. This analysis demonstrates that switching to a

better range estimator could be very beneficial before at-

tempting more complex solutions.

It is also interesting to observe that gradient quantization

leads to accuracy improvements compared to FP32 training

across the board likely due to its regularization effect.

Activation Quantization In this study, we explore the

same range estimation methods for activation quantization.

We keep the weights and backward pass in full precision

and only quantize the activations using asymmetric uniform

quantization.

Similar to gradient quantization, our method is on par

with dynamic quantization methods and outperforms FP32.

For activation quantization, in-hindsight min-max and run-

ning min-max perform significantly better than the other

methods. DSGC performs worse in activation quantization,

which is not surprising, as its objective function was de-

signed with gradient distributions in mind. Once again cur-

rent min-max trails the other methods.

5.2. Fully Quantized Training Results

We now demonstrate the effectiveness of our method for

fully quantized training on ImageNet and Tiny ImageNet



Gradient Method Activation Method Static ResNet18 VGG16 MobileNetV2

FP32 FP32 n.a. 58.97 ± 0.13 53.79 ± 0.30 59.61 ± 0.37

Current min-max Current min-max ✗ 58.77 ± 0.73 53.28 ± 0.43 58.88 ± 0.73

Running min-max Running min-max ✗ 59.20 ± 0.25 53.36 ± 0.27 59.69 ± 0.09

DSGC [25] Current min-max ✗ 59.07 ± 0.33 52.84 ± 0.28 59.10 ± 0.44

In-hindsight min-max In-hindsight min-max X 58.99 ± 0.44 53.25 ± 0.41 59.28 ± 0.20

Table 3: Results on Tiny ImageNet. Average validation accuracy (%) with standard deviation: 5 seeds for ResNet18 &

VGG16 and 3 seeds for MobilenetV2.

Gradient Method Activation Method Static ResNet18

FP32 FP32 n.a. 69.75

Current min-max Current min-max ✗ 69.21 ± 0.06

Running min-max Running min-max ✗ 69.35 ± 0.16

In-hindsight min-max In-hindsight min-max X 69.37 ± 0.11

Table 4: Validation accuracy (%) results on ImageNet. Average validation accuracy (%) of 3 seeds with standard deviation.

benchmarks and compare against other dynamic quantiza-

tion methods. We apply in-hindsight min-max to both acti-

vations and gradients. We also compare against using run-

ning and current min-max for both tensors. The earlier is a

variation of the method adopted by quantification param-

eter adjustment [23] but without the bit-with adjustment,

whereas the latter is similar to the quantized training frame-

work of [2] when using per-tensor quantization. Finally, for

Tiny ImageNet, we further compare to quantized training

framework of DSGC without the adaptive learning rate.

Experimental Setup Weights, activations and gradients

are quantized to 8-bits (W8/A8/G8). We use uniform

stochastic quantization for gradients and standard uniform

quantization for the weights and activations for all layers,

including the first and last layer of the networks. The

weights are always quantized with the current min-max

method. For the DSGC method, we follow the author’s ap-

proach and dynamically quantize activations using current

min-max.

We use a momentum of 0.9 for running min-max and

in-hindsight min-max although we observe little sensitivity

to that parameter. We also found that both methods ben-

efit from an initial calibration step when used for activa-

tion quantization. By calibration, we mean feeding a few

batches of data through the network to calibrate the quanti-

zation ranges before training starts.

All models are trained using SGD with momentum of

0.9. ResNet18 is trained as described in the previous sec-

tion. VGG16 is trained for 90 epochs with initial learning

rate of 0.01. The learning rate is reduced by a factor of 10

at epochs 60 and 80. We train MobileNetV2 for 120 epochs

with initial learning of 0.01 for the depthwise-separable lay-

ers and 0.1 for all other layers in the network. We found that

this heterogeneous learning rate stabilizes quantized train-

ing for all methods. It also leads to no accuracy drop for

FP32 training compared to a homogeneous learning rate of

0.1. We use a cosine annealing schedule with a final learn-

ing rate of 1e-5 and a weight decay of 2e-5.

Results Discussion The results for Tiny ImageNet are

shown in table 2. Across all 3 models, our hardware-

friendly in-hindsight min-max performs on par with the

significantly less efficient dynamic quantization methods.

Only running min-max outperforms this slightly for Mo-

bileNetV2. We observe a similar trend for full ImageNet

training (cf. table 3) where in-hindsight min-max performs

similar to running min-max and marginally outperforms the

commonly used current min-max. In summary, for all cases,

8-bit in-hindsight quantization is close to the FP32 baseline

(within .5%) while fully utilizes the advantages of common

fixed point accelerators.

6. Memory Transfer Comparison

In this section, we compare the memory transfer asso-

ciated with static and dynamic quantization. We show it

here for the forward pass, the backwards pass follows anal-

ogously (see figure 1).

In static quantization, the quantized weight tensor W̃

(Cin input channels, Cout output channels, k×k kernel size)

and the quantized input X̃ of size W ×H are sequentially

loaded to the MAC array. The output of the accumulator

is then quantized and stored in memory. The total memory
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neural network accelerator.

Network Conv Cin Cout W ×H Static Dynamic Delta

ResNet18 3×3 64 64 56×56 428 KB 1996 KB +366%

ResNet18 3×3 256 256 14×14 674 KB 1066 KB +58%

MobileNetV2 1×1 16 96 112×112 1374 KB 10782 KB +685%

MobileNetV2 3×3 (DW) 96 96 112×112 882 KB 4410 KB +400%

MobileNetV2 3×3 (DW) 960 960 7×7 100 KB 468 KB +366%

Table 5: Memory movement costs comparison between static and dynamic quantization for various layers in ResNet18 and

MobileNetV2 on ImageNet (bw = ba = 8-bits, bacc = 32-bits, DW = depthwise separable).

cost for static quantization in bits is given by:

CinCoutk
2bw︸ ︷︷ ︸

weight kernel

+CinWHba︸ ︷︷ ︸
input feature

+CoutWHba︸ ︷︷ ︸
output feature

(4)

where ba and bw are the activation and weight bit-width, re-

spectively. As we discussed in section 3.2, dynamic quanti-

zation requires writing the accumulator output first in mem-

ory. After the statistics have been calculated the quantiza-

tion parameters are updated and the output is then brought

back to the compute unit to be quantized. The quantized

output is then written back to memory. To total memory

cost of dynamic quantization is given by:

CinCoutk
2bw︸ ︷︷ ︸

weight kernel

+CinWHba︸ ︷︷ ︸
input feature

+CoutWHbacc︸ ︷︷ ︸
save acc output

+CoutWHbacc︸ ︷︷ ︸
load acc output

+ CoutWHba︸ ︷︷ ︸
save quantized output

(5)

where bacc is the bit-width of the accumulator. Figure 4 il-

lustrates the memory movement associated with every step.

In table 5, we compare the memory movement cost

of static and dynamic quantization for typical layers in

ResNet18 and MobileNetV2 using bw = ba = 8-bits and

bacc = 32-bits. The exact overhead of dynamic quantiza-

tion depends on many parameters, such as the input size,

number of channels and type of kernel. In most cases, the

extra memory movement is about 4×. Only in later lay-

ers in ResNet18, where the weight tensor is significantly

larger than the input feature map, is the overhead lower. In

the extreme case of certain point-wise convolutions in Mo-

bileNetV2, the memory movement of dynamic quantization

can be 8× higher than for static quantization.

7. Conclusions

In this paper, we provide a general framework for esti-

mating quantization ranges in the context of quantized train-

ing that overcomes the need for dynamic quantization. Our

proposed approach, in-hindsight range estimation, uses past

estimates of the quantization parameters to enable static

quantization of the tensor in question. It relies on extracting

simple statistics from the output tensor in an online fashion

to update the quantization parameters for the next iteration.

While this is a general framework, we propose a specific

variant, called in-hindsight min-max that uses the min-max

statistics.

We demonstrate the effectiveness of our methods on pop-



ular image classification benchmarks by comparing them

to other dynamic quantization techniques found in litera-

ture. We show that in-hindsight min-max performs on par

with the best scoring dynamic range methods while reduc-

ing significantly the memory overhead associated with dy-

namic quantization. It can be used as a drop-in replacement

method for estimating quantization ranges that can better

utilize the common fixed-point accelerators for quantized

training.
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