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Abstract

Quantization techniques applied to the inference of deep
neural networks have enabled fast and efficient execution
on resource-constraint devices. The success of quantiza-
tion during inference has motivated the academic commu-
nity to explore fully quantized training, i.e. quantizing back-
propagation as well. However, effective gradient quanti-
zation is still an open problem. Gradients are unbounded
and their distribution changes significantly during training,
which leads to the need for dynamic quantization. As we
show, dynamic quantization can lead to significant memory
overhead and additional data traffic slowing down train-
ing. We propose a simple alternative to dynamic quanti-
zation, in-hindsight range estimation, that uses the quanti-
zation ranges estimated on previous iterations to quantize
the present. Our approach enables fast static quantization
of gradients and activations while requiring only minimal
hardware support from the neural network accelerator to
keep track of output statistics in an online fashion. It is in-
tended as a drop-in replacement for estimating quantization
ranges and can be used in conjunction with other advances
in quantized training. We compare our method to existing
methods for range estimation from the quantized training
literature and demonstrate its effectiveness with a range of
architectures, including MobileNetV2, on image classifica-
tion benchmarks (Tiny ImageNet & ImageNet).

1. Introduction

Deep Neural Networks (DNNs) have become the state-
of-the technique for a wide range of Computer Vision (CV)
applications, such as image recognition, object detection or
machine translation. However, as the accuracy and effec-
tiveness of these networks grow, so does their size. The
high computational cost and memory footprint can impede
the deployment of such networks to resource-constrained
devices, such as smartphones, wearables or drones. For-
tunately, in recent years low-bit network quantization for
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neural network inference has been extensively studied and
in combination with dedicated hardware utilizing efficient
fixed-point operations, they have succeeded in accelerating
DNN inference [7, 13, 11, 12, 3].

However, training DNNs still predominately relies on
floating-point format. As we move towards a world of
privacy-preserving and personalized Al, we can expect in-
creased requirements for training on edge devices that do
not have the computational resources of servers. This raises
the need for more power-efficient training techniques for
neural networks. Quantizing back-propagation can provide
considerable acceleration and power efficiency but the noise
induced by gradient quantization can be detrimental to the
network’s accuracy [25, 23]. Recent work has shown that
quantized training, can achieve accuracy within 1% — 2%
of floating-point (FP32) training in a range of CV tasks and
models [25, 19, 2]. In most cases, this is possible by quan-
tizing the weights, activations and activation gradients to
8-bits and maintaining certain operations in floating-point,
such as batch-normalization [6] or weight updates.

A key challenge present throughout the quantized train-
ing literature is how to set the quantization range for gra-
dients [2, 25, 15, 1, 21, 22]. Because gradients are un-
bounded, choosing the quantization range appropriately is
important to keep the quantization error in check. Some ex-
isting methods use the min-max range of the gradient ten-
sor [21, 22, 24] whereas others use a moving average of the
tensor’s statistics [23]. [2] goes even further and propose a
per-sample quantization of gradient tensor. However, in all
cases there is a common theme: to determine the quantiza-
tion parameters of the tensor, these methods require access
to the unquantized gradient tensor. In other words, they per-
form dynamic quantization.

Dynamic quantization can reduce the quantization error
as the quantization grid is better utilized but comes with sig-
nificant memory overhead [4, 8, 20]: the quantization range
depends on the full tensor output, therefore, the entire full
precision tensor needs to be written to memory before it can
be quantized. For typical layers in common DNNSs, this can
lead up to 8x more memory transfer. In section 3.2, we
discuss in more detail the implications of dynamic quanti-



zation for fixed-point accelerator hardware and quantify the
associated overhead.

In this work, we provide a hardware-friendly alternative
to dynamic quantization for quantized training, called in-
hindsight range estimation. Our approach uses the quanti-
zation ranges from previous iterations to quantize the cur-
rent tensor. This method allows us to use pre-computed
quantization ranges to accelerate training and reduce the
memory overhead. We use a moving average of the quanti-
zation range and update the ranges with statistics extracted
from the accumulator in an online fashion.

We evaluate our proposed framework on Tiny ImageNet
and ImageNet datasets. We show that our method achieves
comparable accuracy to dynamic quantization when applied
to activations and gradients. Our approach is intended as a
drop-in replacement for estimating quantization ranges and
can be used in conjunction with other advances in quantized
training.

2. Related Work

In this section, we outline some of the relevant work in
the area of quantized training. We split the contribution into
two sections. First, we discuss general advances in quan-
tized training and, second, we focus on the details of quan-
tization range estimation by relevant work. We concentrate
on activation and gradient quantization because they rely on
dynamic quantization. Weights can be quantized offline as
they do not depend on the input data.

2.1. Quantized Training

The first attempt in fully quantized training dates back to
2015 [5]. The authors train a 3-layer convolutional network
on CIFAR-10 and MNIST and introduce stochastic round-
ing as an unbiased quantization operator. DoReFa-Net [24]
train low-bit AlexNet with BatchNorm on ImageNet but
struggle to close the gap to full precision models when
training from scratch. Range Normalization is introduced
by [1] as a fixed-point friendly alternative to BatchNorm
and they observe no accuracy drop when training ResNet-
50 on ImageNet. [15] formulate a theoretical framework
for finding the optimal bit-width for all quantized tensor
in fully quantized training and perform the weight update
in fixed-point but keep BatchNorm operations in floating-
point. WAGE [21] adopt a layer-wise scaling factor instead
of using BatchNorm and quantize gradients to 8-bits while
keeping the weight update to 16-bits. WAGEUBN [22] ex-
pand on WAGE and implement a quantized implementation
of BatchNorm for the forward and backward pass. Devia-
tion Counteractive Learning Rate Scaling [25] uses an expo-
nential decaying learning rate based on the cosine distance
between the full precision and quantized gradients to stabi-
lize training. The authors measure a 22% training time re-
duction for ResNet-50 on ImageNet and apply their training

framework to MobileNetV2 and Inception V3. Recently,
it was shown that ResNet-50 can be trained within 1% of
FP32, using a hybrid of INT4 forward quantization and a
novel Radix-4 FP4 format for the gradients [19].

2.2. Quantization Range Estimation

In earlier attempts [5], a fixed-point format with a
fixed decimal point was used for activations and gradients
throughout training. DoReFa-Net clip the activations to the
[0, 1] range and use the dynamic min-max range to quantize
the gradients. WAGE and WAGEUBN use a pre-defined
scale factor « for each layer’s activation which depends on
the network’s structure and the min-max range for the gra-
dients. [15] fix the activation range to [0,2] and use an
exponential moving average of the gradient’s standard de-
viation to calculate the gradient bit-width. Models with
RagenNorm [1] split the activation and gradient tensor in
chunks and use the average minimum and maximum of the
chunks to estimate the quantization range. [23] use an expo-
nential moving average of the maximum absolute value for
activation and gradients. Direction sensitive gradient clip-
ping [25] periodically updates the gradient clipping range
by searching for the clipping values that minimizes the an-
gle between the FP32 and quantized gradients. To the best
of our knowledge, this is the only existing method that to an
extend avoids dynamic quantization

In all previous cases, the statistics are computed over the
complete tensor. [2] observe that per-tensor quantization of
gradients does not utilize the quantization grid efficiently
and instead propose a per-sample quantization and a Block
Householder decomposition of the gradient tensor to better
spread the signal across the tensor.

3. Problem Formulation

In this section, we outline how quantized training works
using typical fixed-point accelerator architecture and ex-
plain how dynamic quantization can lead to memory and
compute overhead. In this work, we concentrate on hard-
ware dedicated to fixed-point operations to extract the
biggest power gains from quantized tensor operations.

3.1. Quantized Training Framework

In figure 1 we present a compute graph for the forward
(left) and backward pass (right) for our quantized train-
ing framework. The forward pass is very similar to that
quantization-aware training (QAT) [9, 7]. The weights W
are typically stored in higher precision (16-bits or FP32)
to allow the accumulation of small gradients during train-
ing. The weight tensor is quantized to a low-bit represen-
tation W through the quantization function Qw () before
it is loaded into the Multiply & Accumulate (MAC) array.
The quantized input X is also loaded into the MAC array
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Figure 1: Forward and backward pass for quantized training pipeline.

to compute the linear operations of the layer. As X and W
are typically larger than the MAC array, the output is calcu-
lated over multiple compute cycles. The output of the MAC
array Y is typically in 32-bits and is thus followed by an-
other quantization step, Qv (+), to convert it to the required
bit-width.

During the backward pass, the quantized activation gra-
dient Gy is used to calculated the weight gradient Gvw and
input gradient Gx. The input gradient is typically quite
large and is always quantized to a low-bit representation
Gx before it is propagated to the preceding layer. The
weight gradient can be re-quantized to a lower-bit represen-
tation, but it is also common in literature to keep it in full
precision. In this work, we also keep the weight gradient in
FP32 and we denote Qg (1) = Qc(+) for clarity.

For fully quantized training, we need to specify the quan-
tization ranges of at least three quantizers Qw(-), Qv (*)
and Qg (-). Because the weights are independent of the
data, the quantization range for the weights can be pre-
computed and be stored in memory. However, this is not
the case for the activations and gradient, as they depend on
the current batch. To address this issue most existing tech-
niques assume dynamic quantization for these quantizers.
In the following section, we discuss what exactly is dynamic
quantization and its implications for quantized training. It
is important to be able to adjust the quantization ranges of
gradients during training because the gradient distribution
changes significantly during training [19, 25, 23].

3.2. Dynamic Quantization

Dynamic quantization uses the statistics of the full preci-
sion tensor to quantize it. Assuming a quantization range of
(Gmin, gmax ) then in its simplest form dynamic quantization

uses the min-max range of the full tensor G:

Gmin = Min G,  gnax = max G (1)
Figure 2 illustrates how matrix multiplication is computed
in a typical fixed-point accelerator. The logic consists of a
fixed-size MAC array and accumulators. Typically, in deep
learning the size of matrices that are multiplied exceed the
size of the MAC array. For this reason, the computation
takes places in slices until the whole matrix multiplication
is completed. The output of the accumulator is typically in
higher bit-width (32-bits) to avoid overflow and is normally
followed by a quantization step.

In the case of static quantization, the quantization ranges
of the output (Gmin, ¢max) are known in advance. Therefore,
each output from the accumulator can be quantized directly
and be stored in memory in a low-bit representation. On the
other hand, in dynamic quantization, the ranges depend on
the output itself. To extract the necessary statistics, all the
outputs of the accumulator have to first be written in mem-
ory. After the quantization ranges have been calculated, the
tensor is brought back to the compute unit to be quantized
and then stored back in memory.

It is evident, that dynamic quantization can lead to sig-
nificant memory overhead and extra data movement. Our
analysis in section 6 shows that dynamic quantization can
lead up to 8 x additional memory transfer depending on the
size of the layer. A study between static and dynamic quan-
tization for an MLP in PyTorch 1.4 on a CPU also showed
that dynamic quantization leads on average to a 20% latency
increase for inference. Unfortunately, dynamic quantiza-
tion for convolutions is not implemented in PyTorch, which
might be due to the even larger overhead associated with
large feature maps.



Dynamic
Quantization

Static

Memory

Figure 2: Quantized neural network accelerator diagram.
The MAC array size is fixed which means that output tensor
can only be computed in slices. In the case of static quanti-
zation the quantization parameters are know in advance and
the accumulator output is directly quantized. For dynamic
quantization all outputs have to be written to memory before
they can be quantized.

4. In-Hindsight Range Estimation

Our proposed method aims at preventing the need for
dynamic quantization during quantized training and unlock
the speed-ups provided by dedicated fixed-point hardware.
The method involves two key steps:

1. Use pre-computed quantization parameters to quantize
the current tensor.

2. Extract statistics from the current tensor in an online
fashion to update the quantization parameters for the
next iteration.

Figure 3 shows a general framework of how in-hindsight
range estimation can be implemented in hardware. The ben-
efit of this approach is that the pre-computed quantization
enables fast and efficient static quantization. The required
statistics should be easy to calculate at the accumulator or
quantization level, to reduce the computational overhead of
the method. Such statistics can be the min and max statis-
tics or the saturation ratio'. In some cases, extracting these
statistics may require appropriate hardware logic around the
accelerator.

4.1. In-Hindsight Min-Max

We propose an instance of our framework that uses the
min-max statistics, which we call in-hindsight min-max. In
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Figure 3: General framework for in-hindsight range esti-
mation. Using pre-computed quantization ranges enables
efficient static quantization of the output. Additional logic
is needed at the accumulator level update the ranges for the
next step.

this method, we define the quantization range as the expo-
nential moving average of the tensor’s min-max statistics.
To quantize the tensor at step ¢, we use the estimate of quan-
tization ranges from the previous iteration. While the output
is computed, appropriate logic keeps track of the min-max
statistics from the accumulator. These statistics are then
used to update the quantization ranges for the next iteration
as soon as the complete output tensor has been calculated.
The quantization ranges are calculated as:

Ghin = (1 =) min G " + gl )
Ghax = (1 — ) max G'™' + gl ! 3)

where 7 is the momentum term. To initialize the scheme
(t = 0), we can use the min-max range of the first batch,
namely ¢%. = min G° and ¢0,, = maxG°. If we re-
place the G*~! with G' in the above equations we end up
with a dynamic quantization method called running min-
max, which is common in post-training quantization [9] and
adopted for gradient quantization by [23].

5. Experiments

To verify the effectiveness of our method we conduct ex-
periments on the Tiny ImageNet [10] and full ImageNet
[14] benchmarks. We train ResNet18 on ImageNet and a
modified version on Tiny ImageNet [18]. We also train our
own version VGG16 [17] and MobileNetV2 [16] on Tiny
ImageNet.



5.1. Range Estimation Methods Comparison

Typically, in literature, we only observe final results for
the fully quantized setting, making it difficult to assess the
impact of the individual quantization choices for each ten-
sor. In this section, we aim at better understanding the im-
pact of the individual range estimation methods for either
gradients or activations quantization at the final accuracy.
We compare our hardware friendly method, in-hindsight
min-max range estimation, to the commonly used dynamic
quantization methods: current min-max [24, 21, 22, 25] and
running min-max [9, 23] estimators.

We further compare to Direction Sensitive Gradient
Clipping (DSGC) [25]. DSGC searches for the optimal clip-
ping values that maximizes the cosine similarity between
the quantized and full precision tensor. In our implementa-
tion of the method, we use golden section search to find the
optimal quantization ranges, as the authors do not provide
implementation details. Because of the computational cost
of such optimization, the quantization range is only updated
periodically. We use an update interval of 100 iteration as
per the authors. Note, this method is a hybrid between static
quantization and dynamic quantization. It uses HW friendly
static quantization for most iterations but the update step
can be very expensive, as it requires estimating the objective
function (cosine similarity) at multiple clipping thresholds.

We also experimented with using an exponential moving
average of the gradient variance [15] to define the quanti-
zation ranges. However, we found that it made training un-
stable despite an extensive hyper-parameter search for mo-
mentum and the number of standard deviations.

Experimental Setup We conduct our study on Tiny Ima-
geNet with the modified ResNet18 and train for 90 epochs
using SGD with initial learning rate of 0.1 and momentum
of 0.9. The learning rate is reduced by a factor of 10 at
epochs 30 and 60 and we use a weight decay of le-4. For
all different range estimation methods on the gradient and
activations tensor, we tune the hyper-parameter (e.g. mo-
mentum term) individually and present the results with the
best hyper-parameters.

Gradient Quantization To see the effect of range estima-
tion for gradient quantization, we keep the forward pass in
full precision and only quantize the activation gradient to 8-
bit using asymmetric uniform quantization with stochastic
rounding [5].

We see that in hindsight min-max performs on par and
even better than the other dynamic quantization methods.
Its performance is also comparable to DSGC, which is a
hybrid between dynamic and static quantization method.
However, in-hindsight range estimation relies on simple
statistics, whereas DSGC requires a computationally in-

Method Static  Val. Acc. (%)
FP32 na. 5897 +0.13
Current min-max X 59.14 £ 0.23
Running min-max X 59.25 £ 0.55
DSGC [25] X 59.35 £ 0.95
In-hindsight min-max v 59.46 £0.71

Table 1: Gradient quantization range estimators compari-
son. Validation accuracy (average of 5 seeds) and standard
deviation for ResNet-18 on Tiny ImageNet.

Method Static  Val. Acc. (%)
FP32 n.a. 58.97 £ 0.13
Current min-max X 59.00 + 0.31
Running min-max X 59.28 £ 0.25
DSGC [25] X 59.09 £ 0.01
In-hindsight min-max v 59.30 £ 0.19

Table 2: Activation quantization range estimator compari-
son. Validation accuracy (average of 5 seeds) and standard
deviation for ResNet-18 on Tiny ImageNet.

tensive parameter search. We also found that under cer-
tain seeds training with DSGC can become quite unstable,
which is also reflected by the larger standard deviation of
the final result. Current min-max underperforms all other
methods. This analysis demonstrates that switching to a
better range estimator could be very beneficial before at-
tempting more complex solutions.

It is also interesting to observe that gradient quantization
leads to accuracy improvements compared to FP32 training
across the board likely due to its regularization effect.

Activation Quantization In this study, we explore the
same range estimation methods for activation quantization.
We keep the weights and backward pass in full precision
and only quantize the activations using asymmetric uniform
quantization.

Similar to gradient quantization, our method is on par
with dynamic quantization methods and outperforms FP32.
For activation quantization, in-hindsight min-max and run-
ning min-max perform significantly better than the other
methods. DSGC performs worse in activation quantization,
which is not surprising, as its objective function was de-
signed with gradient distributions in mind. Once again cur-
rent min-max trails the other methods.

5.2. Fully Quantized Training Results

We now demonstrate the effectiveness of our method for
fully quantized training on ImageNet and Tiny ImageNet



Gradient Method Activation Method Static ResNet18 VGG16 MobileNetV2
FP32 FP32 na. 5897+0.13 53.79+£0.30 59.61 +0.37
Current min-max Current min-max X 58.77 £0.73 53.28+043 58.88 +0.73
Running min-max Running min-max X 5920+ 0.25 5336+£0.27 59.69 + 0.09
DSGC [25] Current min-max X 59.07 £ 0.33 52.84 £0.28 59.10 + 0.44
In-hindsight min-max  In-hindsight min-max v 58.99 £0.44 5325+041 59.28 £0.20

Table 3: Results on Tiny ImageNet. Average validation accuracy (%) with standard deviation: 5 seeds for ResNetl8 &

VGG16 and 3 seeds for MobilenetV2.

Gradient Method Activation Method Static ResNet18
FP32 FP32 n.a. 69.75
Current min-max Current min-max X 69.21 £ 0.06
Running min-max Running min-max X 69.35 + 0.16
In-hindsight min-max  In-hindsight min-max v 69.37 £ 0.11

Table 4: Validation accuracy (%) results on ImageNet. Average validation accuracy (%) of 3 seeds with standard deviation.

benchmarks and compare against other dynamic quantiza-
tion methods. We apply in-hindsight min-max to both acti-
vations and gradients. We also compare against using run-
ning and current min-max for both tensors. The earlier is a
variation of the method adopted by quantification param-
eter adjustment [23] but without the bit-with adjustment,
whereas the latter is similar to the quantized training frame-
work of [2] when using per-tensor quantization. Finally, for
Tiny ImageNet, we further compare to quantized training
framework of DSGC without the adaptive learning rate.

Experimental Setup Weights, activations and gradients
are quantized to 8-bits (W8/A8/G8). We use uniform
stochastic quantization for gradients and standard uniform
quantization for the weights and activations for all layers,
including the first and last layer of the networks. The
weights are always quantized with the current min-max
method. For the DSGC method, we follow the author’s ap-
proach and dynamically quantize activations using current
min-max.

We use a momentum of 0.9 for running min-max and
in-hindsight min-max although we observe little sensitivity
to that parameter. We also found that both methods ben-
efit from an initial calibration step when used for activa-
tion quantization. By calibration, we mean feeding a few
batches of data through the network to calibrate the quanti-
zation ranges before training starts.

All models are trained using SGD with momentum of
0.9. ResNetl8 is trained as described in the previous sec-
tion. VGGI16 is trained for 90 epochs with initial learning
rate of 0.01. The learning rate is reduced by a factor of 10
at epochs 60 and 80. We train MobileNetV2 for 120 epochs

with initial learning of 0.01 for the depthwise-separable lay-
ers and 0.1 for all other layers in the network. We found that
this heterogeneous learning rate stabilizes quantized train-
ing for all methods. It also leads to no accuracy drop for
FP32 training compared to a homogeneous learning rate of
0.1. We use a cosine annealing schedule with a final learn-
ing rate of le-5 and a weight decay of 2e-5.

Results Discussion The results for Tiny ImageNet are
shown in table 2. Across all 3 models, our hardware-
friendly in-hindsight min-max performs on par with the
significantly less efficient dynamic quantization methods.
Only running min-max outperforms this slightly for Mo-
bileNetV2. We observe a similar trend for full ImageNet
training (cf. table 3) where in-hindsight min-max performs
similar to running min-max and marginally outperforms the
commonly used current min-max. In summary, for all cases,
8-bit in-hindsight quantization is close to the FP32 baseline
(within .5%) while fully utilizes the advantages of common
fixed point accelerators.

6. Memory Transfer Comparison

In this section, we compare the memory transfer asso-
ciated with static and dynamic quantization. We show it
here for the forward pass, the backwards pass follows anal-
ogously (see figure 1).

In static quantization, the quantized weight tensor N4
(Cin input channels, Coy output channels, £ x k kernel size)
and the quantized input X of size W x H are sequentially
loaded to the MAC array. The output of the accumulator
is then quantized and stored in memory. The total memory
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Figure 4: Comparison of memory movements associated with static (left) and dynamic (right) quantization in a fixed-point

neural network accelerator.

Network Conv C; Cotw WXxH Static Dynamic Delta
ResNetl8 3x3 64 64 56x56 428 KB 1996 KB  +366%
ResNetl8 3x3 256 256 14x14 674 KB 1066 KB +58%
MobileNetV2 Ix1 16 96 112x112 1374 KB 10782KB +685%
MobileNetV2 3x3 (DW) 96 96 112x112 882KB 4410KB  +400%
MobileNetV2 3x3 (DW) 960 960 Tx7 100 KB 468 KB +366%

Table 5: Memory movement costs comparison between static and dynamic quantization for various layers in ResNet18 and
MobileNetV2 on ImageNet (b,, = b, = 8-bits, b, = 32-bits, DW = depthwise separable).

cost for static quantization in bits is given by:

c'incvoutk2 bw + C’inVVfIbaL + CVoutVVI{ba (4)
—_——— — — —, —

weight kernel input feature output feature

where b, and b,, are the activation and weight bit-width, re-
spectively. As we discussed in section 3.2, dynamic quanti-
zation requires writing the accumulator output first in mem-
ory. After the statistics have been calculated the quantiza-
tion parameters are updated and the output is then brought
back to the compute unit to be quantized. The quantized
output is then written back to memory. To total memory
cost of dynamic quantization is given by:

Cin C’outk2 by + CinW Hbg + Coui W H byec
o " s G
save acc outpu

CYout WH ba

save quantized output

weight kernel input feature

+ CoutWHbacc +

load acc output

®)

where b, is the bit-width of the accumulator. Figure 4 il-
lustrates the memory movement associated with every step.

In table 5, we compare the memory movement cost
of static and dynamic quantization for typical layers in
ResNet18 and MobileNetV2 using b,, = b, = 8-bits and

b,ec = 32-bits. The exact overhead of dynamic quantiza-
tion depends on many parameters, such as the input size,
number of channels and type of kernel. In most cases, the
extra memory movement is about 4x. Only in later lay-
ers in ResNetl8, where the weight tensor is significantly
larger than the input feature map, is the overhead lower. In
the extreme case of certain point-wise convolutions in Mo-
bileNetV2, the memory movement of dynamic quantization
can be 8 higher than for static quantization.

7. Conclusions

In this paper, we provide a general framework for esti-
mating quantization ranges in the context of quantized train-
ing that overcomes the need for dynamic quantization. Our
proposed approach, in-hindsight range estimation, uses past
estimates of the quantization parameters to enable static
quantization of the tensor in question. It relies on extracting
simple statistics from the output tensor in an online fashion
to update the quantization parameters for the next iteration.
While this is a general framework, we propose a specific
variant, called in-hindsight min-max that uses the min-max
statistics.

We demonstrate the effectiveness of our methods on pop-



ular image classification benchmarks by comparing them
to other dynamic quantization techniques found in litera-
ture. We show that in-hindsight min-max performs on par
with the best scoring dynamic range methods while reduc-
ing significantly the memory overhead associated with dy-
namic quantization. It can be used as a drop-in replacement
method for estimating quantization ranges that can better
utilize the common fixed-point accelerators for quantized
training.
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