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Abstract

Network spaces have been known as a critical factor in

both handcrafted network designs or defining search spaces

for Neural Architecture Search (NAS). However, an effective

space involves tremendous prior knowledge and/or manual

effort, and additional constraints are required to discover

efficiency-aware architectures. In this paper, we define a

new problem, Network Space Search (NSS), as searching

for favorable network spaces instead of a single architec-

ture. We propose an NSS method to directly search for

efficient-aware network spaces automatically, reducing the

manual effort and immense cost in discovering satisfactory

ones. The resultant network spaces, named Elite Spaces,

are discovered from Expanded Search Space with mini-

mal human expertise imposed. The Pareto-efficient Elite

Spaces are aligned with the Pareto front under various com-

plexity constraints and can be further served as NAS search

spaces, benefiting differentiable NAS approaches (e.g. In

CIFAR-100, an averagely 2.3% lower error rate and 3.7%
closer to target constraint than the baseline with around

90% fewer samples required to find satisfactory networks).

Moreover, our NSS approach is capable of searching for su-

perior spaces in future unexplored spaces, revealing great

potential in searching for network spaces automatically.

1. Introduction

The recent architectural advance of deep convolutional

neural networks [16, 27, 8, 10] considers several factors for

network designs (e.g. types of convolution, network depths,

filter sizes, etc.), which are combined to form a network

space. One can leverage such network spaces to design

favorable networks [34, 26] or utilize them as the search

spaces for Neural Architecture Search (NAS) [20, 30, 33].

In industry, efficiency considerations for architectures are

also required to be considered to deploy products under var-

ious platforms, such as mobile, AR, and VR devices.
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Figure 1: Network Space Search (NSS) and Elite Spaces.

We propose Network Space Search, a new paradigm for

Auto-ML aiming at no manual effort, to automatically

search for Pareto-efficient network spaces in Expanded

Search Space, where minimal human expertise is imposed.

The discovered network spaces, named Elite Spaces, are

sustainably aligned with the Pareto front across several

complexity constraints. Moreover, Elite Spaces can be fur-

ther utilized for designing satisfactory networks and served

as NAS search spaces to find satisfactory architectures.

Design spaces [22, 23] have lately been demonstrated to

be a decisive factor for designing networks. Accordingly,

several design principles are proposed to deliver promising

networks [23]. However, these design principles are based

on human expertise and require extensive experiments for

validation. In contrast to handcrafted designs, NAS auto-

matically searches for favorable architectures within a pre-

defined search space, which has shown to be a critical fac-

tor affecting the performance and efficiency of NAS ap-

proaches [17]. Recently, it is common to reuse the tai-

lored search spaces (e.g. DARTS [20] and MobileNet [10]

search spaces) in previous works [20, 30, 33, 32]. However,

these approaches ignore the potential of exploring untai-

lored spaces, which may cause a gap between tailored NAS

search spaces and untailored ones. Furthermore, defining a

new search space requires tremendous prior knowledge to

best include superior networks. Hence, it is beneficial to



discover superior network spaces automatically, improving

the performance of NAS by bridging the gap and reducing

human expertise for manually defining NAS search spaces.

In this paper, we propose to Search for Network Spaces

Automatically. In order to relax the tremendous prior

knowledge imposed in the search spaces, we exclude the

prevalently used DARTS or MobileNet search spaces and

instead search for network spaces on Expanded Search

Space, which contains scalability with minimal assump-

tions in network designs. We then define a new problem,

Network Space Search (NSS), as searching for favorable

network spaces instead of a single architecture. To obtain

industry-favorable network spaces, efficiency and practical

computation trade-offs are essential factors. Therefore, we

propose our NSS method upon differentiable approaches

and incorporate multi-objectives into the searching process

to search for network spaces under various complexity con-

straints. The network spaces obtained by our NSS method,

named Elite Spaces, are Pareto-efficient spaces aligned

with the Pareto front [5] with respect to performance and

complexity. Moreover, Elite Spaces can be further served as

NAS search spaces for benefiting current NAS approaches

to improve performance (e.g. In CIFAR-100, an averagely

2.3% lower error rate and 3.7% closer to target complexity

than the baseline with around 90% fewer samples required

to find satisfactory networks). Finally, our NSS method is

capable of searching for superior spaces from various search

spaces with different complexity, showing the applicability

in unexplored and untailored spaces.

Our contributions are summarized below:

• We propose a whole new Auto-ML framework, Net-

work Space Search (NSS), to automatically search for

favorable network spaces instead of a single architec-

ture, reducing the human expertise involved in both

designing network designs and defining NAS search

spaces. To facilitate the NSS framework, we also de-

fine Expanded Search Space as a large-scale search

space to search for favorable network spaces.

• We further incorporate multi-objectives into NSS to

search for network spaces under various complexity

constraints, and the discovered network spaces, named

Elite Spaces, deliver satisfactory performance and are

aligned with the Pareto front of Expanded Search

Space. Elite Spaces can further be served as NAS

search spaces to improve the effectiveness of differ-

entiable NAS methods.

• Our NSS approach is capable of being exploited in

unexplored network spaces with various complexity,

demonstrating considerable potential in searching for

network spaces in an automatic fashion.

2. Related Work

Network Design. Since the great success achieved by [16]

on ILSVRC 2012 [25], several variants of network archi-

tectures [27, 28, 29, 8, 34, 13, 10, 26] are proposed, and

the significance of network designs to the performance has

been demonstrated. In addition, several design principles

are proposed to efficiently discover high-performance net-

works [23], indicating the importance of network design

spaces. However, discovering promising design choices

still largely involves prior knowledge and human expertise.

In this paper, our proposed Network Space Search (NSS)

can automate the process of designing networks.

Neural Architecture Search. In order to reduce the man-

ual effort required in exploring network architectures, Neu-

ral Architecture Search (NAS) is proposed to automate this

high-demanding searching process. NAS has achieved im-

pressive results on image classification [36, 31, 9], objec-

tion detection [7, 3], semantic segmentation [18], etc. Early

works adopt reinforcement learning (RL) [35, 36, 21] and

evolutionary algorithms (EA) [19, 24] to perform the ar-

chitecture search. To improve computational efficiency,

gradient-based methods [20, 6, 33, 32] are proposed and

more favored. In addition to the single objective of accu-

racy, recent NAS methods search for architectures with bet-

ter trade-offs between accuracy and latency [30, 33, 32, 1],

FLOPs [31], and power consumption [11]. Unlike previous

NAS methods targeting a single architecture, our proposed

NSS incorporates multiple objectives to search for promis-

ing search spaces with better trade-offs.

NAS Search Space. Search space has been shown to be

critical to NAS methods [17], and there are two mostly

adopted ones: 1) DARTS search spaces [20], which are

widely used in early research [35, 36, 21, 19, 24, 20, 6],

can be considered as a directed-acyclic-graph by viewing

nodes and edges as latent representations and feature extrac-

tion operations (e.g. convolutions), respectively, and NAS

searches for the graph topology and the corresponding oper-

ation types on each edge. 2) MobileNet search spaces [26],

which recently gain more attention regarding a small com-

putation regime for deploying on edge devices (e.g. mo-

biles) [30, 33, 31, 9, 32], are composed of inverted resid-

ual blocks [26], where the combinations of kernel sizes,

expansion ratios, squeeze-and-excitation [12] ratios, filter

sizes, and the number of identical layers in each block are

searched during the searching process. Despite the ubiq-

uity, the above search spaces are tailored and involved with

human expertise. Instead of tailoring the search spaces be-

forehand, we propose NSS to search for search spaces with

minimal prior knowledge imposed, and the searched spaces

can be served as NAS search spaces to benefit current NAS

approaches to further improve performance.
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Figure 2: An overview of the proposed Network Space

Search (NSS) framework and Elite Spaces. During

the searching process, our NSS method searches spaces

from Expanded Search Space based on the feedback from

the space evaluation, where we propose a novel paradigm

to estimate the space performance by evaluating the com-

prised architectures. The discovered network spaces, named

Elite Spaces, can be further utilized for designing favorable

networks and served as search spaces for NAS approaches.

3. Network Space Search

In this section, we introduce our proposed Network

Space Search (NSS) framework, which searches for net-

work spaces automatically, delivering promising network

spaces and can be further served as NAS search spaces.

We first briefly review Neural Architecture Search

(NAS) and compare it with our proposed NSS problem

(Sec. 3.1). We then introduce Expanded Search Space,

which involves minimal human expertise in network de-

signs, as a generalized search space for NSS (Sec. 3.2).

Thirdly, we formulate the NSS problem formally and pro-

pose our approach to search for network spaces (Sec. 3.3).

Finally, we incorporate multi-objectives into our searching

process to obtain network spaces under various complexity

constraints (Sec. 3.4). The whole NSS framework is sum-

marized and illustrated in Figure 2.

3.1. Preliminary: Neural Architecture Search

Differentiable neural architecture search [20, 6], which

recently shows significant improvement in NAS efficiency

to find superior architectures within a fixed search space,

has drawn lots of attention. Besides, to reduce the compu-

tational cost, probability sampling of super networks [33,

32] is recently utilized for optimization, where Gumbel-

Softmax function [14, 6] is often utilized to perform proba-

bility sampling while considering differentiability.

The performance of the optimal architecture greatly de-

pends on the designs of the given NAS search space. Since

discovering design principles is resource-consuming [23]

and defining NAS search spaces greatly involves human ex-

pertise, we are interested in automatically acquiring promis-

ing network spaces. Therefore, we propose a novel Network

Space Search (NSS) framework to discover favorable net-

work spaces instead of searching for a single architecture.

3.2. Expanded Search Space

The ultimate goal of Auto-ML is finding satisfactory net-

works in an automatic fashion, and we aim to facilitate

Auto-ML with our proposed NSS framework. Therefore,

the two main goals of NSS are: 1) searching for promising

network spaces automatically, and 2) the searched network

spaces can be further served as NAS search spaces to obtain

superior networks. To achieve the above goals, we first re-

quire a large-scale Space with two properties: automatabil-

ity (i.e. minimal human expertise) and scalability (i.e. capa-

bility of scaling networks). Thus, instead of directly adopt-

ing the common ones [20, 10], which are used to search for

network architectures, we define Expanded Search Space as

a search space for NSS to search for network spaces.

A network in Expanded Search Space consists of a stem

network, a body network, and a final prediction network

head. The network body, determining network computa-

tion and performance, is composed of N stages where each

stage consists of a sequence of identical blocks based on

standard residual blocks [8]. For each stage i (≤N ), the de-

grees of freedom include network depths di (i.e. number of

blocks) and block width wi (i.e. number of channels). We

set the maximum value dmax and wmax for block number

and width, respectively. Consider the settings of di ≤ dmax

and wi ≤ wmax, there are totally (dmax×wmax)
N possible

networks in Expanded Search Space. Please see the supple-

mentary for detailed architectures. Expanded Search Space

does not impose any prior knowledge on network designs

and allows a wide range of candidates in each degree of

freedom instead of defining the search spaces based on es-

tablished networks following predefined design principles.

Expanded Search Space is much more complex than

the common NAS search spaces in terms of the difficulty

of selections among candidates because of dmax possible

blocks in network depths and wmax possible channels in

network widths. Moreover, Expanded Search Space can

be potentially extended by replacing with more sophisti-

cated building blocks (e.g. complex bottleneck blocks). As

a result, by considering the scalability in network designs

and automatability with minimal human expertise, Ex-

panded Search Space is the appropriate one to fit our goal.



3.3. Searching Network Spaces

After defining Expanded Search Space, we would like to

address the question: how to effectively search for network

spaces given Expanded Search Space? To answer this, we

formulate NSS as a differentiable problem to search for an

entire network space:

min
A∈A

min
wA

L(A, wA) (1)

where the optimal network space A∗ ∈ A is obtained

from A along with its weights wA∗ , achieving minimal loss

L(A∗, wA∗). Here A is a space without imposing any prior

knowledge in network designs (e.g. Expanded Search Space

introduced in Section 3.2). To reduce the computational

cost, we also adopt probability sampling and the objective

is rewritten to:

min
Θ

min
wA

EA∼PΘ,A∈A[L(A, wA)] (2)

where Θ contains parameters for sampling spaces A ∈ A.

Although we can exploit Eq. 2, which is relaxed from Eq. 1,

for optimization, the estimation of expected loss for each

space A is still lacking. To solve this, we adopt distribu-

tional sampling to practically optimizing Eq. 2 for the infer-

ence of super networks. More specifically, from a sampled

space A ∈ A in Eq. 2, architectures a ∈ A are sampled to

evaluate the expected loss of A. Therefore, our goal formu-

lated in Eq. 2 is further extended accordingly:

min
Θ

min
wA

EA∼PΘ,A∈A[Ea∼Pθ,a∈A[L(a, wa)]] (3)

where Pθ is a uniform distribution, and θ contains param-

eters that determine the sampling probability Pθ of each

architecture a. Finally, Eq. 3 is our objective to be opti-

mized for searching network spaces, and the evaluation of

expected loss of a sampled space is as well based on it. We

further theoretically validate the assumption of uniform dis-

tribution for Pθ in the supplementary.

Instead of regarding a network space A as a set of in-

dividual architectures, we represent it with the components

in Expanded Search Space. Recalling that Expanded Search

Space is composed of searchable network depths di and

widths wi, a network space A can therefore be viewed as a

subset of all possible numbers of blocks and channels. More

formally, it is expressed as A = {dA
i ⊆ d,wA

i ⊆ w}Ni=1

where d = {1, 2, ..., dmax}, w = {1, 2, ..., wmax}, and d
A
i

and w
A
i respectively denote the set of possible numbers of

blocks and channels in A. After the searching process, dA
i

and w
A
i are retained to represent the discovered network

space.

To improve the efficiency of our NSS framework, we

adopt the standard weight sharing techniques in our im-

plementation from two aspects: 1) we adopt the masking

techniques to simulate various numbers of blocks and chan-

nels by sharing a portion of the super components. 2) To

ensure well-trained super networks, we apply the warmup

techniques to both block and channel search. Please refer to

the supplementary for more details.

3.4. Searching with MultiObjectives

Although we can search for network spaces by opti-

mizing Eq. 3, a single objective may not be able to dis-

cover satisfactory networks meeting the practical trade-

offs [1, 30, 31]. Thus, it is preferable for NSS to search for

network spaces satisfying multi-objectives for further use of

designing networks or defining NAS search spaces.

In this way, the searched spaces allow downstream tasks

to reduce the effort made on refining trade-offs and concen-

trate on fine-grained objectives instead. We focus on dis-

covering networks with satisfactory trade-offs between ac-

curacy and model complexity since its importance in prac-

tice for the industry. We incorporate model complexity in

terms of FLOPs into our objective (Eq. 1) to search for net-

work spaces fulfilling the constraints. Inspired by the abso-

lute reward function [1], we define our FLOPs loss as:

LFLOPs(A) = |FLOPs(A)/FLOPstarget − 1| (4)

where |·| denotes the absolute function and FLOPstarget is

the FLOPs constraint to be satisfied. We combine the multi-

objective losses by weighted summation, and therefore L in

Eq. 1 can be replaced with the following equation:

L(A, wA) = Ltask(A, wA) + λ LFLOPs(A) (5)

where Ltask is the ordinary task-specific loss (Eq. 1, and

can be optimized with Eq. 3 in practice) and λ is the

hyperparameter controlling the strength of FLOPs con-

straint. After searching by optimizing Eq. 5, we can ob-

tain the network spaces satisfying multi-objectives, where

the searched spaces A∗ are named Elite Spaces. More con-

cretely, Elite Spaces are derived from the optimized prob-

ability distribution PΘ after the searching process. We

sample n spaces from PΘ and identify the one closest to

the FLOPs constraint as our Elite Space. Unlike hand-

crafted network spaces or commonly adopted NAS search

spaces [20, 26], Elite Spaces are obtained without prior

knowledge or human expertise on network designs. More-

over, Elite Spaces can be further exploited in designing

promising networks and served as search spaces, benefiting

NAS approaches to improve performance.
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Figure 3: Elite Spaces evaluation with a wide range of complexity settings on CIFAR-10. Each sub-figure illustrates the

evaluation of an Elite Space targeting on corresponding FLOPs constraint. Blue and orange dots indicate the architectures

randomly sampled from Expanded Search Space and Elite Space, respectively. It can be observed that Network Space Search

sustainably discovers promising network spaces aligned with the Pareto front under various FLOPs constraints.

4. Experiments

In this section, we present extensive experimental re-

sults to demonstrate the effectiveness of Network Space

Search (NSS), which is aiming to search for promising net-

work spaces in an automatic fashion. We first illustrate that

our NSS approach is able to discover satisfactory network

spaces, Elite Spaces, under different FLOPs constraints.

Then, we show the discovered Elite Spaces can significantly

benefit differentiable NAS methods to improve the effec-

tiveness in searching for network architectures. We fur-

ther reveal the capability of our approach being exploited in

unexplored spaces by demonstrating that our NSS method

bridges the gap between manually-defined search spaces

and increasingly complex spaces for NAS. Finally, we dis-

cuss the considerable potential of NSS to search for network

spaces automatically based on our generalized observations.

More detailed results can be found in the supplementary.

4.1. Experimental Setups

Although we have adopted weight sharing techniques

to improve the efficiency, Expanded Search Space requires

the constructed super network to have dmax blocks in each

stage and wmax channels in each convolutional kernel since

it provides the maximum flexibility in searching for net-

work designs. To fit in our computation resources, we set

dmax = 16 and wmax = 512 in all 3 stages, and define

each Elite Space as a continuous range of network depths

and widths for simplicity. More concretely, each Elite

Space consists of 4 and 32 possible blocks and channels,

respectively, and therefore Expanded Search Space results

in ( 16
4
)3 × ( 512

32
)3 = 218 possible network spaces. After the

searching process, we sample n = 5 spaces and retain the

one closest to the FLOPs constraint as our Elite Space. To

fundamentally investigate the behaviors of NSS, we focus

on CIFAR-10 and CIFAR-100 datasets [15]. Following the

convention in previous NAS works [20], we equally split

the training images into a training set and a validation set.

These two sets are used for training the super network and

searching for network spaces, respectively. In addition, we

follow the hyperparameter settings in [32] and reserve the

beginning epochs for warmup. The batch size is set to 64 to

fit in 4 1080Ti GPUs. Please refer to the supplementary for

more implementation details.

4.2. Searching Network Spaces

Super Network-based Evaluation. We estimate the per-

formance of Elite Spaces by evaluating their comprised ar-

chitectures. Following the concept of [2], we train two

stand-alone super networks for evaluation to reduce the



(a) Complexity 600MF (b) Complexity 1.6GF (c) Complexity 4GF
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Figure 4: Elite Spaces evaluation on CIFAR-100. These figures are illustrated in the same motivation as Figure 3 except

evaluated on the CIFAR-100 dataset. More blue dots sampled from Expanded Search Space are deviated from the Pareto

front compared to those in Figure 3, indicating the worse performance in a more challenging dataset. On the contrary, our

NSS method can still obtain promising network spaces aligned with the Pareto front under various FLOPs constraints.

tremendous cost of training numerous architectures. Note

that these super networks are distinguished from the ones

used in searching, and their training cost is not included in

the search cost. The weight sharing and warmup techniques

mentioned in Section 3.3 are as well adopted to improve

the quality of super network weights. We random sample

1000 architectures from each Elite Space and obtain their

corresponding accuracy by reusing the weights of the well-

trained super networks. The stand-alone super networks are

carefully trained with state-of-the-art methods [32, 1] to de-

liver reliable feedback to estimate the performance of each

architecture. Elite Spaces can thus be fairly evaluated.

Performance of Elite Spaces. Following the FLOPs con-

figurations listed in [23], we select several representative

settings to demonstrate the capability of our NSS method in

obtaining promising network spaces under different FLOPs

constraints. We target various FLOPs regimes from the mo-

bile setting (i.e. 600MF 1) to extremely large models (i.e.

24GF) along with several intermediate sizes. In order to

show the evident superiority of Elite Spaces, we randomly

sample the same amount of architectures from Expanded

Search Space as in Elite Spaces and evaluate them based on

the aforementioned protocols for comparison. The results

are illustrated in Figures 3 and 4 where blue and orange

1MF and GF respectively denote 10
6 and 10

9 FLOPs throughout Sec-

tion 4 (e.g. 600MF is short for 600 million FLOPs).

dots represent the randomly sampled architectures from Ex-

panded Search Space and Elite Spaces, respectively. It

can be observed that our NSS method sustainably discov-

ers promising network spaces across different FLOPs con-

straints in both CIFAR-10 and CIFAR-100 datasets. Elite

Spaces achieve satisfactory trade-offs between the error

rates and meeting the FLOPs constraints, and are aligned

with the Pareto front of Expanded Search Space. Since Elite

Spaces discovered by our NSS method are guaranteed to

consist of superior networks provided in various FLOPs

regimes, they can be utilized for designing promising net-

works. More importantly, Elite Spaces are searched by NSS

automatically, therefore the human effort involved in net-

work designs is significantly reduced.

4.3. Served as NAS Search Spaces

Next, we exploit Elite Spaces discovered in Section 4.2

as the NAS search spaces to demonstrate our NSS method

can benefit architecture search. We employ the state-of-

the-art differentiable-based NAS method [32] to search for

a single architecture fulfilling the FLOPs constraint. For

comparison, we perform NAS in [32] directly on Expanded

Search Space as our baseline. Since Expanded Search

Space is too complex to obtain satisfactory architectures

close enough to the constraint within 5 samples, we relax

the sampling criterion for the baseline by keeping sampling



CIFAR-10 CIFAR-100

Elite Space Expanded Search Space Elite Space Expanded Search Space

Complexity FLOPs (|∆%|) #samples Error FLOPs (|∆%|) #samples Error FLOPs (|∆%|) #samples Error FLOPs (|∆%|) #samples Error

CX 600 MF 571 MF (4.8%) 5 4.57 658 MF (9.7%) 117 6.08 568 MF (5.3%) 5 22.22 628 MF (4.7%) 147 23.48

CX 1.6 GF 1.6 GF (2.3%) 5 3.99 1.6 GF (1.1%) 45 4.33 1.6 GF (0%) 5 20.67 1.6 GF (1.9%) 84 24.45

CX 4 GF 3.9 GF (3%) 5 3.85 3.8 GF (4.8%) 57 4.16 4.2 GF (6%) 5 20.21 4.3 GF (7.1%) 9 22.39

CX 8 GF 8 GF (0.4%) 5 4.09 7.3 GF (8.7%) 13 4.13 8 GF (0.5%) 5 18.77 7.5 GF (5%) 18 21.41

CX 16 GF 15.8 GF (1.6%) 5 3.82 14.7 GF (8.1%) 12 3.93 16.2 GF (1.3%) 5 19.16 14.5 GF (9.4%) 12 21.21

CX 24 GF 23.8 GF (0.7%) 5 3.65 23.8 GF (0.8%) 15 4.53 23.9 GF (0.3%) 5 19.09 22.2 GF (7.5%) 11 20.71

Average N/A (2.1%) 5 4.00 N/A (5.5%) 43.2 4.52 N/A (2.2%) 5 20.02 N/A (5.9%) 46.8 22.28

Table 1: The comparison of NAS results performed on Elite Spaces and Expanded Search Space. The FLOPs columns report

both absolute and relative FLOPs of the searched architectures, and the #samples columns indicate the number of samples

required to meet the criterion of ±10% constraints. Each architecture is reported the mean error rate from three individual

runs, following the settings in [4]. It is observed that in contrast to the baseline, the architectures discovered from Elite

Spaces are able to achieve superior performance and rigorously fulfill various FLOPs constraints with much fewer required

samples. The results demonstrate Elite Spaces from Network Space Search can benefit the performance of NAS methods.

until the corresponding FLOPs number falls into ±10%
constraints. For evaluation, we follow the settings in [4]

and report the mean error rate from three individual runs.

The results are listed in Table 1. We can observe that the

architectures discovered from Elite Spaces sustainably out-

perform their counterparts from Expanded Search Space.

They not only achieve superior performance but also sat-

isfy the FLOPs constraints more rigorously than the base-

line. For example, under the mobile setting (i.e. 600MF) in

the CIFAR-10 dataset, the architecture obtained from corre-

sponding Elite Space achieves 4.6% error rate and 4.8% de-

viation from the constraint within merely 5 samples. How-

ever, the baseline requires more than a hundred samples

(117 here) to barely reach the constraint (9.7% deviation)

while still delivering worse performance (6.1% error rate).

Averagely, Elite Space achieves a lower error rate (4.0% vs.

4.5%), lower deviation (2.1% vs. 5.5%), and 88.4% fewer

samples required to find a satisfactory network (5 vs. 43.2)

than the baseline in CIFAR-10. The same trend can also be

observed in CIFAR-100 (2.3% lower error rate, 3.7% lower

deviation, and 89.3% fewer required samples). The results

show that our proposed Elite Spaces primarily contribute to

discovering promising architectures, and allow the search-

ing process to make much less effort in exploring prefer-

able ones. Note that as the complexity constraints become

stricter (i.e. less FLOPs), the baseline performs poorly in

balancing the trade-off of finding satisfactory network de-

signs from Expanded Search Space and fulfilling the con-

straints. On the contrary, our proposed Elite Spaces can

easily meet the trade-off even under such strict constraints.

The experiments conducted above demonstrate that our

NSS method is able to search for network spaces and

provide them as search spaces for subsequent NAS tasks

while most existing works adopt human-defined ones. The

promising Elite Spaces are discovered in an automatic fash-

ion and thus substantially reduce the human expertise in-

volved in designing NAS search spaces. Moreover, the ex-

periments also show that our NSS framework can be poten-

tially utilized to prune tailored NAS search spaces (e.g. the

one in [32]) to fulfill various requirements.

4.4. Bridging the Gap for NAS

We argue that the NAS built on human-defined search

spaces may not work well on the spaces with different com-

plexity. On the contrary, when much more complicated or

unexplored network spaces arise, our NSS method is capa-

ble of bridging the gap between manually-defined search

spaces and increasingly complex spaces for NAS. In or-

der to simulate the trend of increasingly complex spaces,

we vary the possible network depths and widths of Ex-

panded Search Space to obtain several spaces with dif-

ferent complexity. Besides the original Expanded Search

Space with the highest complexity, there are eight additional

spaces grouped into three levels according to their maxi-

mum FLOPs. We perform NAS on these spaces as in Sec-

tion 4.3 and target at the most rigorous 600MF constraint,

which is commonly applicable for industry. Rather than re-

porting the error rate of a single architecture, we follow the

evaluation procedure in Section 4.2 except that the samples

are drawn from the final probability distribution instead of

random sampling to demonstrate the performance of NAS

in these increasingly complex spaces.

The results are illustrated in Figure 5a to Figure 5b in as-

cending order of space complexity, and the figures are trun-

cated at 1000MF for better comprehension. It is observed

that the samples are dense and concentrated on the FLOPs

constraints in Figure 5a, indicating the searching process

able to explore the architectures surrounding the target con-

straint and potentially discover a superior one. However,

NAS struggles to obtain qualified architectures with more



(a) Spaces wi ≤ 128 (b) Spaces wi ≤ 512 (c) Elite Spaces (d) FLOPs EDFs

Figure 5: The performance of NAS and our NSS in spaces with different complexity. (a)-(b) Networks discovered from

simple spaces (i.e. wi ≤ 128) and complex ones (i.e. wi ≤ 512), and the detailed settings are explicitly shown in the legends.

It is observed NAS performs worse in more complex spaces with much sparser samples. (c) Our Elite Spaces show better

performance with denser samples. (d) The FLOPs empirical distribution functions (EDFs) are depicted from the sampled

architectures within ±10% constraints. Our NSS method is demonstrated to possess higher probabilities in obtaining superior

architectures and bridge the gap between increasingly complex spaces and manually-defined search spaces for NAS.

(a) Error EDF (360MF - 400MF) (b) Error EDF (w/o constraints)

Figure 6: The comparison of error EDF between design

principles [23] and our approach under two conditions: (a)

with and (b) without FLOPs constraints. The curves are

truncated for better comprehension. Although the curve of

design principles is slightly lefter under the sampling con-

straints, our approach has a higher probability of possess-

ing superior networks in the full FLOPs regimes. The re-

sults demonstrate the great potential of NSS in searching

for promising network spaces in an automatic fashion.

complex space, as shown in Figure 5b, while our discovered

Elite Spaces contain much denser samples (Figure 5c). We

further utilize the empirical distribution function (EDF) to

plot the FLOPs EDFs from the sampled architectures within

±10% constraints (i.e. 540MF to 660MF), as shown in Fig-

ure 5d. While the trend reveals the failure of NAS in more

complex search spaces, our NSS approach possesses higher

probabilities in obtaining superior networks regardless of

the most complex Expanded Search Space. In other word,

our NSS method delivers Elite Spaces to bridge the gap be-

tween increasingly complex spaces and manually-defined

search spaces for NAS and is demonstrated being poten-

tially applied to unexplored spaces.

4.5. Observations on Elite Spaces

While design principles proposed in [23] suggest to in-

crease network depths and widths over stages, we have

observed some valuable discrepancies in network de-

signs from Elite Spaces. The observations from Elite

Spaces show the trend as {d1 ≤ d3 ≤ d2, w1 ≤ w3 ≤ w2},

which are in contrast to {d1 ≤ d2 ≤ d3, w1 ≤ w2 ≤ w3}
from design principles. In addition, [23] conducts the ex-

periments under 360MF to 400MF constraints which are

merely a small portion of the whole FLOPs regimes. There-

fore, to compare the performance of design principles and

our approach, we plot the error EDF as in [23], and 1000
networks for both settings are randomly sampled with and

without FLOPs constraints, as depicted in Figure 6a and

Figure 6b, respectively. Although the curve correspond-

ing to design principles is slightly lefter under the sampling

constraints, our approach performs better in the full FLOPs

regimes and has a higher probability of possessing superior

networks. The results demonstrate the considerable poten-

tial of NSS in searching for promising network spaces in an

automatic fashion, significantly reducing immense compu-

tational cost and involved human effort.

5. Conclusion

In this paper, we propose Network Space Search (NSS),

a whole new Auto-ML paradigm focusing on automati-

cally searching for Pareto-Efficient network spaces, intro-

ducing the great potential of exploring efficiency-aware net-

work spaces. The discovered Elite Spaces deliver favor-

able spaces aligned with the Pareto front, and benefit the

NAS approaches by served as search spaces, improving the

model accuracy and searching speed. For future works,

we plan to contain more aspects of network designs into

our Expanded Search Space, including types of operations

or different building blocks, to broaden the generalizability

of NSS. We also plan to incorporate more constraints into

multi-objectives to fulfill different industrial needs.
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