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Abstract

Self-attention is a corner stone for transformer models.

However, our analysis shows that self-attention in vision

transformer inference is extremely sparse. When applying

a sparsity constraint, our experiments on image (ImageNet-

1K) and video (Kinetics-400) understanding show we can

achieve 95% sparsity on the self-attention maps while main-

taining the performance drop to be less than 2 points. This

motivates us to rethink the role of self-attention in vision

transformer models.

1. Introduction

After the success of Transformers in natural language

processing (NLP) [8, 4], Transformers have been adapted

to several Computer Vision problems and shown successful

results [9, 2, 5, 1]. Specifically, ViT [5] suggested purely

Transformers-based network for image classification and

TimeSFormer [1] for action classification.

While self-attention is effective, one concern is its scal-

ability. Since the self-attention compares all pairs of ele-

ments, it results in a quadratic computational complexity

to the number of tokens. When it comes to video inputs,

the number of floating-point operations (FLOPs) gets much

larger because of the additional temporal dimension.

To this end, we suggest a way to apply masking mech-

anism into attention map computation so that the compari-

son happens sparsely. This is based on the observation that

some Transformer heads in earlier layers tend to attend on

local regions rather than globally. In this case, computing

similarity score for all the comparing elements leads to a

waste of computation.

Our goal is to find the optimal mask patterns (with high

masking/sparsity ratio) thus to minimize the performance

drop. We generate mask patterns based on data-driven at-

tention map distribution and show that ViT with data-driven

masks can retain the loss of performance less than 2 points

even with 95% sparsity ratio.

* This work is done while working at Facebook.

2. Analysis on the self-attention of ViTs

We first analyze the average attention maps of trained

ViT models. For an image model, we use DeiT-Base [7]

pre-trained on ImageNet-1K [3] and compute average at-

tention maps over 1,281,168 ImageNet training samples.

For a video model, we use TimeSFormer (ST) pre-trained

on Kinetics-400 [6] and use Kinetics-400 training videos to

obtain average attention maps. We provide detailed visual-

ization and analysis as follows.
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Figure 1: Average attention maps of 144 heads (12

heads×12 layers) of the image understanding model (DeiT-

Base). Each map is size of 196× 197. Zoom in for details.

Best view in color.

2.1. Image Classification Model

Fig. 1 shows average attention map of 144 heads (12

heads×12 layers), where we normalize each attention map

(by scaling between 0 and 1) for better visualization. First,

we notice that the attention maps are very sparse, as most of

the elements are zero. Furthermore, we find several patterns
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Figure 2: Examples of heads which attend based on relative

position to a query point. (Left) Average attention map

of a specific head. (Right) A sample image and an attention

map of each query. Red box indicates a query point, [0,0] in

the attention map is a score for cls token. Yellow color

represents a value close to 1, which means highly activated,

while purple close to 0.

in attention map distribution and divide them into three dif-

ferent types: 1) relative position based attention, 2) absolute

position based attention, and 3) contents based attention. In

the following, we zoom into several heads with distinctive

behaviors.

Relative position based attention: We show two heads

with relative position based attention in Fig. 2 (Head 4-2

and 1-7). Specifically, Head 4-2 is specialized for a to-

ken located one below. Interestingly, when there is no to-

ken below (Fig. 2 (b)-4), it attends to cls token instead.

On the other hand, the average attention map of Head 1-

7 (Fig. 2 (c)) shows Convolution-like patterns which have

high activation score on horizontal and vertical neighbor-

hoods. Note that since an attention map is dynamically

computed depending on query and key values, it is less

structured and varies from query to query whereas Convo-

lutions have structured and fixed filters shared over all the

positions. Heads of this type typically attend to local region

nearby a query and yield sparse attention map where few

tokens have high activation score while others remain close

to zero.

Absolute position based attention: This attention type

refers to a head which attends to a certain absolute position

regardless of a query. This can be identified by a vertical

line with high activation score in the average attention map.

Fig. 3 shows that in Head 0-7 all queries have exceptionally

high activation score to the special token, i.e. cls token.

Note that in ViT models every token is added with position

embeddings so it is possible to identify a token in a certain

position and have a high score to a specific position.
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Figure 3: An example of heads attending to a certain abso-

lute position.

Content-based attention: Fig. 4 presents one head that

yields attention map based on contents. In Head 9-1, queries

tend to have high activation score nearby a salient object.

Some queries attend over the whole object ((b)-1, (b)-4)

while other queries attend to a specific part of an object

((b)-2, (b)-5). Since a salient object can be located in any

positions and can be any size, the average attention map

(Fig. 4 (a)) shows that the score is spread over a wide range

of tokens rather than peaky in a sparse, local region.

(a) Average attention map of Head 9-1 (b) Attention map of Head 9-1 for certain query points
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Figure 4: An example of heads attending based on contents.

2.2. Video Classification Model

We present the attention map distribution of a video

model (TimesFormer ST) in Fig. 5. In the video model, due

to the additional temporal dimension, it has a larger number

of tokens (1+14×14×8=1,569 tokens in our case) than the

image model. Due to space limit, we present separate atten-

tion map for spatial dimension and temporal dimension. In

order to reduce the dimensions, we sum up the comparing

elements along the dimension of the interest, and average

over the query points. For example, the original attention

map excluding cls token is size of (1568, 1568). It can

be reshaped into (8,14,14, 8,14,14) where the first three di-

mension is for query tokens while the last three represents



comparing tokens. In order to have spatial map, we apply

mean over the first dimension and sum over the fourth di-

mension, i.e., (mean, 14, 14, sum, 14, 14), resulting in (14,

14, 14, 14) which can be reshaped into (14×14, 14×14).
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(a) Average attention map of spatial dimension.

Its size is (14*14, 1+14*14).

(b) Average attention map of temporal dimension.

Its size is (8, 1+8).

Figure 5: Marginalized average attention map of the video

model. (a) spatial attention map (b) temporal attention map.

2.3. Observations

We have several interesting observations from attention

map distribution of two models.

• Most of attention maps are sparse and only a few of

them are dense. Heads in earlier layers tend to attend

to local and sparse regions while attending globally as

layers go deeper.

• We notice a few attention patterns: a) relative position-

based attention, b) absolute position-based attention,

and c) dense attention, which we hypothesize to be

content-based attention.

Specifically, heads in earlier layers have either Convolution-

like patterns or high activation score at certain absolute po-

sitions. On the other hand, heads in deeper layers mostly

attend based on contents and its attending region is scat-

tered across the image. This can be seen in Fig. 5 where the

dominant color of the average map gradually changes from

purple to yellow as layers go deeper. Purple color indicates

that there are few regions which have high activation scores.

Yellow color indicates that most regions have very similar

average score so that after normalization they all become

close to one.

3. Mask Mechanism on Attention Map

One core limitation of Transformer is the huge number

of FLOPs it involves. Its full attention mechanism requires

pairwise comparison among tokens, resulting in quadratic

dependency on the number of tokens. When the number of

tokens is large (e.g., for a high resolution image or a long

video), the computation cost can be extraordinarily high.
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Figure 6: Mask patterns generated using different mask

generation methods. Elements filled with black (value 0)

will be elements of interest whereas elements of white color

(value 1) will be excluded. These are mask maps of an im-

age model whose size is 197x197. Sl,h denotes the sparsity

ratio of head h in layer l.

In the previous section, however, we observed that many

attention maps have high sparsity – especially in early lay-

ers. This means that pairwise comparison is not necessary

in most cases and it can be viewed as a waste of compu-

tation resource. Based on this observation, we aim to ex-

plicitly put sparsity constraint into attention map by using

masking mechanism. This involves two design challenges:

1) It’s non-trivial to generate the optimal mask pattern, and

2) we need to finetune the sparsity ratio for the mask pattern

to achieve a desired accuracy-efficiency trade-off.

In the following, we introduce six different mask pattern

generation methods. Note that each mask is the same size

to the attention map, i.e. (num tokens, num tokens), and

cls token relevant column and row, i.e. [0,:] and [:,0]

is always activated. Fig. 6 presents mask patterns generated

using different methods.

Random mask generation. Randomly generate a mask

map with a certain sparsity ratio S. Here, all heads will have

different mask maps.

Structured mask generation. Generate a 1/2/3D-Conv

like mask map. Here, all heads share the same mask map.

In the following, we provide four mask generation meth-

ods which exploit data-driven average attention map. To

generate mask, we first sort elements by activation score in

a descending order and select subset along that order (sort-

ing and selection happens query by query).

[Data-Driven] Ratio-based mask generation. Generate a

mask with cut-off sparsity ratio S. For example, if S=1 and

num tokens=1,569, each query will select top 15 comparing

elements based on their average similarity score. Here, each

query will select the same number of elements.

[Data-Driven] Magnitude-based mask generation. The

number of elements to select is determined by top-1 atten-



tion score. Let’s say top-1 attention score is A. Then we se-

lect 1/A’ elements, where A’=clip((A+τ ), min=1/(1+THW),

max=1) and τ is a temperature factor. For example, when

τ = 0, if one query’s top-1 similarity score is 1, then it

will select 1 comparing element and others unchosen. If

another query’s top-1 similarity score is 1/(1+THW), then

it will select 1+THW comparing elements and nothing will

be masked.

[Data-Driven] Information-based mask generation. Cut-

off when the cumulative sum of the sorted similarity score is

equal or greater than I where I is the quantity of information.

Each query will select different number of elements.

[Data-Driven] Std-based mask generation. Compute

mean (m) and std (σ) of each query’s similarity vector. Then

select comparing elements i, whose value is equal or larger

than m+Cσ where C is sigma coefficient.

Different from ratio-based mask generation, the last

three methods will select different number of comparing el-

ements for each query (Fig. 6 (c) and (d)). That is, sparsity

degree would be taken into account in deciding the number

of comparing elements to remain.

4. Experiments

We present performance of masked ViTs with different

mask generation methods. For training a masked image

model, we start from ImageNet-1K pre-trained weights and

fine-tune weights with a mask. For a video model (including

the non-masking model), we start from ImageNet-21K pre-

trained weights and fine-tune for 30 epochs following [1].

(a) Performance of an image model with 

different mask generation methods

(b) Performance of a video model with 

different mask generation methods

Figure 7: Compare the performance of a masked ViT model

with different mask generation methods. (a) Results on

ImageNet-1K (b) Results on Kinetics-400.

We have three observations. First, manually-designed or

data-driven masks outperform randomly generated masks.

This indicates that self-attention actually happens with

some patterns so random masking would lead to perfor-

mance degradation. Second, there is little performance dif-

ference among different data-driven masks. Even though

the gap is marginal, information-based mask seems to hold

a slight edge over others. Third, ViT models with mask can

maintain the performance loss less than 2 points even with

sparsity ratio of 95%. This means that when num tokens is

197, 9 tokens are used on average for attention mechanism.

This shows that sparse attention mechanisms can preserve

the expressivity of the original model to some extents.

5. Limitation

The current model with mask has one limitation – there

is an upper bound of FLOPs reduction a model can achieve

and it is not too large. Tab. 1a presents a submodule-

wise FLOPs computation in a single Transformer. In terms

of FLOPs, submodules that can benefit from mask mech-

anism are ’attention map computing’ and ’weighted sum

computing’ parts. However, when instantiated with the ac-

tual model configurations (Tab. 1b), those parts take 4%

and 25% of the total computation in DeiT-base and TimeS-

Former ST, respectively. In other words, the maximum re-

duction in FLOPs a model can achieve is 4% and 25% in

each model.

MSA

(Multi-head Self-Attention)

FFN

(MLP)

Total
QKV

projection

Attention

map

computing

Weighted

sum

computing

Output

projection

2-layer

FC

#

FLOPs
3NCC (1-S)·NNC (1-S)·NNC NCC 2NCM

4NCC +

2NNC +

2NCM

(a) Flop computation of a single Transformer module. N:

num tokens, C: dim latent, M: dim MLP, L: num layers, S: sparsity

ratio

QKV

projection

Attention

map

computing

Weighted

sum

computing

Output

projection

2-layer

FC
Total

Instantiation when N=197, C=768, M=3072, S=0 (DeiT-Base)

# GFLOPs 0.3486 0.0298 0.0298 0.1162 0.9296 1.4540

Ratio 24.0% 2.0% 2.0% 8.0% 63.9% 100%

Instantiation when N=1569, C=768, M=3072, S=0 (TimeSFormer ST)

# GFLOPs 2.78 1.89 1.89 0.93 7.40 14.89

Ratio 18.7% 12.7% 12.7% 6.2% 49.7% 100%

(b)

Table 1: (a) FLOP computation of a single Transformer

module. (b) Actual GFLOPs instantiated with a specific

model configuration.

This is mainly because the number of tokens in both

models is much smaller than the channel dimension in FFN,

where num tokens is 197 or 1569 and dim MLP is 3072.

Therefore, in ViT models where num tokens < dim MLP,

an effective way to control the total FLOPs is to adjust

FFN parts such as dim MLP. On the flip side, this also

means that masking mechanism can be more effective when

num tokens gets larger.
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