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Abstract

In this paper, a new adaptive quantization algorithm for

generalized posit format is presented, to optimally represent

the dynamic range and distribution of deep neural network

parameters. Adaptation is achieved by minimizing the intra-

layer posit quantization error with a compander. The efficacy

of the proposed quantization algorithm is studied within a

new low-precision framework, ALPS, on ResNet-50 and

EfficientNet models for classification tasks. Results assert

that the accuracy and energy dissipation of low-precision

DNNs using generalized posits outperform other well-known

numerical formats, including standard posits.

1. Introduction

There is an increasing demand to deploy deep neural

networks (DNNs) on edge devices due to their pervasive-

ness in a wide range of domains, from healthcare [29] to

cybersecurity [31]. For instance, deploying on edge requires

∼153.5×more memory and∼4×more power than the avail-

able device budget when considering ARM M-7 microcon-

trollers [2]. To bridge this gap, one approach is to compress

the footprint of DNNs by employing low-precision arith-

metic [3, 8, 14, 22, 30, 36].

The benefits of low-precision DNNs in reducing hardware

complexity comes at the cost of reduced accuracy associated

with quantization error. The quantization error generated

with post-training quantization approach heavily relies on

the distribution and dynamic range of the numerical format

chosen. To reduce the quantization error, a numerical format

with unequal-magnitude spacing (tapered accuracy) and high

dynamic range is needed. The posit numerical format [12]

offers both of these characteristics, which are lacking in con-

ventional formats, including fixed-point, floats, and block

floating point [35]. Moreover, posit arithmetic in DNN in-

ference has been demonstrated to retain accuracy at 8-bit

precision [15, 21, 23].
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Figure 1: Generalized posit quantization model with a fixed-

point quantizer, compressor y= 1
γ

sinh−1(θx), and expander

x′ = 1
θ

sinh((γ)y′) functions. The α, β, γ, and θ are real

variables that are varied for different generalized posit con-

figurations

One limitation when working with fewer than 8-bits in

posit is that it cannot accommodate the variability observed

in inter- and intra-layer parameter distributions and dynamic

range of DNNs. This leads to a catastrophic drop in ac-

curacy [23]. One approach to mitigate this deficiency is

to adapt mixed-precision posits for the parameters of each

layer, which leads to exponential search space for optimal

representation. For example, the search space size with four

numerical format options n={8,6,4,2} for ResNet-110 is

4110≈1.68× 1066. Generalized posit format addresses this

issue by adding the capability to parameterize the tapered

accuracy and dynamic range.

Therefore, we are motivated to develop the ALPS frame-

work to study the performance of DNN models with gener-

alized posit numerical format. This framework adjusts the

distribution and dynamic range of generalized posits and

matches it with that of the DNN parameters for each layer.

Adaptation is achieved by estimating the hyper-parameters

in generalized posit and minimizing the quantization error

( while maximizing the signal-to-quantization-noise ratio

(SQNR)) in each layer. To formulate the correlation be-

tween the SQNR of posit and the performance of DNNs,



finite precision error analysis is used [13]. Finite precision

error analysis is explored in prior studies for fixed-point

and float [13, 19, 26]. The generalized posit quantization is

modeled by a compressor function, expander function, and a

fixed-point quantizer as shown in Figure 1, which is inspired

by the quantization model of a compander system [4].

The key contributions of this work are as follows:

1. A new SQNR equation for generalized posit is proposed

that uses a metric to select the appropriate generalized

posit configuration.

2. A new low-precision framework, ALPS, is developed,

that utilizes an adaptive quantization algorithm to en-

hance the performance of DNN inference with general-

ized posits.

3. A custom digital architecture is designed to analyze the

energy cost of DNN inference with generalized posits

and other numerical formats.

2. Background

Practical implementations of deep learning systems con-

ventionally employ floating point arithmetic, usually with

the widely adopted IEEE-754 format. However, this floating

point system manifests arithmetic shortcomings, e.g., round-

ing, overflow/underflow, and lack of algebraic associativity,

which are exacerbated when precision is low. To address

these shortcomings, a new arithmetic number format was

introduced, called universal numbers (unums) [11]. The

latest rendition of unums with the most interest are type III

unums that, also known as posits, which differ significantly

from floats. Posits usually yield better arithmetic accuracy,

dynamic range, and program reproducibility than IEEE-754

floats with the same bit-length [12]. The tapered-accuracy

attribute of posits comes from the variable-length regime in

their binary representation. Like IEEE floats, binary repre-

sentations contain a sign bit, exponent bits, and a fraction.

However, posits also have a regime that is encoded using

a run-length r of 0s or 1s that is terminated by a 1 or 0,

respectively, or by the final bit. It represents k = −r if the

first regime bit is 0, and k = r − 1 if the first bit is a 1.

After the regime, posits have an es-bit exponent e (unsigned

integer value e) followed by the fraction bits f, 0 ≤ f < 1.

With a leading sign bit s, the real number represented by a

posit is given by (1)

x = ((1− 3s) + f)× 2(1−2s)×(2esk+e+s) (1)

with special cases for 0 and not-a-real (NaR) excluded. Un-

like the NaN values of floats, NaR includes the non-real

values ∞ and −∞. Too-large values round to the largest

magnitude posit instead of overflowing to ∞. Too-small

values round to the smallest magnitude posit instead of un-

derflowing to 0. The sign of the too-large and too-small

roundings is preserved.

A generalized posit parameterizes the exponent bias and

maximum regime run-length. Exponent bias lets us shift the

location of the zone of maximum accuracy. Restricting the

regime length prevents the exponent and fraction bit fields

from vanishing at the extremes of the dynamic range.

A parameter sc ∈ [−n−2
2 ..n−2

2 ] biases the power-of-2

scaling downward or upward. With sc, the maximum and

minimum magnitude values are given by 22
es
×(n−2)+sc, and

2−2es
×(n−2)+sc respectively.

The other parameter is a maximum regime bit width

rs ∈ [1..n−1], which restricts the maximum and minimum

positive representable values as given by (2) and (3), respec-

tively, where t = n− rs− 1.

Max(xGP) =

{

22
es
×(rs−2−t), if (t ≤ es)

22
es
×rs × (1− 2es−t−1), otherwise

(2)

Min(xGP) =

{

2−2es
×(rs−2−t), if (t ≤ es)

2−2es
×rs × (1 + 2es−t), otherwise

(3)

Notably, generalized posit formats encompass IEEE-like

floats with rs = 1 (fixed fraction field), standard posits with

rs = n − 1, and other tapered-precision formats between

those bounds.

3. Related Work

Studies considering low-precision arithmetic have experi-

mentally shown that DNNs using 8-bit numbers can achieve

inference accuracy comparable to that of 32-bit numbers [36].

However, the performance of these models is degraded sig-

nificantly when ultra-low-precision (< 8-bit width) numbers

are used [20]. To mitigate this problem, researchers have

explored various ultra-low-precision or mixed-precision nu-

merical formats [3, 8, 9, 15, 27, 30, 32, 33].

The posit format has been compared with other DNN

inference formats [5, 6, 15, 18, 23]. In [18], authors com-

pared low-precision posits and fixed-point with 32-bit high-

precision floats for DNN inference on the AlexNet and Im-

ageNet corpora. The outcome of this study indicates that

7-bit posit weight representation is sufficient to achieve infer-

ence accuracy within 1% variation of 32-bit floats. In [5, 6],

authors introduced the Deep Positron accelerator with an

FPGA-based soft-core for 68-bit precision posit exact-MAC

operations. In this work, 8-bit posits are shown to have a

better trade-off between inference energy consumption and

inference performance in comparison to 8-bit fixed-point and

float on various benchmarks. To reduce the hardware com-

plexity of posit-based DNN inference, a logarithmic form of

posit arithmetic is presented in [15]. On ImageNet dataset,

8-bit log-posit performed within 0.9% inference accuracy of

32-bit floats.

Following the success of 8-bit posits for DNN inference,

the efficacy of this numerical format is studied for ultra-low



precision ([5..8]-bit) [16, 23]. However, none of these works

capture the variability in inter- and intra-layer DNN parame-

ter distributions and fail to preserve the accuracy when the

number of bits is reduced to lower than 6 bits [16, 23]. Re-

cently, in [17], authors presented a parameter-aware numeri-

cal format, Adaptive posit, as a plausible solution to capture

the variability of inter- and intra-layer DNN parameters for

different image classification tasks. However, determining

the adaptive posit configuration for DNN inference depends

on a large search space.

This research addresses the gap in posit format’s ability to

capture the variability in parameter distributions across DNN

layers. A notable difference between this work and previous

work [17, 23] is that the generalized posit quantization is

adapted to the DNN parameter distribution without a brute

force approach over a large search space. DNN computations

are performed in low-precision generalized posit format and

the associated energy and delay are studied.

4. Numerical Analysis of Generalized Posit

Quantization Error

The goal of this section is to formalize the relationship

between quantization error of high-precision float DNN pa-

rameters and low-precision generalized posits. We seek to

derive a function F that approximates the misclassification

probability, pm, as given by (4)

pm ≈ F (ǫ(wi, w
′

i), ǫ(Ai, A
′

i)) (4)

where the function ǫ(·, ·) determines the total quantization er-

ror between its two arguments, wi and Ai represent floating

point weights and activations, w′

i and A′

i represent general-

ized posit weights and activations respectively.

4.1. SQNR for Generalized Posits

Defining the SQNR for generalized posits requires mod-

eling the quantization error ǫ(xi, x
′

i) =
∑m

i=0 |xi − x′

i| [34],

where m represents the number of parameters in a DNN, xi

represents the 32-bit high-precision floating point DNN pa-

rameters, and x′

i indicates the q-bit low-precision generalized

posit quantized DNN parameters. This model depends on the

distribution of the values represented by this numerical for-

mat. Low-precision generalized posit has a non-uniform dis-

tribution, which is modeled as a non-uniform quantizer with

a compander system [10] as shown in Figure 1. The com-

pander system contains a monotonic smooth non-uniform

compressor function, a fixed-point quantizer, and an inverse

function of the compressor function called an expander. In

this paper, the compressor and expander are approximated

by (5) and (6), respectively,

y =

m
∑

i=0

( 1
α
x+ sign(x)β∆)× 1[i∆,(i+1)∆)(|x|)

≈

m
∑

i=0

1
γ

sinh−1(θx)× 1[i∆,(i+1)∆)(|x|)

(5)

x′ =

m
∑

j=0

(α(y′ − sign(y′)β∆)× 1[j∆,(j+1)∆)(|y
′|)

≈
m
∑

j=0

1
θ

sinh−1(γy′)1[j∆,(j+1)∆)(|y
′|)

(6)

where α, β, γ, and θ are real variables, ∆ is the quantization

step size, m represents the quantization levels, and 1[a,b)(|x|)
is the indicator function as given by (7). Note that prior

works model quantization error using this approach for non-

uniform float formats [34].

1[a,b)(|x|) =

{

1, if (a ≤ |x| < b)

0, otherwise
(7)

While modeling the quantization error for generalized

posit, the SQNR is computed as in (8) where ∆GP (quanti-

zation step size) is computed as (9). The derivation of (8) is

provided in the Appendix.

SQNRGP(dB) ≈ (10.79− 20 log(γ)) + 20 log(∆−1
GP ) (8)

∆GP =

{

2−(2esrs−2es−(n−rs−1))+sc, if (n− rs ≤ es + 1)

2−(2esrs−es+(n−rs−1))+sc, otherwise
(9)

The proposed SQNR captures the various posit parame-

ters that affect the representable distribution of values. There-

fore, the SQNR of generalized posits is varied based on the

exponent bit-width (es), the maximum regime bit-width (rs),

and the exponent bias (sc) parameters. The parameter sc

shifts the peak of SQNR and dynamic range and es controls

the dynamic range and width of max SQNR ([2−2es

, 22
es

])
interval. The parameter rs adjusts the shape of the SQNR

distribution and controls the dynamic range.

4.2. Finite Precision Error Analysis

The output y of a DNN is produced by a sequence of oper-

ations, the predominant one being the multiply-accumulate

(MAC) operation. This operation is given in (10) where

quantization error is considered throughout the network with

an activation function T [25].

y + ǫy =Tn(...(T2(T1(w1 + ǫw1
×A1 + ǫA1

)+

ǫA2
)× (w2 + ǫw2

))
(10)

For simplicity, we use the shorthand ǫx to represent the error

ǫ(x, x′) for some arbitrary x. For neural network models
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with a non-linear Ti, the error is calculated as in (11) using

the chain rule of partial derivatives and approximated as a

first-order Taylor series [13].

ǫy ≈

n
∑

i=1

ǫwi

∂Ti

∂wi

+

n
∑

i=1

ǫAi

∂Ti

∂Ai

(11)

Finally, by calculating the probability ǫy for any yi [19, 26],

we can formulate the relationship between the mismatch

probability and numerical precision as in (12), where EWl

and EAl
are weight and activation quantization error gains

at layer l [19, 26].

pm ≤

L
∑

l=1

1

SQNRwl

EWl
+

1

SQNRAl

EAl
(12)

Given this equality, it helps selecting appropriate generalized

posit numerical format configuration for a specified pm.

5. ALPS framework

To emulate adaptive quantization with low-precision gen-

eralized posits in DNN inference, the ALPS framework is

designed. Specifically, at each layer, the generalized posit

parameters (rs and sc) that converge with the dynamic range

and distribution of DNN parameters are selected, as shown

in Figure 2. Following, the 32-bit floating point learned

weights and activations are quantized to the low-precision

generalized posit numerical format. Finally, the dot product

of quantized weights is performed with low-precision gener-

alized posit MAC structure. Therefore, the ALPS framework

comprises three key aspects: generalized posit parameter

selection, quantization with generalized posits, and the low-

precision generalized posit dot product.

5.1. Generalized posit parameter selection

As mentioned in section 4, the performance of the DNN

using the low-precision generalized posit depends on the pm
and SQNR as illustrated in (12). To improve the performance

of DNN model with low-precision numerical format, the

pm requires to minimized, which can be accomplished by

balancing the summation in the equation (12) [27]. This

computes rs and sc from the equations (13), (14), (15), and

(16) which are inspired from [27].

rswl
= RNE

(

log2

√

Ewl

Ewr

)

+ rswr
(13)

rsAl
= RNE

(

log2

√

EAl

Ewr

)

+ rswr
(14)

scwl
= RNE

(

log2

√

Ewl

Ewr

)

+ scwr
(15)

scAl
= RNE

(

log2

√

EAl

Ewr

)

+ scwr
(16)

In these equations, RNE is the round-to-the-nearest-even

function, Ewr
is the quantization error gain for weights of

the reference layer (selected randomly), and Algorithm 1

presents the rswr
and scwr

optimization procedure. The

selection of rswr
and scwr

is governed by the mean and

excess kurtosis (Kurtosis-3) of the reference layer weights,

which is computed in the initialization steps (lines 2–6).

To compute rswr
, the difference between the excess kur-

tosis of DNN weights and the excess kurtosis of generalized

posit values with varied rs is computed and then the gener-

alized posit numerical format configuration which has the

closest excess kurtosis to that of the DNN parameters is



Algorithm 1 Compute the maximum regime bit width (rs)

and scaling factor (sc) of generalized posit for reference

parameter (Wr)

Input: reference layers weights (Wr)

Output: rswr
, rsAr

generalized posit parameters

1: procedure rs, sc SELECTION (Wr)

2: scr0 ← 0

3: rsr0 ← n− 1

4: Wamax ← max(|Wr|)
5: KW ← Kurt(Wr,−Wamax, Wamax)
6: MW ← mean(Wr)

Compute the rswr

7: KGP0 ← Kurt(GP(n, es, rsr0 , scw0),−Wamax, Wamax)
8: K diffw0 ← |Kw − KGP0 |
9: for i← 3 to n− 2 do

10: KGPi ← Kurt(GP(n, es, i, scwr),−Wamax, Wamax)
11: K diffwi ← |Kw − KGPi |
12: if K diffwi < K diffw0 then

13: rswr ← i

14: K diffw0 ← K diffwi
15: end if

16: end for

Compute the scwr

17: MGP0 ← mean(GP(n, es, rsrw , scr0))
18: M diffW0 ← |MW − MGP0 |
19: for i← 1 to 3 do

20: MGPi ← mean(GP(n, es, rsr0 , i))
21: M diffWi ← |MW − MGPi |
22: if M diffAi < M diffW0 then

23: scWr ← −i
24: M diffW0 ← M diffWi
25: end if

26: end for

27: end procedure

selected (lines 7–16). A similar procedure is applied to com-

pute scwr
, except the mean of the DNN weights is used as

metric to select scwr
.

5.2. Quantization with Generalized Posits

The quantization function Q(xi, l, u, q) estimates each

32-bit floating-point DNN parameter xi as x′

i (a q-bit gen-

eralized posit), as defined in (17). Given the dynamic range

of a low-precision generalized posit format, the 32-bit high-

precision float values that lie outside this dynamic range are

clipped to the format minimum (l) and maximum (u) appro-

priately. The clipped values are then rounded to the A value

that is between consecutive generalized posits is rounded to

nearest number (RNE(xi)).

x′

i = Q(xi, q, l, u) = RNE(clip(xi, l, u)) (17)

Algorithm 2 Generalized posit dot product operations for

vector elements each with n bits, es exponent bits, rs with

⌊log2(n− 1)⌋ bit-width, sc with 3 bit-width.

Input: layers quantized weights (Wlq ), layers quantized

activations (Alq ),

Output: R as a dot product result

1: procedure GENERALIZED POSIT DP (Wlq , Alq )

2: signw, regw, expw, fracw ← DECODE(Wlq , rsw)
3: signa, rega, expa, fraca ← DECODE(Alq , rsa)

Gather total scale factors

4: sfw ← 2es×regw + expw + scw
5: sfa ← 2es×rega + expa + sca

Multiplication

6: signmult ← signw ⊕ signa
7: fracmult ← fracw × fraca
8: normfracmult ← fracmult ≫ fracmult[MSB]
9: sfmult ← sfw + sfa + fracmult[MSB]

10: pmult ← (−1)sign × 2sfmult × (1+ fracmult)

Accumulation

11: fracsmult ← signmult ? −fracmult : fracmult
12: sfbiased ← sfmult + 2es+1 × (n− 2)
13: fracsfixed ← fracsmult ≪ sfbiased
14: sumquire ← fracsfixed + sumquire

Rounding & Encode

15: R← ROUNDING & ENCODING(sumquire)
16: return R

17: end procedure

5.3. Low­precision Generalized Posit Dot Product

The generalized posit dot product is presented in Algo-

rithm 2. In the first step, the set of quantized weights and

activations are decoded to the generalized posit format and

the scaling factor is computed (lines 2–5). Then, the product

of the generalized posit weights and activations is calculated

without truncation or rounding at the end of multiplications

(lines 6–10). The products are then stored in a wide signed

fixed-point register, the quire [12], for m multipliers with

size wquire = ⌈log2(m)⌉ + 2 × ⌈log2(
MaxGP

MinGP
)⌉ + 2 (lines

11–14). The stored products are then converted and ac-

cumulated using a fixed-point arithmetic. At the end, the

accumulated result is converted back to the generalized posit

numerical format (lines 15–17).

6. Hardware System Design and Architecture

The ALPS framework and theoretical analysis gives in-

sights into adopting a new posit quantization method. This

section describes the framework designed to simulate DNNs

on hardware platforms and evaluate the performance of gen-
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Figure 3: Deep neural network accelerator microarchitecture for the generalized posit format with customized processing

elements. The architecture is evaluated in a full cycle-emulator to analyze the performance and energy constraints.

eralized posit representation in terms of latency and energy

consumption. Figure 3 shows the high-level architecture of

the designed framework guided by Eyeriss v2 [7] design.

Primarily, it is composed of processing elements (PEs) ar-

ranged in a 2D systolic array architecture and a hierarchical

memory organization. Most of the 2D-systolic architectures

commonly used to perform convolution operations adopt

input stationary (IS), weight stationary (WS), and output

stationary (OS) dataflows. However, OS has shown reduced

execution time and energy consumption since PE computa-

tions are confined to a single pixel in the output feature map.

The PE in the systolic array has a generalized posit based

MAC unit with configurable bit-precision. It is controlled

by an external control signal (rs), which defines the expo-

nent value (k value in (1)). For modeling memory hierarchy,

128 MB off-chip DRAM and 3×108 kB on-chip scratchpad

memory (SRAM) are used. The DRAM is dedicated to stor-

ing input features and parameters that are loaded by the host

processor, whereas the SRAM serves as a global buffer.

7. Experimental Setup, Results & Insights

The ALPS framework is implemented in C++ and ex-

tended to the TensorFlow framework [1]. To demonstrate the

efficacy of the ALPS empirical framework, the performance

of generalized posits with rs and sc is evaluated on two infer-

ence tasks and compared to both posits and scaled floats (the

float numerical format with a scaling factor similar to sc)

with two different DNN architectures. The specifications of

the tasks and inference performance with 32-bit floats DNNs

are summarized in Table 1. In the evaluation of each format,

es ∈ {0, 1, 2}, rs ∈ [1..n − 1] and sc ∈ [−3, 3] is consid-

ered for generalized posits, es ∈ {0, 1, 2} is considered for

posits, and e ∈ {3, 4} is considered for scaled floats. To

estimate latency, we bridge our framework with the SCALE-

Sim tool [28]. SCALE-Sim, however, does not consider the

cycles consumed by shuttling data back and forth between

the global buffer and the DRAM. Therefore, the total la-

tency is re-approximated by considering PE array execution

time and DRAM access time (Micron MT41J256M4). For

energy estimation analysis, the execution time, and power

consumption, we factor in the 32-nm CMOS technology

node.

7.1. DNN Inference Performance Using the ALPS

Framework

The efficacy of the ALPS framework is evaluated for DNN

inference using generalized posits with varied es, as shown

in Tables 2 and 3. The findings show that the low-precision

generalized posit (with es=1) outperforms the posit and

scaled float formats with various DNNs by an average of

14% and 6%, respectively. For instance, the performance of a

5-bit low-precision generalized posit ResNet-50 network on

the CIFAR-10 dataset is improved by 41.63% compared to

the posit-based network. Both generalized posit and scaled

float auto-adjust to the dynamic range of the weights and

activations where quantization error is reduced, thus outper-

forming vanilla posits. Moreover, the performance of DNNs

using 5-bit scaled floats is reduced significantly in compari-

son to generalized posit since it is not possible to represent

5-bit scaled floats with 4 exponent bits. In summary, the best

performance on all the benchmarks (when analyzed across

the full [5..8]-bit range) is achieved by utilizing generalized

posits.

7.2. SQNR Impact on DNN Accuracy

As aforementioned in Section 4, the SQNR has a linear re-

lationship with accuracy (as shown in Figure 4). The range of

weights is mostly centered at zero and tapered to a dynamic

range of 2 as mentioned in Table 1. Since posits have maxi-

mum SQNR in this range, the DNN accuracy using posits

outperforms floats only if the weights are quantized. How-

ever, when both activations and weights are quantized, the

dynamic range of activations changes across layers, which

means that the SQNR of posits surpass floats, and in a few

cases floats surpass posits. Therefore, it is valuable to have

a format, such as generalized posits, where the SQNR is

variable and can be matched to the variability of activations.



Table 1: The DNN models and benchmarks using 32-bit float parameters description.

Dataset DNN Model W-Range 1 A-Range 1 # Parameters # MACs 2 Performance

CIFAR-10
ResNet-50 [−2.10, 2.29] [0, 8.53] 0.86 M 0.803 M 92.10%

EfficientNet-B0 [−2.23, 2.36] [0, 8.96] 4.0 M 3.12 M 98.00%

ImageNet
ResNet-50 [−1.48, 2.62] [0, 9.61] 25 M 10.3 M 74.60%

EfficientNet-B4 [−1.72, 2.80] [0, 10.2] 19 M 10.5 M 83.00%

1 W: Weights; A: Activations
2 The number of MACs is calculated for a DNN inference with a batch size of 1.

Table 2: The DNN inference performance using the generalized posit, posit, and scaled float formats on CIFAR-10.

Dataset Bit Precision Generalized posit Posit Scaled float

RESNET-50 EfficientNet RESNET-50 EfficientNet RESNET-50 EfficientNet

CIFAR-10

8-bit 91.75% 97.37% 91.15% 96.89% 91.66% 96.91%

7-bit 90.62% 92.91% 88.66% 91.27% 90.35% 92.03%

6-bit 76.00% 70.64% 58.31% 60.09% 70.00% 66.59%

5-bit 51.65% 53.66% 10.02% 10.00% 46.70% 47.20%

Table 3: The DNN inference performance using the generalized posit, posit, and scaled float formats on ImageNet.

Dataset Bit Precision Generalized posit Posit Scaled float

RESNET-50 EfficientNet RESNET-50 EfficientNet RESNET-50 EfficientNet

ImageNet

8-bit 74.11% 81.39% 73.61% 80.24% 74.06% 80.70%

7-bit 72.46% 77.04% 69.10% 75.07% 70.76% 76.65%

6-bit 63.76% 66.41% 53.46% 57.33% 62.31% 64.20%

5-bit 46.22% 48.15% 0.10% 0.10% 10.00% 11.37%

7.3. Theoretical vs. Experimental Performance:

Figure 4(b) compares the theoretical misclassification up-

per bound with the misclassification rate that is obtained

empirically in DNN inference with the ResNet and Efficient-

Net models on the ImageNet dataset using generalized posits.

This theoretical bound depends on the SQNR of weights and

activations and is given by (12). Since the SQNR of general-

ized posits is related to the precision, ∆GP, the misclassifica-

tion grows exponentially when the precision (Figure 4(b)).

Overall, the theoretical bound is shown to approximate the

misclassification rate in most cases.

7.4. Digital Architecture Results

The execution time of the DNN model is mainly governed

by the dataflow and the PE array architecture. Output sta-

tionary dataflow has shown to offer 24% reduction in latency

as compared to weight stationary dataflow in performing one

inference. For a compute-bound DNN, this is a significant

improvement, considering that inference favors latency over

throughput [24]. The homogeneous 16×16 PE configuration

offers improvement in computing efficiency from 89.58%

to 91.82%, with a significant reduction in energy consump-

tion. Figure 5 illustrates the energy-delay product (EDP)

for ResNet-50 with posits while performing inference on

the ImageNet dataset. It is worth noting that generalized

posit offers in the range of 0.6% (n = 8) to 12% (n=6) im-

provement in classification accuracy with a negligible EDP

overhead (6%) compared to posit. One may also observe

from Figure 5 that lower es results in a greater reduction in

energy consumption due to simpler encoding and decoding

schemes. Reduced bit-precision economizes the local mem-

ory storage size and the number of operational cycles in both

formats: generalized posits and posits.

8. Conclusions

Through the ALPS framework, we propose a numerical

analysis of quantization error to discover the optimal gener-

alized posit parameters. This allows us to adapt the quanti-

zation scheme with generalized posits to the distribution of

DNN parameters. To accomplish this, we defined a novel

SQNR formulation for generalized posits. This adaptive

quantization approach yields an improvement in the average

classification accuracy during inference by 14% and 6% over

posits and scaled floats, respectively. Furthermore, we show
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that generalized posits can achieve substantial performance

improvements with a relatively moderate increase in energy

consumption over posits.

9. Appendix: Derivation of Equation 8

The quantization error of the generalized posit numeri-

cal format ǫp(xi, x
′

i) = xi − x′

i is the difference between

the 32-bit floats xi input and x′

i as a q-bit generalized posit

quantized output. This quantization error is approximated

by fixed-point quantizer, compressor, and expander func-

tions. Therefore, the quantization error of generalized posit

is calculated in (18) where ǫfx(xi, x
′

i) presents the fixed-point

quantizer error, y′ is the input of the expander function, x′

is the output of the expander function computed in (19), ∆
is quantization step size and γ is real number. Note that to

derive the Equation 8, we follow [34].

ǫp(xi, x
′

i) = ǫfx(xi, x
′

i)
dx′

dy′
(18)

x′ =
1

θ
sinh (γy′) =

1

2θ

(

e(γy
′) − e−(γy′)

)

(19)

By obtaining the derivative ( dx′

dy′
) using (19) and replace result

in (18), we have (20)

ǫp(xi, x
′

i) = ǫfx(xi, x
′

i)
γ

2θ

(

e(γy
′) + e−(γy′)

)

(20)

By using the approximation

(

e(γy′)+e−(γy′)
)

2θ ≈
(

e(γ|y′|)
−e−(γ|y′|)

)

2θ the ǫp(xi, x
′

i) is correlated to x′ as (21)

ǫp(xi, x
′

i) = ǫfx(xi, x
′

i)
γ

2θ

(

e(γy
′) + e−(γy′)

)

≈ ǫfx(xi, x
′

i)γ |x
′|

(21)

The generalized posit quantization error can be expressed

in terms of x rather than x′ as in (22) where the generalized

posit quantization error ǫp(xi, x
′

i) is much smaller than the

inputs (and underflow and overflow does not occur).

ǫp(xi, x
′

i) ≈ ǫfx(xi, x
′

i)γ|xi + ǫp(xi, x
′

i)|

≈ ǫfx(xi, x
′

i)γ|xi|
(22)

From (22), the generalized posit SQNR can be expressed

as (23) and (24). ∆2
GP = u2 and ǫ2fx(xi, x

′

i) =
u2

12 where u is

the smallest value that can be represented by the generalized

posit numerical format.

SQNRGP ≈
E{x2}

E{ǫ2p(xi, x
′

i)}
≈

12

γ2
× (∆−1)2 (23)

SQNRGP(dB) ≈ (10.79− 20 log(γ)) + 20 log(∆−1
GP ) (24)

∆GP =

{

2−(2esrs−2es−(n−rs−1))+sc, if (n− rs ≤ es + 1)

2−(2esrs−es+(n−rs−1))+sc, otherwise
(25)
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