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Abstract

Mobile and embedded platforms are increasingly re-

quired to efficiently execute computationally demanding

DNNs across heterogeneous processing elements. At run-

time, the available hardware resources to DNNs can vary

considerably due to other concurrently running applica-

tions. The performance requirements of the applications

could also change under different scenarios. To achieve the

desired performance, dynamic DNNs have been proposed

in which the number of channels/layers can be scaled in

real time to meet different requirements under varying re-

source constraints. However, the training process of such

dynamic DNNs can be costly, since platform-aware models

of different deployment scenarios must be retrained to be-

come dynamic. This paper proposes Dynamic-OFA, a novel

dynamic DNN approach for state-of-the-art platform-aware

NAS models (i.e. Once-for-all network (OFA)). Dynamic-

OFA pre-samples a family of sub-networks from a static

OFA backbone model, and contains a runtime manager to

choose different sub-networks under different runtime envi-

ronments. As such, Dynamic-OFA does not need the tra-

ditional dynamic DNN training pipeline. Compared to the

state-of-the-art, our experimental results using ImageNet on

a Jetson Xavier NX show that the approach is up to 3.5x

(CPU), 2.4x (GPU) faster for similar Top-1 accuracy, or

3.8% (CPU), 5.1% (GPU) higher accuracy at similar la-

tency.

1. Introduction

Modern heterogeneous embedded systems typically exe-

cute multiple applications concurrently. DNNs are increas-

ingly being executed on embedded platforms due to the

superior performance in many applications such as com-

puter vision and natural language processing. Compared to

cloud-based solutions, DNN inference on embedded plat-
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Figure 1: Experimental results illustrating how inference latency

constraints characterised at design-time can be violated at runtime

by changes in available hardware resources and executing tasks.

(a) denotes the latency on GPU and (b) on CPU. The tables above

indicate the combinations of workload and frequency.

forms brings many advantages in latency, privacy and con-

nectivity. However, DNN inference is both computationally

and memory intensive, making it a challenge to deploy on

embedded platforms.

Many approaches have been proposed to reduce the com-

putational demands of DNN inference, such as platform-

aware filter pruning [6, 22] and Neural Architecture Search

(NAS) [2, 3]. These approaches produce a static DNN

architecture with fixed parameters for the target applica-

tion performance requirements based on the measurement

on a fixed hardware resources. However, since available

hardware resources dynamically change at runtime, perfor-

mance requirements can be violated [19, 20]. Fig 1 illus-

trates these problems by using experimental results from

a Jetson Xavier NX, where bar A represents an optimized

DNN model executing on all GPU cores at 1.1GHz to de-

liver a 50ms target latency. However, under the same target

latency, the optimization at design-time is invalid if the op-

erating frequency changes or the DNN shares GPU cores

with other applications at runtime, as shown by bars B, C



Figure 2: The workflow of Dynamic-OFA. Using pre-trained OFA networks that contain 2 × 1019 sub-network architectures as the

backbone, sub-network architectures are sampled from OFA for both CPU and GPU at the offline stage. These architectures have different

performance (e.g. latency, accuracy) and are stored in a look-up table to build a dynamic version of OFA without any additional training

required. Then, at runtime, Dynamic-OFA selects and switches to optimal sub-network architectures to fit time-varying available hardware

resources.

and D. The same applies in the CPU case, shown by bars

E, F , G and H .

Since both software performance requirements and hard-

ware resource availability can change dynamically at run-

time [19, 20], various dynamic DNNs [21, 23–25] have

been proposed to address this issue. These dynamic DNNs

contain various sub-networks that each have a different

accuracy and latency. Given different available hard-

ware resources and application requirements, different sub-

networks can be selected. However, two problems still re-

main in the previous approaches. First, previous dynamic

DNNs involve an additional training pipeline which retrains

the backbone network (e.g. MobileNet [8, 15], ResNet [5])

from scratch. The total training would be costly in real

deployment scenarios, since platform-aware pruning/NAS

need to be applied before dynamic DNN process, and all

model variants of different deployment scenarios have to

be retrained to become dynamic. Second, prior works re-

scale the network architecture to obtain sub-networks by ei-

ther channel scaling [21, 23–25] or layer scaling [9]. How-

ever, the most efficient DNN architectures on CPUs typi-

cally have more layers but fewer channels, while the oppo-

site is true for GPUs [3]. Therefore, previous scaling meth-

ods limit the application of dynamic DNN on heterogeneous

System on Chip (SoC) platforms, since modern SoCs in-

tegrate multiple computing elements including CPU, GPU

and NPU. As a result, different dynamic DNNs are needed

for different heterogeneous computing elements.

This paper proposes Dynamic-OFA, a novel approach

to provide dynamic DNN architectures for different soft-

ware and hardware resource requirements. Dynamic-OFA

works with state-of-the-art platform-aware NAS methods

(i.e. Once-for-all network (OFA)) without requiring any ad-

ditional model retraining. Moreover, to improve previous

dynamic approaches, Dynamic-OFA scales the entire DNN

architecture, including width, depth, filter sizes, and input

resolutions to provide more efficient DNNs architectures for

both CPU and GPU with one shared backbone.

Fig 2 shows the workflow of Dynamic-OFA with two

main steps. In the first offline step, different sub-networks

are extracted from the OFA [2] super-network. Accuracy

and latency of extracted sub-networks are evaluated to find

a family of efficient sub-networks on the Pareto-front for

both CPU and GPU. In the second step, and during runtime,



Dynamic-OFA uses a runtime manager to switch between

the optimal sub-network based on the runtime accuracy and

latency requirements of the application, and available re-

sources on the platform.

The contributions of this paper are:

1. A novel dynamic DNN approach that combines OFA

with dynamic DNN. Compared to the state-of-the-art,

our experimental results on Nvidia Jetson Xavier NX

show that our approach is up to 3.5x (CPU), 2.4x

(GPU) faster for similar ImageNet Top-1 accuracy, or

3.8% (CPU), 5.1% (GPU) higher accuracy at similar

latency.

2. An improved search algorithm to efficiently search a

family of sub-networks from the OFA super-network,

by jointly considering inference accuracy and latency.

3. A runtime approach to dynamically switch between

sub-networks to meet time-varying performance con-

straints and/or available hardware resources.

2. Related work

Neural Architecture Search (NAS) Many handcrafted

efficient DNN models like MobileNet [8, 15] and Shuf-

fleNet [13] achieve state-of-the-art performance. However,

these models need to be further compressed to fit constraints

of the target device using platform-aware compression tech-

niques [6,22]. Since compression needs to be conducted for

each new constraint, the time required for large-scale de-

ployment is expensive. Furthermore, designing handcrafted

DNN models needs expert knowledge and can be a chal-

lenging and time-consuming task. NAS automates architec-

ture design, directly searching for the most efficient DNN

architectures for target constraints. However, given new

platform constraints, DNN models need to be researched

and retrained; therefore, the required time is still prohibitive

for large-scale deployments. For example, Tan et al. [16]

introduced MnasNet, a multi-objective NAS approach that

uses reinforcement learning to find the architecture for max-

imizing accuracy and latency on target hardware platforms.

MnasNet cost 40,000 GPU hours (Nvidia V100 GPU) to

find a single DNN architecture, and this raises a signifi-

cant issue since the number of combinations of hardware

platforms and software performance targets are significant.

Cai et al. [3] proposed ProxylessNAS, which uses weight-

sharing and differentiable architecture search; however, the

search cost for each model is still 200 GPU hours which is

also significant for large scale deployments.

Cai et al. [2] proposed the Once-for-all network (OFA), a

NAS approach that supports large-scale deployments. Only

one DNN model (a super-network) needs to be trained,

and enables 2 × 1019 sub-networks to be used for differ-

ent software performance requirements on different hard-

ware platforms. While OFA offers a number of signifi-

cant advantages, the available hardware resources in mod-

ern SoCs, containing heterogeneous computing elements

that use energy-efficient features such as DVFS and task

mapping, vary dynamically. OFA is not a dynamic DNN by

default, since its search process is still too time-consuming

(e.g. hours on Nvidia Jetson Xavier NX). This prevents real-

time architecture switching at runtime, and motivates us to

propose a general approach for building dynamic DNNs for

OFA super-networks.

Dynamic DNNs Dynamic DNNs can switch the DNN ar-

chitecture to fit time-varying available hardware resources

and software performance requirements. A variety of ap-

proaches have been proposed to change the width of the

backbone networks, like ‘Slimmable’ [25], ‘Universally

Slimmable’ [24] and ‘AutoSlim’ [23]. These models can

run different active channels and achieve instant and adap-

tive accuracy-latency trade-offs. MutualNet [21] shows im-

proved performance by adding input resolutions with width

as switchable dimensions. For different constraints, differ-

ent sub-networks with varying widths and resolutions can

be chosen and built as a query table. Approaches such as

MSDNet [9] can change the depths of the backbone net-

works. However, the most efficient models for different

hardware resources are usually different in architecture. For

example GPUs prefer shallow and wide DNN architectures

with early pooling, while CPUs prefer deep and narrow

DNN architectures with late pooling [3]. The switchable di-

mensions for previous approaches are either width or depth;

therefore, they cannot provide the most efficient architec-

ture for both CPU and GPU on the modern SoCs. The

Dynamic-OFA approach presented in this paper switches in

four dimensions (width, depth, filter sizes, and input resolu-

tions) to provide efficient architectures for both GPUs and

CPUs by using a share backbone model.

3. Dynamic-OFA

As illustrated in Fig 2, Dynamic-OFA use the following

process: a pre-trained OFA model [2] is used as the back-

bone (super-network), as introduced in Section 3.1. As an

offline process, sub-networks with different latency and ac-

curacy are sampled from the pre-trained super-network at

design-time (Section 3.2). The sampling process is con-

ducted separately for CPU and GPU because the most ef-

ficient sub-network architectures are different for hetero-

geneous computing resources. The batch-normalization

(batch-norm) parameters of each sub-network are recalcu-

lated and stored (Section 3.3). At runtime, the sampled sub-

network architecture can be switched to meet latency and

accuracy requirements on time-varying available hardware

resources (Section 3.4). No additional training is needed,

and since all sub-networks share the same OFA model as



the backbone, only a single model needs to be stored on the

device.

3.1. Backbone Network: Once­For­All (OFA)

The OFA network [2] supports 2 × 1019 sub-networks

with different sizes by a single super-network, covering four

dimensions of the DNN architecture: depth, width, kernel,

and input resolutions. OFA uses progressive shrinking to

train the super-network model. Progressive shrinking opti-

mizes super-network parameters such that each supported

sub-network maintains almost the same level of accuracy

as independently training a network with the same architec-

ture configuration. After training the super-network model,

OFA uses an evolutionary search algorithm [14] to find sub-

network architectures in a super-network model with differ-

ent accuracy and latency trade-offs. OFA only requires a

single set of parameters to store all sub-networks, since all

sub-networks share the same parameters. OFA is able to se-

lect sub-network architectures for different hardware plat-

forms, and then calibrates the batch-norm parameters for

those selected sub-networks. The process of searching for

sub-networks and calibrating batch-norm parameters take

minutes on a GPU or hours on a CPU1. The actual search

time at runtime depends on how tight the constraints are,

and how the search problem shares hardware resources with

other applications, and hence OFA cannot be used to adapt

to resource changes at runtime.

Our approach identifies a family of efficient sub-

networks on the Pareto-front for each computation element

in a heterogeneous platform, and pre-calculates batch-norm

parameters for those sub-networks offline. This allows

switching the network architecture at runtime. Furthermore,

since Dynamic-OFA conducts all the sub-network search at

design-time on a server, the search cost is dramatically re-

duced to that of the single search cost, multiplied by the

number of sub-networks.

3.2. Optimal Sub­network Architecture Search

OFA’s search is solely based on the latency constraint,

as it selects sub-networks with the highest accuracy that

meets a latency constraint. It uses a combination of a ran-

dom search and evolutionary search: (1) a random search

algorithm finds sub-networks that meet the latency con-

straints; (2) the evolutionary search performs refinement to

mutate those random selected sub-network configurations,

and then keeps the one which has the highest accuracy. Al-

though this approach works for a single sub-network ar-

chitecture search, it is not efficient for searching a family

of sub-networks. To build dynamic-DNNs, multiple sub-

1The platform is Nvidia Jetson Xavier NX. The time includes measure

the accuracy of selected sub-network on ImageNet 50k validation set, since

the accuracy prediction is not accurate enough, more details in section 3.2.

Batch-norm is calculated on 2000 images.

Algorithm 1 Random Search Algorithm of Dynamic-OFA.

Input: maximum accuracy constraint (Accmax), accuracy suit-

able range (Accr), latency (Lat), maximum latency con-

straint (Latmax), initial latency (Latinit), extracted sub-

networks (Parents), latency constraint increment (Latadd),

n iterations of searching (itrn), maximum iterations number

(itrmax)

Output: qualified network architecture (Arch), predicted accu-

racy (Accp), predicted latency (Latp)

1: function RANDOM SEARCH

2: Lat← Latinit

3: i = 0
4: while i < itrmax do

5: if i%itrn = 0 and Lat < Latmax then

6: Lat← Lat+ Latadd
7: end if

8: Arch = Random Arch()
9: Accp = Predict Accuracy(Arch)

10: Latp = Predict Latency(Arch)
11: if Accp > Accmax −Accr and Latp < Lat then

12: if Arch not in Parents then

13: return Arch,Accp, Latp
14: end if

15: end if

16: i← i+ 1
17: end while

18: end function

network architectures with different accuracy-latency trade-

offs are required to be dynamically switched at runtime. If

we only use latency as the constraint (which is the origi-

nal OFA search method), the random search algorithm often

outputs the sub-networks with the same accuracy for differ-

ent latency constraints. For example, a 75% accuracy, 30

ms model is searched under 30 ms, 40 ms and 50 ms con-

straints, but ideally we want models with higher accuracy

when the latency is relaxed. The OFA algorithm only re-

quires the latency of searched sub-networks to be lower than

constraint but not for accuracy, and this prevents us from

getting the Pareto trade-off curve. In our random search al-

gorithm 1, by adding accuracy as a hard constraint, it forces

the search algorithm to find sub-networks under certain la-

tency constraints and have better accuracy (e.g. 75% accu-

racy under 30 ms, 76 % accuracy under 40 ms, 77% accu-

racy under 50 ms etc).

In Algorithm 1, accuracy and latency predictors are used

to reduce the time cost of the search process. We use the

original accuracy predictor that comes with the pre-trained

OFA model; it is a three-layer neural network trained using

5000 network architectures and their accuracy data. How-

ever, since we want the dynamic DNN to have 1% accuracy

steps between sub-networks, the accuracy of all searched

models are re-measured on the ImageNet 50K validation

set since the original OFA accuracy predictor is not accu-



rate enough (normally 2-4% higher than our measurement).

We adapted the latency predictor in OFA for Nvidia Jet-

son Xavier GPU and CPU as a heterogeneous platform.

A lookup table is used to record the latency for different

DNN computing operations such as convolution, pooling,

input and output. The latency of all operations is profiled at

design-time by timing the execution time of all operations

at all size variants. Moreover, the separate lookup table is

built for different hardware platforms and different comput-

ing cores on these platforms (e.g. CPU, GPU). The latency

of a sub-network can be predicted by summing up the la-

tency of sub-network operations. The latency are also re-

measured on devices for more accurate data.

To search for sub-networks, the latency constraint is

initialized with a user-defined value Latinit, shown in

algorithm 1 line 2. An accuracy constraint is also

fixed at a user-defined range [Accmax − Accr, Accmax].
Then, RANDOM SEARCH starts searching for sub-

networks by randomly generating sub-network architec-

tures Random Arch() (line 8), i.e. different depths, width,

kernel sizes and input resolutions. Predict Latency() and

Predict Accuracy() predict the latency and accuracy of

each sub-network in lines 9 and 10. If none of the found

architectures provide a latency of less than Lat and an ac-

curacy in the range of [Accmax −Accr, Accmax] for n iter-

ations of searching (itrn), the latency constraint is relaxed

by increasing Latadd (line 6). However, this relaxation can-

not exceed a maximum threshold Latmax. The discovered

network architecture is stored in Parents (line 13), which

is subsequently used for mutation operations of the evolu-

tionary search algorithm to search for the best sub-network.

We use the state-of-the-art pre-trained OFA [2] super-

network model as the backbone network for image classifi-

cation. This model uses MobileNet v3 [7] as the fundamen-

tal network architecture and is trained with the progressive

shrinking approach [2] to enable 2× 1019 sub-networks. A

random search, Algorithm 1, is used within the evolution-

ary search algorithm2 [14] to search for potential efficient

sub-networks. It is notable that for given accuracy and la-

tency constraints, numerous sub-network architectures can

be found in the search process for each computation ele-

ment, e.g. CPU, GPU in a heterogeneous platform. How-

ever, most architectures are sub-optimal because they pro-

vide lower accuracy or higher latency. The optimal sub-

network architectures are on the Pareto curve of accuracy-

latency scatter plot, and they are selected for building the

Dynamic-OFA. Fig 3 shows the accuracy-latency scatter

plot of extracted sub-networks for the GPU of Nvidia Jetson

Xavier NX platform. Among obtained sub-networks, only

those located on the Pareto-front (red line) are considered as

a family of optimal sub-networks for use by Dynamic-OFA.

2The same evolutionary search algorithm that the OFA used.
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Figure 3: The accuracy and latency of potential sub-network ar-

chitectures. The optimal architectures are on the Pareto curve.

3.3. Batch­norm Calibration

Searching sub-networks at runtime is computationally

expensive. Therefore, to make OFA dynamic at runtime,

the search algorithm is run offline, and the optimal sub-

network configurations are stored as a lookup table to

achieve fast architecture switching at runtime. Moreover,

the batch-norm parameters [10] differ for each sub-network

architecture and need to be recalculated for different sub-

networks. However, the calibration can take minutes on

GPU and hours on CPU, which is unacceptable for real-

time DNN architecture switching at runtime. Since we

have selected a small number of optimal sub-network archi-

tectures, the batch-norm parameters can be pre-calculated

at design-time. At runtime, sub-network architectures can

be switched to meet different performance requirements

on time-varying available hardware resources. The pre-

stored batch-norm parameters (about 2KB for each sub-

network) can be loaded, significantly reducing the architec-

ture switching time.

3.4. Runtime Architecture Switching

At runtime, sub-network architectures of Dynamic-OFA

can be switched to meet different performance requirements

on time-varying available hardware resources. Because of

the stored sub-network architectures and their batch-norm

parameters, Dynamic-OFA supports real-time architecture

switching for the dynamic computing environments. We

consider two operating scenarios:

1. When a single dynamic-OFA runs on the device, a

look-up table is used to directly find the sub-network

‘level’ to meet different user-defined accuracy and la-

tency constraints. This is a similar approach to previ-
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Figure 4: Experimental results of Dynamic-OFA’s accuracy-latency trade-offs on the a) GPU and b) CPU of the Nvidia Jetson Xavier NX.

State of the art approaches (shown in different colours) are also plotted, including static [2] and dynamic DNNs [21,23–25]. Dynamic-OFA

is 2.4x (GPU) and 3.5x (CPU) faster (at similar accuracy) or has 5.1% (GPU) and 3.8% (CPU) higher Top-1 ImageNet accuracy (at similar

latency) than AutoSlim-MnasNet [23].
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Figure 5: Experimental results of Dynamic-OFA’s accuracy-

FLOPs trade-offs. Compare with state-of-the-art approaches,

Dynamic-OFA achieves up to 50% FLOPs reduction (at similar

accuracy) and 2.95% higher Top-1 ImageNet accuracy (at similar

FLOPs) than AutoSlim-MnasNet [23].

ous dynamic DNNs like Slimmable [23–25] and Mu-

tualNet [21].

2. When two workloads share the same GPU resources

(e.g. one dynamic-OFA with another workload, or two

dynamic-OFAs), a reactive control approach is used

instead of a look-up table, due to the increased state

space. The latency of the current Dynamic-OFA model

is measured over a certain time interval using a sliding

window. The RTM continually monitors the latency of

all Dynamic-OFA workloads at runtime. When a la-

tency constraint violation occurs, the RTM gradually

changes sub-network levels while observing whether

latency constraints are subsequently met. Although

the design-time profiled look-up table is not used, the

trade-off between sub-networks still holds.

The overhead of the RTM includes the monitoring of

latency and the calculation of average latency, neither of

which are computationally expensive in comparison to the

task being monitored. Detailed overhead measurement will

be shown in the next section.

4. Experimental evaluation

Dynamic-OFA is developed for both the CPU and GPU

of the Nvidia Jetson Xavier NX platform, and the accuracy

and latency are empirically measured. The results are com-

pared with both state-of-the-art static OFA backbone [2]

and dynamic DNNs [21, 23–25]. We have also executed

other applications (e.g. online model training [1] or a 2nd

Dynamic-OFA) alongside our Dynamic-OFA, to demon-

strate runtime management of the sub-network architectures

for accommodating both applications on the same GPU.

4.1. Experimental Setup

We deploy and evaluate Dynamic-OFA on the Nvidia

Jetson Xavier NX. The platform has a 384-core GPU, a 6-
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core CPU, and 8 GB of unified memory. The frequency is

locked at the maximum3. A single-core CPU is used for all

CPU experiments since the program is single-threaded. We

use the open-source pre-trained OFA model (MobileNet v3,

w = 1.2 [2]) as the backbone for Dynamic-OFA. We evalu-

ate the accuracy of Dynamic-OFA on the ImageNet [4] 50K

validation images for a more accurate measurement than

OFA’s accuracy predictor.

4.2. Top­1 Accuracy and Latency

Dynamic-OFA contains six optimal sub-networks for the

GPU, which span a 20-100 ms latency range (Fig 4a). The

same model also contains seven optimal sub-networks for

the CPU, spanning a range from 500-3000 ms (Fig 4b). The

search range for Top-1 accuracy is 70% to 85% for both

CPU and GPU. In this paper, we denote sub-networks using

“levels.” Different levels have different latency and accu-

racy. For example, level 1 is the sub-network architecture

that has the lowest latency and accuracy. On GPU, level

6 is the architecture that has the highest latency and accu-

racy, whereas, on CPU, level 7 has the highest latency and

accuracy.

Dynamic-OFA achieves up to 79% Top-1 accuracy on

ImageNet; close to the 80% accuracy of the static OFA

backbone [2] which is considered the state-of-the-art under

mobile settings (<600M MACs). The reason our Dynamic-

OFA has 1% lower accuracy is because OFA applies ex-

tra fine-tuning steps for its individual model, whereas our

model cannot be easily fine-tuned since it contains 13 dif-

ferent sub-networks. Compared to state-of-the-art dynamic

3Due to the intensive nature of DNN workloads, current DVFS gover-

nors will typically operate the SoC at the maximum frequency.

Model Time

Static OFA [2] minutes to hours

MutualNet-MBv2 [21] 17 ms

AutoSlim-MnasNet [23] 33 ms

Dynamic OFA 73 ms

Table 1: Comparison of average runtime DNN architecture switch-

ing time on GPU

DNNs [23], Dynamic-OFA is up to 2.4x (GPU) and 3.5x

(CPU) faster (at a similar accuracy) or has 5.1% (GPU) and

3.8% (CPU) higher Top-1 ImageNet accuracy (at a similar

latency). Furthermore, since previous dynamic DNNs are

designed using FLOPs rather than latency, they can access

less hardware information during design-time. Hence we

also compared our Dynamic-OFA with them on a accuracy-

FLOPs trade-off curve (Fig 5). Dynamic-OFA achieves up

to 50% FLOPs reduction (at similar accuracy) and 2.95%

higher Top-1 ImageNet accuracy (at similar FLOPs) than

prior art.

At runtime, different sub-network architectures can be

used to meet dynamic software performance requirements

and available hardware resources. The runtime architecture

switching time is shown in Table 1; Dynamic-OFA sup-

ports real-time DNN architecture switching, its switching

time is much faster than the static OFA model [2] since

we only do search in a small subset of sub-networks. Fur-

thermore, loading the pre-calculated batch-norm takes only

2ms. Dynamic-OFA is only slightly slower than AutoSlim

[23] and MutualNet [21] due to larger memory footprint,

but it has a much better accuracy-latency/FLOPs trade-offs

(Figs 4 and 5). Such a small difference is not a consid-

erable issue in real applications, since new operating en-

vironments (i.e. software performance requirements, avail-

able hardware resources) normally last much longer (e.g.

minutes to hours).

4.3. Dynamic Performance Requirements

The sub-network architectures of Dynamic-OFA can be

switched to meet the dynamic latency constraints at run-

time. When only Dynamic-OFA is running on the device,

all hardware resources are available to it. A look-up table

that contains all accuracy-latency trade-offs can be obtained

at design-time. RTMs can choose different operating points

at runtime. As shown in Fig 6, the Dynamic-OFA model

is deployed on the GPU and runs at the level 6 architecture

while the latency constraint is 65ms at the beginning. At

around 2500 ms, the latency constraint gets increased to 40

ms. Therefore the sub-network architecture is switched to

level 2 for speedup at the cost of trading 4.13% accuracy.

Then, accuracy is recovered when the latency constraint is

later reduced to 55ms.

The RTM, uses the sliding window to calculate the av-
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Figure 7: At t = 0, a single DNN is executing. After 2.5 s, a

second application begins executing, reducing available GPU re-

source and impacting on the DNN inference latency. The runtime

adapts, reducing the DNN accuracy until the performance con-

straint is met.

erage latency every 10 images. Based on the latency of our

model on the GPU, the reaction time of the RTM is approx-

imately 1-2s (i.e. about 50 image classifications). The time

overhead of the RTM is around 15 ms for each architecture

switching, including the latency of monitoring 50 images

and calculating the average time across the sliding windows.

4.4. Managing Concurrent Workloads

The sub-network architectures of Dynamic-OFA can be

switched to meet software performance constraints while

fewer computing resources are available. Fig 7 shows re-

sults where GPU computing resources are shared between

Dynamic-OFA and a training task of a static DNN. The

static DNN is an Nvidia open-source plant classification

based on ResNet-18 [1]. The training tasks starts to run

at 2500 ms (donated by ‘X’), and Dynamic-OFA becomes

slower since fewer GPU cores are available to it. The sub-

network architecture is gradually switched from level 4 to

level 2 to meet the latency constraint by trading 2.6% accu-

racy.

Two Dynamic-OFA models can also coexist of when

they share the same GPU. Fig 8 shows two Dynamic-OFA

models deployed on the same GPU, and their latency con-

straint become violated. The sub-network architecture of

two Dynamic-OFA models are switched collectively so that

the latency constraint of both models can be met, while

keeping accuracy as high as possible. The constraints for

model A and model B are 65 ms and 55 ms, respectively.

Model A runs at the highest level at the beginning, and

model B runs at level 5. To match the latency constraints,
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Figure 8: Runtime management of two concurrently execut-

ing Dynamic-OFA models, each with its own latency constraint

(dashed lines).

model A switches to level 5, but model B is still slower than

the constraint, so model B switches to level 4: leaving both

models meeting their constraints.

5. Conclusions

This paper has proposed Dynamic-OFA, a novel dy-

namic DNN approach. Dynamic-OFA brings together two

concepts: the OFA model and dynamic DNNs, which pro-

vide solid improvements over the previous state-of-the-

art. Dynamic-OFA does not require any additional dy-

namic DNN model retraining and has the architecture flex-

ibility for all heterogeneous computing elements with a

share backbone. We empirically evaluated our approach

against the start-of-the-art, our results show that our ap-

proach can provide better accuracy-latency trade-offs, up to

3.5x (CPU), 2.4x (GPU) faster for similar ImageNet Top-1

accuracy, or 3.8% (CPU), 5.1% (GPU) higher accuracy at

similar latency.

Dynamic-OFA is a general approach for building dy-

namic DNNs, and the backbone network could be any

super-networks trained by the OFA training pipeline. Our

future work will investigate other applications such as net-

work for IoT devices [12], transformers for natural lan-

guage processing (NLP) tasks [18], generative adversarial

networks (GANs) [11], 3D DNNs [17], etc.
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