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Abstract

Knowledge distillation has been used to transfer

knowledge learned by a sophisticated model (teacher) to

a simpler model (student). This technique is widely used to

compress model complexity. However, in most applications

the compressed student model suffers from an accuracy gap

with its teacher. We propose extracurricular learning, a

novel knowledge distillation method, that bridges this gap

by (1) modeling student and teacher output distributions;

(2) sampling examples from an approximation to the

underlying data distribution; and (3) matching student and

teacher output distributions over this extended set including

uncertain samples. We conduct rigorous evaluations on

regression and classification tasks and show that compared

to the standard knowledge distillation, extracurricular

learning reduces the gap by 46% to 68%. This leads to

major accuracy improvements compared to the empirical

risk minimization-based training for various recent neural

network architectures: 16% regression error reduction on

the MPIIGaze dataset, +3.4% to +9.1% improvement in

top-1 classification accuracy on the CIFAR100 dataset, and

+2.9% top-1 improvement on the ImageNet dataset.

1. Introduction

Training an accurate model in a supervised learning setup

requires a large model capacity and a large labeled dataset.

In practice, both requirements cannot be perfectly satisfied:

we have limited labeled data, and model size is bounded by

the computational budget that is determined by the hardware

that runs the model. Knowledge transfer/distillation and data

augmentation methods have been developed to address the

challenges with computational cost and data scarcity. We

briefly discuss these methods, which are also the building

blocks of this work.

Knowledge distillation. Overparameterized neural

networks learn better representations that lead to better
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generalization accuracy [1]. For example, both the

PyramidNet-110 model [23] and the larger PyramidNet-

200 model achieve perfect accuracy on the CIFAR100 [32]

training set, while the latter has 3% higher generalization

accuracy. This motivated transferring the “knowledge”

encoded in the more accurate larger model to the smaller

one. Knowledge Distillation [8, 28] (KD) established

an important mechanism through which one model

(typically of higher capacity, called teacher) can train

another model (typically a smaller model that satisfies

the computational budget, called student). KD has been

implemented in many machine learning tasks, for example

image classification [28], object detection [12, 61], video

labeling [70], natural language processing [56, 41, 53, 36,

57], and speech recognition [11, 55, 37].

The idea of KD is to encourage the student to imitate

teacher’s behavior over a set of data points, called transfer-

set. For example, in classification, the teacher’s output

includes not only the correct class index (the argmax

of softmax generated probabilities), but also additional

information regarding similarities to other classes.

The amount of additional information can be quantified

by the entropy of the class probabilities produced by the

teacher. A teacher with small training loss produces low

entropy outputs over the dataset, making KD less effective.

Previously proposed remedies for this issue include matching

the logits of student and teacher [8], increasing the entropy

by smoothing teacher’s output [28], encouraging the student

to match its intermediate feature maps to that of the

teacher [48], or explicitly training a teacher with high entropy

outputs [44]. In this work, we show that using a transfer-

set containing uncertain examples along with modeling

uncertainty of the teacher addresses this issue, and help

bridging the gap between the student and teacher accuracies.

Data augmentation. Lack of sufficient labeled data is

another challenge in supervised learning. There are several

data augmentation approaches to tackle this challenge. These

methods exploit domain knowledge to transform training

examples to generate more data [51, 33, 17], learn a data

generation policy [15, 14, 29, 35, 71, 62], augment the



intermediate features of the model [20, 65], or find difficult

examples using adversarial training [63]. Some of the recent

methods [67, 59, 66, 26, 21] mix two or more data points

from the empirical distribution to generate new data points.

Alternatively, instead of manually designed transformations,

generative models [43, 58, 31, 22] could be utilized to

sample new training examples. Here, we use samples from

an approximation to the data distribution to construct an

improved KD algorithm. Note that unlike classical data

augmentation methods that require labels for the augmented

data, in our KD framework we only need unlabeled samples.

To bridge the gap between the teacher and the student

models, in this work we present a novel KD method,

Extracurricular Learning (XCL). Our method is motivated

by the following two arguments. First, modeling the

output distribution (rather than point estimates) of teacher is

important for knowledge transfer as it provides additional

information for student. For regression, we explicitly model

the output distribution of the teacher as a Gaussian and

transfer it to the student model. For classification, the

output is already encoded as a categorical distribution.

Second, if student exactly matches the teacher’s output

on the entire input domain, we are guaranteed to bridge

the accuracy gap. This is infeasible in practice due to the

student’s limited capacity and optimization imperfections.

As such, we propose to match the student and teacher on

an extended transfer-set beyond the empirical distribution,

particularly where the teacher has high uncertainty. We

investigate various approximations of the data distribution to

synthesize new examples (the extracurricular material) with

high teacher uncertainty for KD. Our main contributions are:

• We empirically show that uncertain samples and

uncertainty estimation result in significant improvements

in KD generalization accuracy.

• We introduce XCL: a combination of modeling student

and teacher output distributions, sampling (uncertain) data

points from an approximate data distribution, and KD over

this extended transfer-set. XCL does not require additional

unlabeled samples and or hyper-parameter tuning.

• XCL reduces the accuracy gap between the student and

the teacher by 46% to 68% compared to standard KD.

Compared to best practice supervised learning baselines,

XCL provides 16% reduction in regression error on

the MPIIGaze dataset and +3.4% (PyramidNet), +4.6%
(ResNet), +9.1% (BinaryNet) top-1 classification accuracy

improvement on the CIFAR100 dataset, and +2.9%
(ResNet) on the ImageNet dataset.

2. Preliminaries

In supervised learning, we seek parameters θ of a

parameterized function fθ (e.g., weights of a neural network)

to minimize the expected risk:

min
θ

E(x,y)∼p[l(fθ(x),y)], (1)

where p(x,y) is the joint distribution of (example, label)

pairs and l(·) is the loss function determining how close

fθ(x) and y are. For almost every practical problem, p
is not available, yet a finite set of training data points

D = {xi,yi}
n
i=1 is given. The empirical risk approximation

of (1) substitutes p with empirical distribution pδ =
1/n

∑n
i=1 δ(x = xi,y = yi), where δ(x = xi,y = yi) is

a Dirac mass function located at (xi,yi). This leads to the

Empirical Risk Minimization (ERM):

min
θ

1

n

∑

i

l(fθ(xi),yi) (2)

In KD [28], a student model fθ is encouraged to match the

output of a teacher τ on the training set:

min
θ

1

n

∑

i

l(fθ(xi), τ(xi)) (3)

τ in (3) can be a single more powerful model or an ensemble

of several models. In the original KD [28] an average of

losses in (2) and (3) is used.

KD is widely studied for the classification task, where yi

is a one-hot vector that indicates the true class of xi. The

teacher output τ(xi), however, is a soft-label. Components

of τ(xi) encode similarities of xi to other classes [28],

which encapsulate additional information compared to yi.

Hence, training a model with soft-labels from a stronger

teacher instead of one-hot labels leads to accuracy gain.

3. Effect of Uncertainty on KD Performance

In this section, we present two sets of experiments

that illustrate the importance of (1) uncertain data points

in the transfer-set; and (2) modeling teacher and student

uncertainties on KD.

Uncertain samples from data distribution are important

for KD. In the first experiment, we randomly divide the

data available in the training set into two disjoint subsets

represented by A and B. A corresponds to half of the data

that is used to train the teacher while B denotes the held-out

set. We quantify data uncertainty (aleatoric uncertainty) of

examples in B using the entropy of predictions generated by

the teacher trained over A. We then split B into two equally

sized distjoint subsets B = H∪L, corresponding to samples

with high and low uncertainties, respectively.

For a soft-label y the normalized entropy is defined as

Ĥ(y) = −
c

∑

j=1

yj log yj/ log c, (4)

where superscript j refers to the j’th component of the vector,

and c is the number of classes. Ĥ(y) varies between 0 and



dataset
transfer

set

entropy

(%)
ERM (%) KD (%)

CIFAR100
H 56.4 52.7 70.7

L 5.5 61.9 65.3

ImageNet
H 23.1 65.2 73.4

L 1.8 65.2 70.7

Table 1: Effect of uncertainty of the transfer-set on student’s

top-1 validation accuracy. Teacher’s top-1 accuracy is 74.7%
and 76.1% for CIFAR100 and ImageNet, respectively.

1, and denotes label uncertainty for a sample. It can also be

interpreted as the amount of additional information encoded

in soft labels compared to one-hot labels.

In Table 1, we report average normalized entropies of the

transfer-sets, and validation accuracies of students models

trained using ERM (using one-hot ground truth labels) and

KD (using soft-labels from the teacher model). For both

datasets, we observe a transfer-set with higher uncertainty

results in more effective KD, and therefore higher validation

accuracy for student. This trend does not hold for ERM.

Note that we can artificially create a transfer-set containing

uncertain samples, for example, a transfer-set consisting of

Gaussian noise. However, uncertain samples that are not

from the data distribution are not suitable for KD. Please see

Table 8 for this experiment.

As observed, for an effective KD we need uncertain

samples from the underlying data distribution. Our intuition

is that uncertain samples are located close to the decision

boundaries of the teacher model, similar to the argument in

[27]. Therefore, they better characterize teacher’s decision

boundaries compared to samples with low uncertainty (that

are far away from the decision boundaries).

Uncertainty modeling is important for KD. In the second

experiment, we analyze the effect of additional information

contained in teacher’s output distribution on KD using an

extreme transfer-set. Let Z ⊂ B be the set of all samples for

which the teacher is incorrect1, i.e., the argmax of teacher’s

prediction points to a wrong class. In Table 2, we present

results of training student models using ground truth labels

(ERM) versus soft-labels from teacher (KD). Using ERM

over Z results in very low accuracy. In contrast, when we

use soft-labels from the teacher, the student model achieves

surprisingly high accuracy. This illustrates that uncertainty

modeling (captured through teacher’s output distribution) is

crucial for KD, particularly when using difficult uncertain

examples.

4. Extracurricular Learning (XCL)

Motivated by the observations discussed in Section 3, we

develop an improved KD algorithm, dubbed extracurricular

1|Z| constitutes ∼12% of the training data for both benchmarks.

dataset entropy (%) ERM (%) KD (%)

CIFAR100 58.3 14.2 61.3

ImageNet 26.7 15.6 58.5

Table 2: Student top-1 validation accuracy trained over a

transfer-set on which the teacher top-1 accuracy is 0%.

learning (XCL), for regression and classification tasks which

utilizes uncertainty estimation and extended transfer-sets.

4.1. KD Using Uncertainty Modeling

Uncertainty estimation is important for effective

knowledge transfer since (1) it provides student with not

only point estimates of teacher’s output, but also the full

distribution (thus, more is learned from the teacher); and (2)

it prevents over-penalizing student on samples that teacher

is not confident about.

Uncertainty estimation for classification. In the standard

classification task, uncertainty is already modeled, where the

teacher’s output is as a categorical distribution capturing

the conditional probability of the label y given x. The

label distribution provides the student with the uncertainty

associated to data points. Examples of data uncertainties

are when different classes are present in an image, or when

there is ambiguity due to occlusion. The student model

is trained to minimize the average Kullback-Leibler (KL)

divergence from its predicted categorical distribution to that

of the teacher.

Uncertainty estimation for regression. A trivial extension

of KD to regression tasks is replacing the ground truth

labels (regression targets) with the teacher predictions.

Recently, Saputra et al. [50] explored some variations of

KD for regression. However, these methods lack uncertainty

modeling, which we show is a key property for effective KD.

We introduce a KD algorithm for regression incorporating

uncertainty estimation.

We model the heteroscedastic uncertainties (uncertainties

that depend on each example xi) for regression tasks,

similar to [42, 30]. Specifically, for a data point

xi we assume the model outputs fθ(xi) = (µi, σ
2
i )

approximating the conditional probability p(y|xi) with a

Gaussian N (µi, σ
2
i ). Hence, µi’s regress yi’s and σi’s

indicate the uncertainties. To estimate µi’s and σi’s without

having access to “uncertainty labels”, we learn model

parameters by minimizing the Negative Log Likelihood

(NLL) loss:

l(fθ(xi), yi) =
1

2σ2
i

‖µi − yi‖
2
2 +

1

2
log σ2

i

=
1

2
exp(−si)‖µi − yi‖

2
2 +

1

2
si

(5)

In practice, the model predicts log variance si = log σ2
i

for numerical stability. This can be simply implemented by

adding an additional output to the last layer of a neural



network. The computational overhead for uncertainty

estimation is negligible.

In our framework, both student and teacher predict the

output conditional distribution as Gaussians: N (µi, σ
2
i ) and

N (µτ
i , σ

τ
i
2), respectively. We train the teacher using (5).

We then distill the teacher’s knowledge to the student by

minimizing the KL divergence between two Gaussians

l(fθ(xi), τ(xi)) = DKL(N (µτ
i , σ

τ
i
2) ‖ N (µi, σ

2
i ))

=
1

2

[

exp(sτi − si) + exp(−si)‖µ
τ
i − µi‖

2
2 − (sτi − si)− 1

]

(6)

over the transfer-set.

In Section 5.1, we show KD for regression using the loss

in (6) improves student accuracy significantly compared to

methods that do not account for uncertainties.

4.2. Data Distribution Modeling

XCL extends knowledge transfer to data points beyond

the empirical distribution. We approximate the data

distribution p(x) by q(x), construct a transfer-set by

sampling from q, and perform KD over this set:

min
θ

Ex∼q[l(fθ(x), τ(x))] (7)

In classification, l(·) is the KL divergence between two

categorical distributions, and in regression it is between two

Gaussians as in (6).

We can also interpret XCL as expected risk

minimization (1) over an approximation of the joint

(example, label) distribution p(x,y). XCL approximates the

expected risk more accurately compared to the ERM in (2)

by deploying a more accurate approximation of the joint

distribution p(x,y) = p(x)p(y|x). Specifically, (7) can be

obtained from (1) if we approximate the data distribution

p(x) by q(x), and the label conditional distribution p(y|x)
by teacher’s output distribution (Gaussian in regression and

categorical in classification), and define the loss function

l(fθ(x),y) to be the negative log likelihood.

q(x) can be any function that approximates the data

distribution, e.g., unlabeled data, generative models [43, 58,

31, 22], data augmentation [51, 33, 17], data mixing [67, 59,

66, 26, 21], vicinal distribution [10], etc.

Compared to KD on the empirical distribution as in (3), in

XCL we match student and teacher on much more data points.

Specifically, when q(x) is a good approximation to data

distribution, we encourage the student to imitate teacher’s

output on high density regions, which helps transferring

knowledge of the teacher to the student.

In Section 3, we empirically showed that uncertain

samples in the data distribution are more effective to distill

teacher’s knowledge to student. In this section, we propose

two approximations to data distribution, q(x) in (7). Our

choices of q(x) can be efficiently sampled from to construct

a transfer-set that extends the empirical data distribution and

includes uncertain data points.

XCL-Mix: Samples from mixing in pixel space. In our

first data distribution approximation, we model the data

manifold as convex combinations of pairs of empirical data

samples. To sample from this distribution, we randomly

select two data points, xi and xj (i, j ∈ {1, n}), and blend

them based on a random λ as follows:

x = λxi + (1− λ)xj (xi,yi), (xj ,yj) ∼ p̂δ

λ ∼ unif[0, 1]
(8)

where p̂δ refers to the empirical distribution with standard

augmentations and normalization. Few samples from this

distribution are shown in Figure 2. As shown, for λ values

away from 0 and 1 we sample highly uncertain points. This

approach is similar to the augmentation method in [67],

however, here we only sample data points, and do not use

the interpolated labels.

XCL-GAN: Samples from data manifold using GAN.

The above method makes a crude approximation to the

data distribution by mixing samples in the pixel space. We

can provide a better approximation by explicitly modeling

the data manifold using a generative model and sampling

from it. For this purpose, we utilize a conditional

generative adversarial network (GAN) [22] to model the

data distribution and sample from it. The generative model

G, given a d−dimensional latent variable z, and a one-hot

class vector ei corresponding to class i, generates a sample

x = G(z; ei) from class i. The generative model also

provides an explicit way to sample uncertain points when

given a mixed class vector:

i, j ∼ unif{1, c}

x = G(z;λei + (1− λ)ej) λ ∼ unif[0, 1]

z ∼ Nd(0, I)

(9)

In our experiments, we used BigGAN [7] trained on

CIFAR100 and ImageNet datasets. Few samples from this

generative model are shown in Figure 3. As shown, by

mixing class vectors we sample highly uncertain points.

Note that, during distillation we use a union of empirical

distribution and samples from the generative model as our

transfer-set.

We discuss alternative sampling choices in Section 6.1.

5. Experiments

We conducted experiments on regression (2D gaze

estimation) and classification (CIFAR100 and ImageNet)

tasks and compared XCL with ERM and alternative KD

formulations. For ERM we also report results using

mixing based data augmentation methods MixUp [67] and

CutMix [66]. In MixUp, the dataset is augmented by

random convex combination of data points in pixel space.



For a sample x = λxi + (1 − λ)xj MixUp uses linear

interpolation y = λyi + (1 − λ)yj to assign a label to

x, where yi and yj are one-hot labels corresponding to

xi and xj , respectively. In CutMix, a pair of images are

blended by replacing a rectangular block of xi with that of

xj . CutMix also uses linear interpolation to assign a label

to a blended image. For XCL, we separately report results

using the two data distribution approximations introduced

in Section 4.2, denoted by XCL-Mix corresponding to

sampling from blended images in pixel space, and XCL-

GAN corresponding to sampling from a conditional GAN.

When comparing XCL to KD, we also report the gap between

the teacher and student accuracies (and % of gap reduction

compared to standard KD).

5.1. 2D Gaze Estimation

We evaluate XCL on a regression task, human eye-

gaze estimation, that is to predict the 2D gaze orientation

vector given the image of an eye. We used the MPIIGaze

dataset [68, 69] that contains 45,000 annotated eye images

of 15 persons. We followed the leave-one-person-out setup

similar to the original works [68, 69] by splitting the data to

20% validation and 80% training sets. We used LeNet [34]

as the student and PreAct-ResNet [24] as the teacher. Our

training setup matches the accuracies reported in the original

works [68, 69]. We run each experiment three times with a

different random seed.

In Table 3, we report the estimated angle error (in

degrees). The baseline method (ERM) has 7.41 error, which

can be reduced to 6.88 using MixUP data augmentation.

Standard KD obtains 6.65 error, that is more than 10%
reduction compared to ERM. We also report results using

Attentive Imitation Loss (AIL) [50], a recent method that

controls the extent of knowledge transfer at each data point

based on teacher’s error. In our experiments AIL did not

improve the student accuracy compared to KD. When we

incorporate our proposed uncertainty modeling in Section 4.1

to KD (KD+Uncertainty), the student error reduces to

6.36, which corresponds to 36% gap reduction compared

to KD. As an ablation, we also show results of KD with

data distribution approximation, but without uncertainty

modeling (denoted as KD+Mix in Table 3). This setup

results in 6.36 angle error. The results are significantly

improved using XCL (KD with uncertainty estimation and

data distribution approximation), where XCL-Mix and XCL-

GAN achieve 42% and 53% teacher-student accuracy gap

reductions, respectively. For all cases in Table 3, we used

the same teacher (with uncertainty estimation) that has an

average angle error of 5.84 degrees. Note that, all methods

shown in Table 3 are re-implemented, trained, and tested

with identical setups.

In Figure 1, we plot the average predicted uncertainties

by the teacher and two student models (trained using

method angle error gap

ERM 7.41±0.03
N/A

ERM+MixUp [67] 6.88±0.09

KD [28] 6.65±0.03 0.81 (-)

KD+AIL [50] 6.74±0.06 0.90 (+11%)

KD+Uncer. 6.36±0.05 0.52 (-36%)

KD+Mix 6.36±0.07 0.52 (-36%)

XCL-Mix 6.31±0.03 0.47 (-42%)

XCL-GAN 6.22±0.01 0.38 (-53%)

Table 3: Gaze angle estimation using a LeNet student model.

Teacher is a PreAct-ResNet with 5.84 angle error.

0.0 0.2 0.4 0.6 0.8 1.0

λ

0.006

0.008

σ
2

teacher

student: KD+uncer.

student: XCL-Mix

Figure 1: Uncertainty estimation values for the gaze

estimation task versus the mixing coefficient.

KD+Uncertainty and XCL-Mix), as a function of mixing

coefficient λ defined in (8). As expected, as we mix the

images more (λ close to 0.5) all models predict higher

uncertainties. Note that, this intuitive prediction is obtained

without an explicit supervision for uncertainties. In addition,

when we use XCL, the student model imitates teacher on

a better data distribution approximation, and therefore has

closer uncertainty estimation to the teacher on average.

5.2. CIFAR100 Classification

We evaluate the performance of XCL for image

classification task on the CIFAR100 dataset [32], containing

100 classes with 50k and 10k images in the training and test

sets, respectively. For fair comparison, we reimplemented

all benchmarked methods and trained with identical setups.

To compute accuracies, we first compute the median over

the last 10 epochs, and then average the results over 8

independent runs with different random initializations. The

standard-deviation of accuracy for different initializations is

denoted by ±std.

ResNet-18: We followed the same setup as [17] to train

the ResNet-18 model [24]. We trained all methods for 2×
longer iterations compared to [17], which led to a slightly

improved baseline. The reason for longer training is, by

using our data distribution approximation we can sample

infinite number of examples, therefore the training saturates

later. To obtain an accurate teacher τ , we use the ensemble

method [18] and train a committee consisting of 8 models

using CutMix data augmentation [66]. The teacher’s output
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Figure 2: Examples of teacher outputs over a trajectory connecting two images in pixel space.

is the ensemble average of the committee members’ outputs.

The ensemble model has top-1 test accuracy of 84.6%.

The results in Table 4 demonstrate that both XCL-Mix

and XCL-GAN significantly reduce the teacher-student

accuracy gap compared to the standard KD with the same

teacher (by 67 % and 46 %, respectively). This leads to

major improvements over the ERM training (+4.6%) and the

data mixing methods (MixUp and CutMix) that use linear

interpolation for labels (∼ +4%).

In Table 4, we also report the average normalized

entropy, Ĥ defined in (4), over the training/transfer-set of

each method. For the standard KD method, soft-labels

are obtained from a teacher trained over the empirical

distribution. Since the teacher overfits the empirical

distribution (becomes overconfident), the uncertainty of the

teacher on the empirical distribution is an underestimation2.

As a result, using empirical distribution to distill the teacher’s

knowledge to the student is ineffective when the teacher

overfits, which is also observed in [28]. XCL remedies

the overfitting (uncertainty underestimation) problem by

performing KD over an extended dataset sampled from a data

distribution approximation on which teacher’s uncertainties

are better quantified.

An alternative is to artificially increase Ĥ(y) by applying

Label Smoothing (LS) [54]. We applied LS to match the

average normalized entropy to that of XCL’s transfer-set. In

Table 4, we see LS slightly improves the baseline accuracy.

However, LS is worse than XCL by more than 4% while

having the same average entropy. We also applied smoothing

by using a temperature parameter in KD [28]. KD with

temperature and LS required exhaustive hyper-parameter

tuning. We found that using temperature can improve

performance of KD by 1%, which is still 2% worse than

XCL without any parameter tuning.

PyramidNet-200: We evaluate the performance of XCL

on a higher capacity architecture, PyramidNet-200 [23],

which obtains the state-of-the-art results on CIFAR100

dataset. We used the training setup in [66], and obtained

close accuracies. The teacher is an ensemble of 8 models

2As shown in the Table 4, the average entropy of the teacher over the

empirical distribution is 10.5%. To analyze the overfitting, we computed

the same measure over the test set, which is 27.8%.

method
entropy

(%)

top-1

(%)

top-1

gap (%)

top-5

(%)

ERM 0 78.5±0.3

N/A

93.9±0.2

+MixUp [67] 10.8 79.2±0.2 93.9±0.2

+CutMix [66] 10.8 79.3±0.2 94.7±0.2

+LS [54] 28.2 78.8±0.2 93.9±0.2

KD [28] 10.5 80.0±0.2 4.6 (-) 95.5±0.1

XCL-Mix 28.2 83.1±0.2 1.5 (-67%) 96.7±0.1

XCL-GAN 29.6 82.1±0.2 2.5 (-46%) 96.2±0.1

Table 4: Evaluation on the CIFAR100 dataset using ResNet-

18. Teacher is an ensemble of 8 ResNet-18 models with

84.6% top-1 accuracy. All results are reproduced.

method top-1 (%) top-1 gap (%) top-5 (%)

ERM 82.9±0.4
N/A

96.3

+MixUp 83.4±0.1 95.7

+CutMix 84.3±0.3 96.7

KD 83.8±0.2 3.7 (-) 96.1

XCL-Mix 86.3±0.1 1.2 (-68%) 97.6

Table 5: Evaluation on CIFAR100 dataset using PyramidNet-

200 model. Teacher top-1 test accuracy is 87.5%.

trained with CutMix, having a top-1 test accuracy of 87.5%.

As shown in Table 5, compared to standard KD with the same

teacher, XCL significantly (by 68%) reduces teacher-student

accuracy gap.

Quantized Networks: We evaluate the performance of

XCL to train an extremely compressed student, a Binary-

Weight [13, 46] ResNet-18. This network has ∼ 20×
smaller size compared to the full-precision (32-bit) model.

We use the training setup as described in [39]. Teacher is

an ensemble of 8 full-precision ResNet-18 models trained

with CutMix, with a top-1 accuracy of 84.6%. As shown

in Table 6, compared to standard KD with the same

teacher, XCL significantly (by 52%) reduces teacher-student

accuracy gap.

5.3. ImageNet Classification

The ImageNet 2012 dataset [49] consists of ∼ 1.3 million

training examples and a validation set with 50,000 images

from 1,000 classes. We followed the training setup in [25]

and used 300 epochs for all ImageNet experiments [66].



Figure 3: Examples of teacher outputs over a trajectory on BigGAN manifold connecting two pure label (one-hot class vector)

images. For the prominent classes we show a sample image for comparison.

method top-1 (%) top-1 gap (%) top-5 (%)

ERM 70.2±0.2
N/A

90.5

+MixUp 72.7±0.2 90.2

+CutMix 75.2±0.2 92.7

KD 74.0±0.2 10.6 (-) 91.9

XCL-Mix 79.5±0.1 5.1 (-52%) 95.2

Table 6: Evaluation on the CIFAR100 dataset using Binary-

Weight ResNet-18. Teacher top-1 test accuracy is 84.6%.

method
val

top-1

val

top-1 gap

val

top-5

V2-A

top-1

V2-B

top-1

V2-C

top-1

ERM 79.0

N/A

94.5 76.0 67.5 80.6

+MixUp [67] 79.7 94.8 77.1 68.2 81.5

+CutMix [66] 80.6 95.2 77.1 69.2 81.7

KD [28] 80.7 2.6 (-) 94.3 77.4 68.6 82.1

XCL-Mix 81.9 1.4 (-46%) 95.8 79.0 70.6 83.3

XCL-GAN 81.6 1.7 (-35%) 95.6 78.4 70.5 82.8

Table 7: ResNet-101 evaluation (%) on the ImageNet dataset.

Teacher is an ensemble of 4 ResNet-152-D, with top-1

accuracy of 83.3%. The std of XCL val top-1 is ≃ 0.1.

The model is a regular ResNet-101 architecture [24]. We

use an ensemble of 4 ResNet-152-D [25] models trained

with CutMix, having a top-1 validation accuracy of 83.3%.

In addition to the regular validation set of the ImageNet

dataset, we evaluated the performance of the models on

three recently introduced test sets for ImageNet, called

ImageNetV2 [47] that are collected with different sampling

strategies: Threshold-0.7 (V2-A), Matched-Frequency (V2-

B), and Top-Images (V2-C). Results are shown in Table 7.

Compared to standard KD with the same teacher, XCL-

Mix reduces student-teacher validation accuracy gap by 46%.

Similarly, on all other test sets, XCL obtains significant

improvements compared to ERM, data mixing methods, and

standard KD.

6. Analysis of XCL

In this section, we analyze alternative distribution

approximations, effect of transfer-set size on distillation,

sampling method top-1 (%)

Standard Gaussian Image 1.0 ± 0.0

Gaussian Noise Augmentation 79.9 ± 0.2

XCL-Mix 83.1 ± 0.2

XCL-GAN (no mixing) 81.7 ± 0.1

XCL-GAN 82.1 ± 0.2

Table 8: Analysis of different sampling methods for XCL

using the CIFAR100 dataset. Teacher has a top-1 test

accuracy of 84.6%. For comparison, the student trained

with ERM on real data has a top-1 accuracy of 78.5± 0.3.

and present teacher model as a non-linear interpolation

method. For all experiments we use the CIFAR100 dataset

and ResNet18 architecture as described in Section 5.2.

6.1. Alternative distribution approximations.

The analyzed choices of data distribution approximations,

q, are: Standard Gaussian image where each pixel is sampled

from N (0, 1); Pixel-wise Gaussian noise N (0, 0.02) added

to the empirical distribution; XCL-Mix; XCL-GAN with

and without mixing class conditioning vectors (mixed-class

vs. one-hot class vectors are input to GAN to generate

data). As seen in Table 8, better approximations of the

data distribution, e.g., mixing methods, result in better

knowledge transfer and higher student accuracy compared to

uninformative distributions such as the pixel-wise Gaussian.

In these experiments GAN’s approximation of the data

distribution is slightly worse than mixing because some

modes of the distribution are not recovered by GAN and

there are few visual artifacts [7]. Besides, we observe XCL-

GAN performs better when mixed class vectors are used.

This is consistent with the usefulness of uncertainty in the

transfer-set as discussed in Section 3 for real data.

6.2. Effect of dataset size

Class balanced case. In Figure 4 we plot test error as a

function of transfer-set size when the number of samples

from different classes are equal. We observe that XCL
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Figure 5: Test accuracy for an imbalanced CIFAR100 dataset

training. The number of data samples in 80 random classes

is reduced by a factor of 10.

improvement is even more pronounced as the transfer-set

size gets smaller. For example, when we use 1/64 of the

samples in the CIFAR100 as the transfer-set, ERM, MixUp,

and KD obtain 11.8%, 14.2%, 18.2% test accuracies,

respectively. For the same setup, XCL reaches 71% test

accuracy, i.e., 5× improvement.

Class imbalanced case. We artificially create a class

imbalanced dataset: for 80 randomly selected classes out of

100 classes of the CIFAR100 dataset, we use only 10% of

samples. In Figure 5 we report test accuracies of models

trained with ERM, MixUp, KD, and XCL. XCL compensates

for the class imbalance by transferring teacher’s knowledge

over additional examples sampled from the approximation of

data distribution and outperforms all other training methods

by at least a 25% margin. For each training method, we also

report results when training is performed using importance

sampling: the sampling probability of each instance is

inversely proportional to its class population. We observe

improvement by up to 4% for all training methods when

using importance sampling.

6.3. Teacher as a Nonlinear Interpolation Function

Several augmentation schemes such as MixUp [67] and

CutMix [66] mix images and use linear interpolation to

obtain labels of the mixed images. In this section, we argue

the teacher model is a better interpolation function.

Figure 2 demonstrates the transition of teacher’s output

probability distribution as the mixing coefficient λ changes.

Linear interpolation overconfidently assigns a label to x

with similarities to xi and xj that add up to 1. In contrast,

labels obtained by XCL for an x between xi and xj include

similarities to all classes (not just to classes of xi and

xj). For example, in Figure 2, at λ = 0.5 the teacher

predicts x to be classified as a ‘yurt’ which is close to

the visual features in the mixed image but is not equal

to any of the original labels, i.e., ‘sandbar’ or ‘volcano’.

Similarly, in Figure 3 we show transition between two

images sampled on the image manifold by interpolating

the class conditional probabilities of BigGAN (between

two one-hot class vectors). As shown, the teacher output

for the samples in the middle of the manifold could be

different from the end-point classes (‘pomeranian’ and

‘robin’). However, qualitatively, the generated images are

similar to the predicted class distribution.

7. Other Related Works

There are extensions of KD that match intermediate

feature maps in addition to teacher outputs, e.g., FitNets [48].

In our experiments, intermediate supervision produced

marginal improvement compared to the standard KD

(79.3%), which is significantly lower than XCL (83.1%). In

several works, multi-stage KD was proposed to improve both

teacher and student by training a sequence of models [19,

40, 3]. Both intermediate supervision and multi-stage KD

techniques are complementary to our framework, and could

be incorporated to further reduce the accuracy gap.

There are several recent semi supervised learning

methods [45, 64, 6, 52, 5, 2, 9, 60] that produce pseudo

labels for unlabeled data using a model trained on a limited

labeled set. The extended dataset is then used to train the

target model. However, unlike XCL, these methods require

additional real samples.

KD has been used to provide a fast approximation to

Bayesian Neural Networks [4, 38, 16]. Bayesian Neural

Networks implicitly estimate the uncertainty via Monte-

Carlo sampling of the network parameters. In our framework,

we explicitly model and learn the output distribution of the

teacher and utilize it over an extended transfer-set to reduce

the KD gap.

8. Conclusion

We introduce XCL, a framework for KD that incorporates

a combination of (1) uncertainty estimation, (2) data

distribution approximation, and (3) imitating the teacher

output distribution using an extended transfer-set including

highly uncertain points from the approximate data

distribution. This results in an easy-to-use algorithm

that provides the state-of-the-art accuracies for knowledge

distillation (both for classification and regression tasks)

without need for additional dataset or hyper-parameter

tuning. Experiments on MPIIGaze, CIFAR100, and

ImageNet datasets show that XCL achieves state-of-the-art

accuracies for KD.
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