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Abstract

Post-training quantization methods use a set of cali-

bration data to compute quantization ranges for network

parameters and activations. The calibration data usually

comes from the training dataset which could be inaccessi-

ble due to sensitivity of the data. In this work, we want to

study such a problem: can we use out-of-domain data to

calibrate the trained networks without knowledge of the

original dataset? Specifically, we go beyond the domain of

natural images to include drastically different domains such

as X-ray images, satellite images and ultrasound images.

We find cross-domain calibration leads to surprisingly sta-

ble performance of quantized models on 10 tasks in different

image domains with 13 different calibration datasets. We

also find that the performance of quantized models is corre-

lated with the similarity of the Gram matrices between the

source and calibration domains, which can be used as a cri-

terion to choose calibration set for better performance. We

believe our research opens the door to borrow cross-domain

knowledge for network quantization and compression.

1. Introduction

With the increasing popularity of deploying neural net-

works on edge devices, neural network quantization has be-

come a widely studied topic [6, 32, 27, 43, 20, 42, 39, 15,

2, 41]. By quantizing its weights and activations to low-bit

integers, a neural network can be stored with smaller size

and executed at faster speed with less memory footprint and

computational resources.

Most existing network quantization methods can be

roughly divided into two groups. One is quantization-aware

training (QAT), the other is post-training quantization (PQ).

By inserting differentiable simulated quantization opera-

tions into the network during training, QAT methods allow

training losses to back-propagate through the quantization

operations. Although QAT methods can achieve satisfac-

tory performance in most cases, it is time-consuming and
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Figure 1: Pipeline of cross-domain calibration for post-

training quantization without using in-domain data.

data-hungry, which is unacceptable in some scenarios, e.g.,

when the time budget is restricted or training dataset is in-

accessible. Compare with QAT, PQ has advantages on time

and data efficiency. Given a pretrained full-precision model,

PQ runs the model over a small set of calibration data to cal-

culate value ranges of intermediate activations. These cali-

bration data shares the same distribution as the training data

on which the model is trained. After this, both network acti-

vations and weights can be quantized into low-precision in-

tegers for inference acceleration. Compared with QAT, this

post-training quantization process is highly efficient (e.g.,

in a few minutes).

However, PQ methods still require in-domain calibration

data, which may be inaccessible in some situations due to

privacy or security reasons. For example, federated learn-

ing [16] trains models using distributed private user data

that are not accessible by the developers. Without calibra-

tion data from the same domain as the training data, the

traditional PQ methods will fail. Targeting at this problem,

Cai et al. proposed a novel method termed ZeroQ that gen-

erates synthetic data for calibration [3]. Specifically, Ze-

roQ utilized BatchNorm [13] statistics from the pretrained

model as supervision to optimize randomly initialized in-

put such that the BatchNorm statistics of the input are simi-

lar to those from the pretrained model. ZeroQ showed its



effectiveness on various datasets including ImageNet [7]

and MSCOCO [23]. Another method is to use Genera-

tive Adversarial Networks (GAN) to create fake calibration

data [37]. The proposed framework named GDFQ is trained

with BatchNorm statistics loss, Cross Entropy classification

loss and knowledge distillation loss.

One drawback of these data-free quantization methods

is their high time complexity. With common hardware

setting (e.g., on single GPU), ZeroQ requires hundreds of

back-propagation iterations to synthesize a single batch and

GDFQ needs to be trained for hundreds of epochs. On the

other hand, due to the optimization nature of these meth-

ods, hyper-parameters also need to be tuned for satisfactory

results. If in-domain training data is inaccessible and syn-

thetic data generation is time-consuming, a straightforward

question to ask is “Can we use real-world images from an-

other domain for calibration?”. As shown in Figure 1, we

use calibration data from domain B to calibration model

trained on domain A, resulting in a quantized model. The

model is further evaluated on a test set in domain A.

To study this problem, we carry out a large-scale bench-

mark with 10 different tasks and 13 diversified image do-

mains including nature images, low-resolution images, ul-

trasound images, satellite images, etc. We find that a simple

treatment on the BatchNorm layers in the calibration pro-

cedure greatly improves performance of cross-domain cal-

ibration, almost bridging the gap between in-domain and

out-of-domain calibration on a wide range of tasks. We

also find that the performance of quantized models is cor-

related with the similarity of the Gram matrices between

the source and calibration domains, which can be used as a

criterion to choose similar image domains for better perfor-

mance. Compared with synthetic data generation method

ZeroQ, our approach achieves comparable or better perfor-

mance on our large-scale benchmark. Although the study

is mainly empirical, it reveals that cross-domain data can

be used for post-training calibration just as effective as in-

domain data, which could motivate the community to ex-

plore more in the direction of model quantization and com-

pression with cross-domain knowledge.

2. Related Work

2.1. QuantizationAware Training

Quantization-aware training (QAT) inserts simulated

quantization operation into model forward and backward

passes during training. First introduced by Courbariaux et

al. [12], binary neural networks achieved seven times faster

inference speed on GPU. Further in [32], Rastegari et al.

proposed to use a binary tensor and a float scalar to approx-

imate the weight or activation tensor. Parallel to binariza-

tion, multi-bit model quantization is also widely explored.

DoReFa-Net [42] was proposed to quantize both network

and training gradients. Scale-adjusted training [14] improve

the model performance by scaling activation in the network

to preserve proper scale of gradients. To bring flexibility

to the model quantizer, some works also introduced learn-

able quantization schemes. In [39], LQ-Net was proposed

to learn the quantization basis vectors. In [15], Jung et al.

proposed a novel method to learn the quantization intervals.

2.2. Posttraining Quantization

Different from QAT, post-training quantization (PQ) di-

rectly computes quantization parameters with a calibration

set. In [17], Krishnamoorthi et al. introduced PQ with layer-

wise and channel-wise quantization schemes. To improve

quantization performance, Banner et al. proposed a novel

per-channel PQ scheme that analytically computes clipping

thresholds and bits allocated for each channel [2]. To mit-

igate the quantization error from the clipping operation,

Zhao et al. introduced a technique named OCS to split the

channels with extreme values [41].

Traditionally, PQ method requires a calibration dataset

which is often sampled from training data to estimate the

clipping ranges of model activations. However, in some

scenarios, training data may be inaccessible due to data pri-

vacy issues. In this case, quantization could be conducted

without a calibration set. Assuming features from a Batch-

Norm layer follow Gaussian distribution, Nagel et al. di-

rectly used BatchNorm statistics (i.e., running means and

variances) to estimate activation ranges [29]. The drawback

of this method is the estimated ranges may be inaccurate

since the distribution of intermediate layers may be differ-

ent from Gaussian distribution. DFC and ZeroQ proposed

to synthesize calibration data by gradient descent under the

supervision of BatchNorm statistics [10, 3]. Generative Ad-

versarial Networks (GAN) is also utilized to generate syn-

thetic calibration data [37], in which the generator gener-

ates calibration data and the discriminator is the quantized

model. One problem with these optimization-based meth-

ods is the high time complexity. Hundreds of iterations

or even hundreds of epochs of back-propagation are com-

monly required. In addition, much human efforts are needed

for hyper-parameter tuning such as learning rate and opti-

mizer selection. In contrast to these methods, we find that

out-of-domain image datasets can serve as calibration data

effectively for a wide range of tasks.

2.3. Batch Normalization and Domain Knowledge

To adapt a deep neural network to a different domain,

Li et al. proposed Adaptive BatchNorm to update running

statistics in target domain [22]. The central assumption

is that domain specific information is encoded in Batch-

Norm layers. Sharing a similar spirit with this, Li et al.

showed that style transfer can be conducted by matching the

BatchNorm statistics between two images [21]. Inspired by



the effect of BatchNorm statistics, we design a BatchNorm

updating method on out-of-domain calibration dataset to

estimate ranges of activations, which effectively improves

the performance of cross-domain calibration even when the

training and the calibration domains have huge appearance

differences.

3. Cross-domain Calibration for Post-training

Quantization

3.1. Motivation

Given a pretrained full-precision model, post-training

quantization (PQ) is widely used for inference acceleration.

Most existing PQ methods require a set of calibration data

to calculate the quantization parameters for weights and ac-

tivations. Training data is normally used for calibration.

However, in some situations, the training data is not avail-

able due to privacy or security issues. To solve this problem,

Cai et al. [3] proposed to synthesize calibration data using

BatchNorm statistics as supervision. Since different types

of real images are vastly available, we would like to explore

another option: use out-of-domain real images for calibra-

tion. We conduct a large-scale empirical study with drasti-

cally different datasets and tasks to investigate this setting.

3.2. Quantization Schemes

In all our experiments, we employ layer-wise uniform

quantization for both network weights and activations [17].

To quantize a tensor x by k-bit, the quantized tensor xq is

calculated as

xint = round
(x

s

)

+ z,

xq = clip (xint, cl, ch) , (1)

where s and z are scale and zero point parameters, cl
and ch are lower and upper clipping thresholds. For net-

work weight w, we use a symmetric min-max quantization

scheme, which is defined as

sw =
max(|wmin| , |wmax|)

2k−1
,

zw = 0,

cl = −2
k−1,

ch = 2k−1 − 1, (2)

where wmin and wmax are minimum and maximum of w.

To quantize activation a, we employ an affine histogram

quantization scheme, which is also used in PyTorch1. To

1https : / / pytorch . org / docs / master / torch .

quantization.html

determine the quantization parameters, we have

sa =
ah − al

2k − 1
,

za =
al(2

k − 1)

al − ah
,

cl = 0,

ch = 2k − 1, (3)

where al and ah are lower and upper clipping thresholds

for a. For each layer, a histogram is built to represent the

activation distribution. We search for the optimal al and ah
values such that the quantization error is minimized with re-

spect to a. In all our experiments, we first fold BatchNorm

layers to their preceding convolutional or linear layers be-

fore computing quantization parameters.

3.3. Datasets and Networks

Our experiments span across different image domains

including natural images [19, 7, 8, 5, 23, 18], X-ray [36],

ultrasound [1], and satellite images [4]. We also experi-

ment with models in various computer vision tasks includ-

ing image classification, semantic segmentation and object

detection. The datasets and corresponding example images

are illustrated in Figure 2. We train floating-point models

on all the datasets from Figure 2a to Figure 2j, where each

dataset has one or more associated models. These datasets

and three additional datasets from Figure 2k to Figure 2m

are used as calibration sets. When calibration and training

data have different sizes, we resize the calibration data to

the same size of the training data. One exception is when

calibrating ResNet-18 on Cifar100, calibration samples are

randomly cropped. In addition, when Agriculture-Vision

data is used to calibrate models on other datasets, only RGB

channels are used. When other datasets are used to calibrate

Agriculture-Vision models, we use RGB channels to com-

pute a grayscale channel to be used as NIR channel.

These models to be quantized are summarized in Table 1.

The evaluation metrics are summarized as below:

1. All classification tasks except CelebA: top-1 accuracy.

2. CelebA: average top-1 accuracy on 40 attributes.

3. Pascal VOC 2007: mAP.

4. MSCOCO, Cityscapes and Agriculture-Vision: mIoU.

5. Ultrasound: DICE.

Specifically, DICE is a widely used evaluation metric for

binary segmentation, which is defined as

Dice =
2|p ∩ g|

|p|+ |g|
, (4)

where p and g are binary prediction and ground truth ten-

sors respectively.



(a) Imagenet [7] (b) MSCOCO [23] (c) Cityscapes [5] (d) Pascal VOC 07 [8]

(e) Cifar100 [18] (f) CelebA [26] (g) CUB-200-2011 [35] (h) Agriculture (NIR and RGB channel) [4]

(i) Kaggle Ultrasound [1] (j) NIH Chest X-ray [36] (k) Open Images [19] (l) Oxford Flowers [31] (m) SVHN [30]

Figure 2: Example images from different domains. We will use abbreviations in the following section: IN: ImageNet, CO:

MSCOCO, CS: Cityscapes, VO: Pascal VOC 2007 CI: Cifar100, CE: CelebA, CB: CUB-200-2011, AG: Agriculture-Vision,

US: Kaggle Ultrasound, NI: NIH Chest X-ray. OI: Open Images, OF: Oxford Flowers-101, SV: SVHN.

Datasets Tasks Models

Imagenet C
ResNet-18, ResNet-50 [11]

Inception-V3 [34]

MSCOCO S FCN [28]

Cityscapes S BiSeNet [38]

Pascal VOC 2007 D MobileNetV2 SSD-Lite [33] [25]

Cifar100 C ResNet-18

CelebA C ResNet-50

CUB-200-2011 C MMAL-Net [40]

Agriculture-Vision S MSCG-Net-101 [24]

Ultrasound S U-net

NIH Chest X-ray C ResNet-50

Table 1: Training datasets and the corresponding pretrained

models. C: Image Classification. S: Semantic Segmenta-

tion. D: Object Detection.

3.4. Crossdomain Calibration

A Naive Approach First we employ a naive cross-domain

calibration approach, i.e., directly using out-of-domain data

to calibrate a model trained in another domain. The re-

sults of 8-bit quantization are plotted as blue bars in Fig-

ure 3. The in-domain calibration results are marked in

dashed lines.

We can see that for all the datasets and models, a large

number of out-of-domain calibration results are comparable

to the in-domain baselines. Take ResNet-50 on ImageNet as

an example, the gap of out-of-domain and in-domain cali-

bration results is very small. This observation is surpris-

ing since most existing PQ methods assume in-domain cal-

ibration data is required to estimate activation ranges of in-

termediate layers. For some models such as MobileNetV2

SSD-Lite on Pascal VOC, ResNet-50 on CelebA, U-net on

Ultrasound, and ResNet-50 on NIH Chest X-ray, there is

still an accuracy gap between out-of-domain calibration re-

sults and the baseline in-domain results. Such discrepancy

often occurs when the original and the calibration domain

have a large gap, e.g. most natural image datasets are dras-

tically different from ultrasound images. Motivated by this

observation, we introduce an approach to reduce the repre-

sentation gap between the original and the calibration do-

mains for the target model, namely BatchNorm adjustment.
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Figure 3: Cross-domain calibration with and without BatchNorm adjustment. Dashed green line denotes performance of

in-domain calibration. The dataset abbreviations are defined in Figure 2. Zoom in for details.

BatchNorm Adjustment Since BatchNorm was pro-

posed to reduce Internal Covariate Shift [13], it has been

widely applied to deep neural networks. For one neural net-

work, different domains will generate different BatchNorm

parameters. One interesting application is that BatchNorm

parameters can be updated on a new domain for domain

adaptation [22, 21]. As stated by these work, BatchNorm

layers encode information that is specific to the domain that

the model is trained on. Inspired by this, we propose Batch-

Norm adjustment to adapt the models to the out-of-domain

calibration datasets. We describe our method as below:

1. Given a model M to be quantized and an out-of-

domain dataset D.

2. Reset running means and variances of all BatchNorm

layers in M : µ← 0, σ ← 1.

3. Run M on D to accumulate new BatchNorm statistics.

4. Fold BatchNorm layers to their preceding convolu-

tional or linear layers.

5. Calculate weight quantization parameters (sw and zw
in Equation 2).

6. Run M on D again to calculate activation quantization

parameters (sa and za in Equation 3).

The results are plotted in orange bars in Figure 3. For

most datasets and models, BatchNorm adjustment gets bet-

ter performance than the baselines without BatchNorm ad-

justment. In most cases, the results are comparable to

or even slightly better than the in-domain calibration re-

sults. On ResNet-18/50 on ImageNet, FCN on MSCOCO,

ResNet-18 on Cifar100, U-net on Ultrasound and ResNet-

50 on NIH Chest X-ray, all out-of-domain calibration re-

sults are within 0.3% performance gap from the in-domain

calibration results. On some tasks such as MMAL-Net on

CUB-200-2011 and MSCG-Net-101 on Agriculture-Vision,

some out-of-domain data still performs relatively lower than

others. In such cases, randomly chosen calibration datasets

cannot guarantee performance similar to in-domain calibra-

tion. In order to fix this issue, we investigate how domain

discrepancy affects calibration and how to improve the cal-

ibration results.

3.5. Influence of Domain Discrepancy on Calibra
tion

In this section, we investigate the relationship between

domain discrepancy and cross-domain calibration perfor-

mance. Since Maximum Mean Discrepancy (MMD) was

proposed to measure difference of sample mean in Repro-

ducing Kernel Hilbert Space [9], it has been widely used as

a domain discrepancy measure. As proved by Li et al. [21],
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Figure 4: Visualization of correlation between calibration performance and domain discrepancy. Top-3 out-of-domain

datasets with smallest domain discrepancy from the in-domain data are marked in red. Dashed green line denotes per-

formance of in-domain calibration. The dataset abbreviations are defined in Figure 2. Zoom in for details.

matching MMD with the second order polynomial kernel

is equivalent to matching Gram matrices of feature maps.

Similar to [21], we employ mean L2 distance between Gram

matrices of feature maps to measure the discrepancy be-

tween two image domains. Formally, domain discrepancy

D is defined as

D =
1

N2

N
∑

i=1

N
∑

j=1

‖GA
ij −GB

ij‖
2

2
, (5)

where GA ∈ R
N×N and GB ∈ R

N×N are average Gram

matrices of two domains A and B, which are defined as

GA =
1

|A|

|A|
∑

k=1

GA
k and GB =

1

|B|

|B|
∑

k=1

GB
k , (6)

where |A| and |B| are number of samples in domain A and

B respectively. Ignoring the domain superscript for sim-

plicity, each element Gk,ij in GA
k or GB

k is

Gk,ij =

M
∑

m=1

Fk,imFk,jm, (7)

where Fk is the feature embedding of k-th sample, which

is normalized by mean and standard deviation over all im-

ages in this domain, and M is the embedding dimension.

In our experiments, we use the output of last conv layer in

the fourth conv block conv 4 3 of VGG-16 to extract the

feature maps.

Next we study how domain discrepancy is related to cal-

ibration performance. In Figure 4, we plot model perfor-

mance vs domain discrepancy with the source training data

into scatter points. We also calculate correlation coeffi-

cient between model performance and domain discrepancy

shown in the title of each sub-figure. First, on most of the

datasets, calibration performance is negatively correlated to

gram matrix distance. The out-of-domain datasets that have

the smaller domain discrepancy with the in-domain data

always achieve comparable performance with in-domain

data. We marked the top-3 out-of-domain data with smallest

domain discrepancy in red for better visualization. This ob-

servation can be useful for cross-domain calibration, when

calibration/training data is sensitive and inaccessible but

some high-level statistics such as Gram matrix are avail-

able. One can ask the data owner to provide a mean Gram

matrix of the source dataset, which can be used to search

in the pre-built candidate pool of cross-domain datasets for

the out-of-domain calibration dataset with smallest domain

discrepancy.

Using the above strategy, we compare our method with

in-domain calibration and data synthesis approach Ze-



Calib Methods \ Datasets
IN

CO CS VO CI CE CB AG US NI
R18 R50 IV3

FP32 69.76 76.13 77.46 60.47 79.10 0.686 76.50 91.74 89.63 54.63 0.730 0.773

In-domain 69.39 75.73 76.88 60.17 79.09 0.685 76.30 91.72 89.36 53.93 0.738 0.758

ZeroQ 69.36 75.56 76.89 60.17 78.99 0.681 76.01 91.59 87.90 53.34 0.739 0.718

ZeroQ-real 69.29 75.57 76.89 60.18 78.87 0.681 75.87 91.62 89.29 53.29 0.738 0.675

Cross-domain 69.47 75.70 76.93 60.12 79.00 0.685 76.36 91.50 89.19 53.85 0.733 0.761

Cross-domain (MS) 69.47 75.70 76.93 60.08 79.01 0.684 76.37 91.50 89.19 53.38 0.732 0.761

Table 2: 8-bit quantization results with different calibration datasets. The dataset abbreviations are defined in Figure 2. R-18,

R-50 and IV3 are Resnet-18, Resnet-50 and InceptionV3 respectively. Cross-domain (MS) uses an average of gram matrices

from multiple layers. Best results without using in-domain data are emphasized in bold.
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Figure 5: Visualization of Gram matrices of different datasets. The feature extraction model is VGG-16 with BatchNorm

trained on ImageNet. In Column (b) and (c), BatchNorm adjustment is applied before calculating gram matrices. In Column

(d), VGG-16 is used to synthesize the ZeroQ data. Best viewed in color.

roQ [3] in Table 2. In addition, we also compare with

a variant of ZeroQ that we term as ZeroQ-real, short for

ZeroQ with real images. Different from ZeroQ that ini-

tializes the synthesized data with random Gaussian values,

ZeroQ-real uses real images for initialization. In all the

experiments of ZeroQ-real, ImageNet data is used for ini-

tialization. We show performance of two variants of our

method with one or multiple feature maps in VGG-16 to

compute domain discrepancy, shown as Cross-domain and

Cross-domain (MS) respectively. When multiple feature

maps are used, each feature map will generate a Gram ma-

trix and the domain discrepancy is defined as the average

of L2 distances of all Gram matrices. As shown in Ta-

ble 2, our method achieves comparable or even better re-

sults than both ZeroQ and ZeroQ-real. Using one or multi-

ple feature maps to compute domain discrepancy achieves

similar performance across different tasks. Our method us-

ing selected cross-domain calibration data is on-par with

in-domain data, proving the effectiveness of using cross-

domain calibration data for post-training quantization.

In Figure 5, we show a visual comparison of gram ma-

trices of different datasets. We show Gram matrices of Ima-

geNet, and two datasets that have the smallest and largest

domain discrepancy to ImageNet (i.e., Open Images and

Ultrasound). In addition, we also show Gram matrix of

synthetic data from ZeroQ. We use VGG-16 with Batch-

Norm trained on ImageNet as feature extractor. BatchNorm

adjustment is applied when using Open Images and Ultra-

sound datasets. As shown in Figure 5, Open Images shares a

similar gram matrix with ImageNet. In contrast, Ultrasound

dataset has a very different Gram matrix since it is not nat-

ural images. On the other hand, the Gram matrix of the

synthetic ZeroQ data is also drastically different from the

the two natural image datasets ImageNet and Open Images,

showing less spatial correlation than the others. Our hy-

pothesis is that with BatchNorm statistics as the only guid-

ance to synthesize images is not sufficient to build spatial

correlations as in real images. The lack of spatial corre-

lation might be a key reason that ZeroQ does not achieve

satisfactory performance on tasks such as NIH Chest X-ray

classification.

3.6. Visualization of Activation Ranges

In this section, we visualize the activation ranges (clip-

ping thresholds) calculated on different out-of-domain

datasets. In Figure 6, we show three examples: Ultrasound

to calibrate ResNet-18 on ImageNet, NIH Chest X-ray to

calibrate FCN on MSCOCO, and ImageNet to calibrate

ResNet-50 on NIH Chest X-ray. In each sub-figure, we

show the lower and upper clipping thresholds for each layer.

Compared with the naive cross-domain calibration method,

the proposed BatchNorm adjustment makes a closer estima-

tion of activation ranges to those from the in-domain data.

Specifically, for ResNet-50 on NIH Chest X-ray, Batch-
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Figure 6: Visualization of calculated activation ranges of different methods. Three examples are shown from left to right:

ResNet-18 on ImageNet, FCN on MSCOCO and ResNet-50 on NIH Chest X-ray. In each sub-figure, upper and lower

clipping thresholds are plotted separately.

Calib Methods \ Datasets
IN

CO CS VO CI CE CB AG US NI
R18 R50 IV3

FP32 69.76 76.13 77.46 60.47 79.10 0.686 76.50 91.74 89.63 54.63 0.730 0.773

In-domain 62.19 66.80 65.81 45.97 52.57 0.612 74.86 91.00 87.01 49.11 0.739 0.711

ZeroQ 61.63 66.27 64.76 52.07 50.21 0.614 74.18 90.37 81.98 48.73 0.741 0.523

ZeroQ-real 61.80 66.22 63.87 52.11 49.78 0.611 74.43 90.49 86.54 47.82 0.742 0.502

Cross-domain 62.18 66.82 65.52 50.90 53.43 0.608 74.12 90.02 87.06 48.37 0.729 0.712

Cross-domain (MS) 62.18 66.82 65.52 50.22 53.87 0.608 74.44 90.02 87.06 48.15 0.729 0.716

Table 3: 6-bit quantization results with different calibration datasets. The dataset abbreviations are defined in Figure 2. Best

results without using in-domain data are emphasized in bold.

Norm adjustment shows significant improvement over the

baseline with original BatchNorm parameters. On the other

hand, our estimation is also better than ZeroQ showing that

calibration with cross-domain data is more robust than syn-

thetic data in these cases.

3.7. Lowerbit Quantization

We also explore cross-domain calibration for 6-bit quan-

tization. We use the same weight and activation quantiza-

tion schemes as used in 8-bit experiments. Again, we show

performance of two variants of our method with one or mul-

tiple feature maps to compute domain discrepancy. The re-

sults are summarized in Table 3. Best calibration results

without using in-domain data are in bold. In most cases, our

proposed cross-domain method achieves comparable or bet-

ter performance than ZeroQ and its variant. Specifically, on

Cityscapes and NIH Chest X-ray, our method outperforms

ZeroQ by a large margin.

4. Discussion

In this work, we show the feasibility of using out-of-

domain data for post-training quantization, which is differ-

ent from the assumption of existing works that in-domain

calibration dataset is necessary. Data synthesis methods are

time-consuming and may not perform well in some cases as

shown in our experiments. With stable and superior perfor-

mance on a wide range of tasks, our method can be a new

direction of post-training quantization when in-domain data

are not available.

There are some interesting topics to explore in future

works. First, cross-domain calibration can be improved by

designing a better dataset pool consisting of a large amount

of diverse domains. Second, better domain discrepancy

measures can be explored to further improve the perfor-

mance of quantized models.

5. Conclusion

In this work, we explored cross-domain calibration for

post-training quantization. To study this problem, we con-

ducted a large-scale study that spans across various tasks,

datasets and neural networks. We find that a simple Batch-

Norm adjustment strategy can effectively improve the per-

formance of quantized models by a large margin, almost

bridging the gap between cross-domain calibration and in-

domain calibration. In addition, we find that performance

with cross-domain calibration is correlated with Gram ma-

trix similarity between the source and the calibration do-

mains. Therefore, Gram matrix similarity can be used as a

criterion to select calibration dataset from a candidate pool

to further improve performance. We believe our work will

motivate future research on utilizing cross-domain knowl-

edge for network quantization and compression.
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