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Abstract

In this work, we present BasisNet which combines re-

cent advancements in efficient neural network architectures,

conditional computation, and early termination in a sim-

ple new form. Our approach incorporates a lightweight

model to preview the input and generate input-dependent

combination coefficients, which later controls the synthesis

of a more accurate specialist model to make final predic-

tion. The two-stage model synthesis strategy can be applied

to any network architectures and both stages are jointly

trained. We also show that proper training recipes are crit-

ical for increasing generalizability for such high capacity

neural networks. On ImageNet classification benchmark,

our BasisNet with MobileNets as backbone demonstrated

clear advantage on accuracy-efficiency trade-off over sev-

eral strong baselines. Specifically, BasisNet-MobileNetV3

obtained 80.3% top-1 accuracy with only 290M Multiply-

Add operations, halving the computational cost of previous

state-of-the-art without sacrificing accuracy. With early ter-

mination, the average cost can be further reduced to 198M

MAdds while maintaining accuracy of 80.0% on ImageNet.

1. Introduction

High-accuracy yet low-latency convolutional neural net-

works enable opportunities for on-device machine learning,

and are playing increasingly important roles in various mo-

bile applications, including but not limited to intelligent per-

sonal assistants, AR/VR, and real-time speech translations.

Therefore designing efficient convolutional neural networks

especially for edge devices has received significant research

attention. Prior research attempted to tackle this challenge

from different perspectives, such as novel network architec-

tures [19, 35, 12], better incorporation with hardware ac-

celerators [15], or conditional computation and adaptive in-

ference algorithms [1, 8, 30]. However, focusing on one

*This work was done when Mingda Zhang was an intern at Google.

MAdds

(FLOPs)

Top-1

Acc. (%)

MobileNetV2 1.0x [19] 300M 72.0

CondConv-MobileNetV2 1.0x [33]♠ 329M 74.6

DY-MobileNetV2 1.0x [4]♠ 313M 75.2

MobileNetV3-Large [12] 219M 75.2

Dy-MobileNetV3-Large [36] 228M 77.1

ShuffleNetV2 1.5x [16] 299M 72.6

EfficientNet-B0 [22] 390M 77.1

EfficientNet-B0 (Noisy Stdt.) [32]♦♥ 390M 78.1

EfficientNet-B0 (AA + KD) [31]♦♠ 390M 78.0

CondConv-EfficientNet-B0 [33]♠ 413M 78.3

ProxylessNas [3] 320M 74.6

FBNetV2-L1 [28] 325M 77.2

FBNetV3-A [7]♣ 343M 78.0

MnasNet-A1 [21] 312M 75.2

CondConv-MnasNet-A1 [33]♠ 325M 76.2

EfficientNet-B2 [22] 1.0B 80.1

EfficientNet-B1 (Noisy Stdt.) [32]♦♥ 700M 80.2

FBNetV3-E [7]♣ 752M 80.4

OFA [2]♦ 595M 80.0

BasisNet-MV3 (Ours)♦♠♡ 290M 80.3

+ Early Termination (Ours)♦♠♡ ~198M ~80.0

Table 1. Comparison with other efficient networks on ImageNet.

Statistics on referenced baselines are cited from original papers.

Different training strategies are applied, e.g., ♦ knowledge distil-

lation; ♥ training with extra data; ♠ custom data augmentation; ♣

AutoML-based learned training recipes.

perspective in isolation may have side effects. For exam-

ple, novel network architectures may introduce custom op-

erators that are not well-supported by hardware accelera-

tors, thus a promising new model may have limited practi-

cal improvements on real devices due to a lack of hardware

support. We believe that these perspectives should be bet-

ter integrated to form a more holistic general approach for

broader applicability.

In this paper, we present BasisNet, which takes advan-

tage of progress in all these perspectives and combines sev-

eral key ideas in a simple new form. The core idea behind

BasisNet is dynamic model synthesis, which aims at effi-

ciently generating input-dependent specialist model from a



Figure 1. An overview of the BasisNet and more details can be found in Sec. 3.2. For easy images (e.g. distinguishing cats from dogs),

lightweight model can give sufficiently accurate predictions thus the second stage could be skipped. For more difficult images (e.g.,

distinguishing different breeds of dogs), a specialist model is synthesized following guidance from lightweight model, which is good at

recognizing subtle differences to make more accurate predictions about the given images.

collection of bases, so the resultant model is specialized at

handling the given input and can give more accurate pre-

dictions. This concept is flexible and can be applied to any

novel network architectures. On the hardware side, the two-

stage model synthesis strategy allows the execution of the

lightweight and synthesized specialist model on different

processing units (e.g., CPU, mobile GPUs, dedicated accel-

erators, etc.) in parallel to better handle streaming data. The

BasisNet design is naturally compatible with early termi-

nation, and can easily balance between computation budget

and accuracy. With extensive experiments, we also show

that a proper training recipe is critical to mitigate overfit-

ting and improve generalizability.

An overview of the BasisNet is shown in Fig. 1. Us-

ing image classification as an example, our BasisNet has

two stages: the first stage relies on a lightweight model to

preview the input image and produce both an initial predic-

tion and a group of combination coefficients. In the second

stage, the coefficients are used to combine a set of models,

which we call basis models, into a single one to process the

image and generate the final prediction. The second stage

could be skipped if the initial prediction is sufficiently con-

fident. The basis models share the same architecture but

differ in some weight parameters, while other weights are

shared to avoid overfitting and reduce the total model size.

We validated BasisNet with different generations and

sizes of MobileNets and observed significant improvements

in inference efficiency. In Table 1 we show comparisons

with selected efficient networks on ImageNet classification

benchmark. Notably, without using early termination, our

BasisNet with 16 basis models of MobileNetV3-large only

requires 290M Multiply-Adds (MAdds) to achieve 80.3%

top-1 accuracy, halving the computation cost of previous

state-of-the-art [2] without sacrificing accuracy. If we en-

able early termination, the average cost can be further re-

duced to 198M MAdds with the top-1 accuracy remaining

80.0% on ImageNet.
1

In summary, our main contribution is two-fold:

• We propose a two-stage model synthesis strategy that

combines efficient neural networks, conditional com-

putation, and early termination in a simple new form.

Our BasisNet achieves state-of-the-art performance of

accuracy with respect to computation budget on Ima-

geNet even without early termination; if enabling early

termination, the average computation cost can be fur-

ther reduced with only marginal accuracy drop.

• We propose an accompanying training recipe for the

new BasisNet, which is critical to improve generaliz-

ability for high capacity dynamic neural networks, and

can also improve the performance of other models.

2. Related Work

Efficient neural networks. Different approaches for

building efficient networks have been studied. Early effort

includes knowledge distillation [11], post-training prun-

ing [10] and quantization [14]. Later work distinguishes

model complexity (size) and run-time latency (speed), and

optimizes for them either with human expertise [19, 35]

and/or neural architecture search [12, 22]. All these ap-

proaches aim at producing a static model that is generally

efficient but agnostic to inputs. On the contrary, our Basis-

1
Average cost is reduced since easy inputs are only handled by

lightweight model; max remains 290M MAdds.



Net is built on efficient network architectures, and is dynam-

ically adaptive based on inputs. In this work we optimize for

inference speed rather than model size.

Conditional computation. Several prior work have ex-

plored accelerating inference by skipping part of compu-

tation graph based on input-dependent signals. For exam-

ple, [8] propose a ResNet extension that dynamically ad-

justs the number of executed layers based on image re-

gions. [24] propose HydraNet which creates multiple par-

allel branches across the network, and adopts a soft gating

module to selectively activate few branches to reduce infer-

ence cost. [20] use mixture of experts with a gating network

to choose from thousands of candidates. Recently, [33] pro-

pose conditionally parameterized convolution (CondConv),

which applies weighted combinations of convolution ker-

nels. This idea is adopted by several later work [34, 4],

because it has equivalent expressive power as linear mix-

ture of experts, but requires much fewer computations than

combining feature maps. However, one common charac-

teristic of these approaches is that their conditioning mod-

ules are inserted before each configurable component (e.g.,

layer or branch), thus these dynamic adjustments only rely

on local information. This concept is defined by [5], and

according to them lacking global knowledge may be less

than optimal because shallower layers cannot benefit from

semantic knowledge which is only available from deeper

layers. Some other work also identified similar issues and

have attempted to leverage global knowledge in dynamic

modulation. For example, in SkipNet [30] a gating network

is built to conditionally skip certain layers in the backbone,

and the authors report that the best performance comes from

a RNN-based gating network because it can access feature

maps across multiple layers. [5] introduce GaterNet where

a dedicated deep neural network is used to analyze the in-

puts before generating input-dependent masks for the fil-

ters in backbone network. BasisNet use a lightweight but

fully-fledged model to process the inputs and produce com-

bination coefficients, thus the model synthesis is relying on

semantic-aware global knowledge. Different from SkipNet

and GaterNet, our lightweight model can synthesize new

kernels that do not exist beforehand via linear combination.

Another distinction is that by separating conditioning model

from backbone, our BasisNet is more flexible and easier to

adapt to different architectures and hardware constraints.

Cascading networks and early exiting. Since input sam-

ples are naturally of varying difficulty, using a single model

to equally process all inputs with a fixed computation bud-

get is wasteful. This observation has been leveraged by

prior work, e.g., the famous Viola-Jones face detector [27]

built a cascade of increasingly more complex classifiers to

achieve real-time execution. Similar ideas were also used

in deep learning, e.g., reducing unnecessary inference com-

putations for easy cases in a cascaded system [26], attach-

ing multiple classification heads on different layers [23, 13],

or cascading multiple models [1]. One common limitation

in previous work is that only the exit point adapts to the

samples but the underlying models remain static. Instead,

our BasisNet dynamically adjusts the convolution kernel

weights based on the guidance from lightweight model, thus

the synthesized specialist can better handle the more diffi-

cult cases.

3. Approach

In general, our BasisNet has two stages: the first stage

lightweight model, and the second stage model synthesis

from a set of basis models. Given a specific input, the

lightweight model generates two outputs, an initial predic-

tion and a group of basis combination coefficients. If the

initial prediction is of high confidence, the input is presum-

ably easy and BasisNet could directly return the initial pre-

diction and terminate early. But if the initial prediction is

less confident (implying the input is difficult, e.g. identify-

ing dogs by breed), the coefficients will be used to guide

the synthesis of a specialist model in the second stage. The

synthesized specialist will handle final prediction.

3.1. Lightweight model

The lightweight model is a fully-fledged network han-

dling two tasks: generating initial category prediction and

generating combination coefficients for second stage model

synthesis. The first is a standard classification task thus we

only elaborate on the second below. Assuming there are N

basis models and each has K layers, the lightweight model

will predict combination coefficients α ∈ R
K×N

α = φ(LM(f(x))) (1)

where LM stands for lightweight model and φ represents

a non-linear activation function. We use softmax by de-

fault because it enforces convexity, which promotes sparsity

and can lead to more efficient executions. f(x) represents

a transformation of the input image, and we typically use

f(x) = x or f(x) = DownSampling(x).

3.2. Basis model synthesis

Our basis models are a collection of model candidates,

which share the same architecture but differ in model

parameters. By combining basis models with different

weights, a specialist network can be synthesized. Various

strategies can be used for building basis models, such as

mixture of experts [20] or using multiple parameter-efficient

patches [17]. We explored a few options and found that

the recently proposed CondConv [33] best fits our needs for

building a low-latency but high-capacity model.



Specifically, consider a regular deep network with image

input x. Assume the output of the k-th convolutional layer

is Ok(x), which could be obtained by

Ok(x) = {φ(W0 ∗ x), if k = 0

φ(Wk ∗Ok−1(x)), if k > 0
(2)

where Wk represents the convolution kernel at the k-th layer

and ∗ represents a convolution operation. For simplic-

ity some operations like batch normalization and squeeze-

and-excitation are omitted from the notation. In Basis-

Net, different inputs will be processed by different, input-

dependent kernel W̃k at k-th layer, which is obtained by

linearly combining the kernels from N basis models at k-th

layer, denoted by {Wn
k }n=1,...,N :

W̃k = α̃
1

k ⋅W
1

k +⋯+ α̃
N
k ⋅W

N
k (3)

where α̃
n
k represents the weight for the k-th layer of the n-th

basis. We use W̃ and α̃ to emphasize their dependency on

x. This design allows us to increase model capacity effec-

tively but retain the same number of convolution operations.

Besides, since the number of parameters is much less than

number of MAdds in a single basis architecture, the combi-

nation only marginally increase the computation cost.

Besides, using sparse convex coefficients further reduces

the overhead. Thus we generally consider convex coeffi-

cients, but also studied two special cases:

• αk is the same for all layers. In this case, the combina-

tion is per-model instead of per-layer.

• αk as an N -dimension vector is one-hot encoded. In

this case, model synthesis becomes model selection.

Key difference from CondConv. Our model synthesis

mechanism is inspired by CondConv [33] but there exists

many distinctions. In CondConv the combination coeffi-

cients for k-th layer are computed following

αk = φ(FC(GAP(Ok−1(x)))) (4)

where FC stands for fully connected layer and GAP stands

for global average pooling. This formulation shows the

dynamic kernels in CondConv can only be synthesized

layer by layer, because the combination coefficients for

next layer depend on output of previous layer. This com-

plicates scheduling of computation thus is not hardware

friendly [34]. In BasisNet, the issue is addressed by the

lightweight model, which generates the combination coeffi-

cients for all layers simultaneously as shown in Equation 1.

Therefore the entire specialist model can be synthesized all

at once. Separating kernel combination from execution also

enables BasisNet to be easily deployed to (or even across)

different hardware accelerators on edge devices if needed.

Besides, early termination is naturally supported by Basis-

Net, but is much harder to be incorporated for CondConv.

Arguably one can try attaching additional prediction heads

like [23] to enable “layer-level early termination” for Cond-

Conv. However, this change requires non-trivial efforts for

designing the proper exit points in CondConv, let alone in-

troducing extra computational cost. More specifically, since

the backbone efficient network is already highly compact

(e.g. MobileNets), it is unlikely that early layers can of-

fer signals sufficient for prediction which is required for

early termination. For BasisNet, the signal comes from

fully-fledged lightweight model, which generates the pre-

diction as a side product thus offers early termination for

free. Lastly, BasisNet is complementary to CondConv, as

we find (in Sec. 4.5) that combining CondConv and Basis-

Net can further boost prediction accuracy.

3.3. Training BasisNet properly

BasisNet significantly increases model capacity, but the

risk of overfitting also increases. We found the standard

training procedures used to train MobileNets lead to severe

overfitting on BasisNet. Here we describe a few regulariza-

tion techniques that are crucial for training BasisNet suc-

cessfully. This is also a key contribution of our work, as

previously there is no good practice on how to effectively

train such high capacity dynamic neural networks.

• Basis model dropout (BMD) Inspired by [9], we experi-

mented with randomly shutting down certain basis model

candidates during training. It is similar to applying Drop-

Connect [29] on the predicted coefficient matrix from the

lightweight model. We find this approach is extremely

effective against “experts degeneration” [20] where the

controlling model always picks the same few candidates

and never activates the rest.

• AutoAugment (AA) AutoAugment [6] is a search-based

procedure for finding specific data augmentation policy

towards a target dataset. We find that replacing the orig-

inal data augmentation in MobileNets [19] with the Ima-

geNet policy in AutoAugment can significantly improve

the model generalizability.

• Knowledge distillation [11] showed that using soft tar-

gets from a well-trained teacher network can effectively

prevent a student model from overfitting. We observe that

knowledge distillation is also effective on training Basis-

Net, and find EfficientNet-B2 with noisy student train-

ing [32] can be a good teacher.

In addition to stronger regularization, we applied a few

other tricks in order to properly train BasisNet. Since

the lightweight model directly controls how the specialist

model is synthesized, any slight changes in the combination

coefficients will propagate to the parameter of the synthe-

sized model and finally affect the final prediction. Since we

train the two stages from scratch, this is especially trouble-

some at the early phase when the lightweight model is still

ill-trained. To deal with the unstable training, we introduced



ǫ ∈ [0, 1] to balance between a uniform combination and

a predicted combination coefficients from the lightweight

model,

α
′
= ǫ ⋅

1

N
⋅ 1

K×N
+ (1 − ǫ) ⋅ α (5)

When ǫ = 1 all bases are combined equally while when ǫ =

0 the synthesis is following the combination coefficients.

In practice ǫ linearly decays from 1 to 0 in the early phase

of training then remains at 0, thus the lightweight model

can gradually take over the control of model synthesis.

This approach effectively stabilizes training and acceler-

ates convergence. A recent work [4] proposed temperature-

controlled softmax to achieve similar goal.

All models in both stages are trained together in an

end-to-end manner via back-propagation. In other words,

all basis models are trained from scratch by gradients

from the synthesized model. The total loss includes two

cross-entropy losses for the synthesized model and the

lightweight model, respectively, and L2 regularization,

L = − logP (y∣x; W̃ ) + λ(− logP (y∣f(x);WLM))
+ Ω({Wn}n=1,...,N ,WLM) (6)

where λ is the weight for cross-entropy loss from

lightweight model (λ = 1 in our experiments), and Ω(⋅)
is a L2 regularizer applied to all model parameters. The

lightweight model receives all gradients, while basis mod-

els are only updated by the first term and regularization.

4. Experiments

4.1. Dataset and model architecture setup

We demonstrate the effectiveness of BasisNet on both

MobileNetV2 and MobileNetV3 architectures, and evaluate

on the ImageNet ILSVRC 2012 classification dataset [18]

consisting of 1.28M images for training and 50K for vali-

dation. We did not explicitly use extra data, but one teacher

model we used for knowledge distillation, i.e., EfficientNet-

b2 with noisy student training [32], is obtained with extra

data. For BasisNet-MV2, the basis models follow the archi-

tecture described in Table 2 of [19]. For simplicity in nota-

tion, we sequentially number all the layers starting from L0,

e.g. the first conv2d layer is L0 and the avgpool 7x7

layer is L19. For BasisNet-MV3, the basis models follow

the MobileNetV3-large architecture described in Table 1 of

[12]. We also sequentially number all the layers, e.g. the

pool,7x7 layer is L17.

For fair comparison, we retrained all models includ-

ing BasisNet and all the baselines using the same training

recipe, and reported the performance without early termi-

nation except for Sec. 4.6. Note that the lightweight model

introduces computation overhead for BasisNet, but our re-

ported MAdds statistics for BasisNet always include the

lightweight model. More details about our model as well

as training recipes can be found in supplementary materi-

als.

4.2. Comparison with MobileNets

For both BasisNet-MV2 and BasisNet-MV3, we com-

pute the accuracy-MAdds curves by varying the input im-

age resolution to the synthesized model from {128, 160,

192, 224}. We compute the curves for the MobileNets in

the same way. As shown in Fig. 2, even with the computa-

tion overhead of the lightweight model, our BasisNets con-

sistently outperform the MobileNets with large margins.

4.3. The effect of regularization for proper training

In Fig. 3 we show the performance improvements when

different regularizations (basis model dropout, AutoAug-

ment, and knowledge distillation) discussed in Sec. 3.3 are

individually applied to BasisNet-MV2 training, as well as

combined altogether. Each regularization helps general-

ization, and the most effective single regularization is the

knowledge distillation. By combining all strategies the

validation accuracy increases the most. In fact, we ob-

served that the proposed training recipe also helps improv-

ing performance of other models like original MobileNets,

as shown in Fig. 5. However, applying the regularization

is more crucial for BasisNet training, as the top-1 accuracy

of BasisNet-MV2 (1.0x224) improves by +3.4 percentage

points (74.7% → 78.1%), while for MobileNetV2 the im-

provement is +2.0 percentage points (72.9% → 74.9%).

4.4. Number of bases in basis models

We varied the number of bases to investigate their effect

on the model size, inference cost and final accuracy. Intu-

itively, the more bases in the candidate pool, the more di-

verse domains the final synthesized model can adapt to. We

chose a fix-sized MV3-small (1.0x224) as our lightweight

model, and use different numbers of MV3-large (1.0x224)

for basis. As shown in Fig. 4, the top-1 accuracy improves

monotonically with increased number of bases. With 16

bases, our BasisNet-MV3 achieved 80.3% accuracy with

290M MAdds. The shaded area represents the relative

model size (#Params). Note that we explicitly trained a reg-

ular MobileNetV3-large with large multiplier and low im-

age resolution (2.5x128), so it has similar model size with

BasisNet. We show that BasisNet requires only 2/3 of com-

putations (290M vs 435M) to achieve the comparable accu-

racy with the MobileNetV3 counterpart (80.3% vs 80.4%).

4.5. Comparison with CondConv

We re-implemented CondConv
2

to directly compare

with our BasisNet. We choose MobileNetV3 as backbone,

2
Our re-implementation of CondConv-MV2 achieved 76.2% accuracy,

better than the reported 74.6% from [33].



Figure 2. Accuracy-MAdds trade-off com-

parison of the proposed BasisNet and Mo-

bileNet on ImageNet validation set.

Figure 3. Performance boost with various

regularizations on BasisNet-MV2. All com-

bined gives the largest improvement.

Figure 4. Prediction accuracy monotonically

increases when more bases are added to the

basis models.

Figure 5. MobileNet and BasisNet training using different regularizations. BasisNet uses MV2-0.5x as its lightweight model and 8 MV2-

1.0x for basis models. Input image resolutions vary from {128, 160, 192, 224}. Note that basis model dropout (BMD) is not applica-

ble to MobileNet because it has only one model.

Model Activation MAdds Top-1 Acc.

CondConv-MV3 Sigmoid 253M 79.9%

BasisNet-MV3 Softmax 290M 80.3%

BasisNet-MV3 Sigmoid 290M 80.0%

(BasisNet+CC)-MV3 Softmax 290M 80.5%

Table 2. Comparison of BasisNet with CondConv.

and selected N = 16 for both BasisNet and CondConv from

layers 11 to 15. We chose MV3-small as the lightweight

model for BasisNet, and disabled early termination for fair

comparison. All models including CondConv baselines are

re-trained using the same recipe as in Sec. 3.3.

The top-1 accuracy for CondConv-MV3 and BasisNet-

MV3 is 79.9% and 80.3% respectively, although Basis-

Net has relatively larger overhead due to the lightweight

model. However, we find that BasisNet is more flexible

than CondConv. CondConv reports that simultaneously ac-

tivating multiple routes is essential for any single input,

therefore sigmoid activation has to be used. For BasisNet,

we find both sigmoid and softmax work fine (80.0% and

80.3% accuracy respectively). In fact, using softmax can

lead to sparse and even one-hot combination coefficients

(see Sec. 4.9), which may help reducing latency from model

loading I/O perspective. We also experiment to combine

Figure 6. Simulated accuracy comparison of BasisNet-MV3 and

cascaded MobileNets with early exiting under varying thresholds.

CondConv with BasisNet, and the accuracy can be further

boosted to 80.5%, showing the performance gain from Ba-

sisNet is complementary to CondConv.

4.6. Early stop to reduce average inference cost

The two stage design of BasisNet naturally supports

early termination, as the lightweight model can make an

initial prediction. We chose the maximum value of softmax

probability [13] of initial prediction as the criterion to mea-



sure the confidence. Specifically, for each input image if

the initial prediction confidence is higher than a predefined

threshold then second stage could be skipped, otherwise the

second stage specialist needs be synthesized to make the fi-

nal prediction.

We verified the early termination strategy on Ima-

geNet validation set with a well-trained BasisNet-MV3

(1.0x224,16 basis) model. In Fig. 6, we alter thresholds

of initial prediction confidence and plot the average cost

and accuracy of BasisNet. For fair comparison, we cas-

cade two well-trained MobileNets of the same size as the

lightweight model and basis model respectively. In general

the figure shows that BasisNet achieves better results for

the same cost, except when the computation budget is very

limited. Particularly for BasisNet, with a threshold of 0.7,

39.3% of images will skip the second stage thus the average

computation cost reduces to 198M MAdds while the overall

accuracy remains 80.0% on ImageNet validation set.

4.7. Convex combination: special cases

Per-model model synthesis. When lightweight model

predicts a single vector of combination coefficients for all

layers, i.e. α1 = α2 = ⋅ ⋅ ⋅ = αK ∈ R
N

, it can be seen as a

per-model synthesis. Note that per-model synthesis of Ba-

sisNet is still different from HydraNets [24], as the branches

in HydraNets span across multiple layers and do not fuse in

the middle; instead, in BasisNet the convolution kernels are

obtained from linear combination for each layer.

We use BasisNet-MV3 with 8 bases and a lightweight

model of MV3-small (1.0x224), and share all layers in basis

models except for L11-15. Interestingly both per-model Ba-

sisNet and per-layer BasisNet have the same performance,

79.6% top-1 accuracy on ImageNet validation set, implying

the combination coefficients across layers may have high

correlations for BasisNet-MV3. We also experiment with

BasisNet-MV2 in a similar setting, but it turns out training

per-model BasisNet-MV2 is more challenging because the

model easily collapses after roughly 30K steps in our mul-

tiple attempts. We suspect that training per-model model

synthesis is generally more difficult as it has stronger con-

straints on the basis models, and it may depend on the base

architectures (MobileNetV2 or MobileNetV3).

Model selection instead of model synthesis. When the

predicted combination coefficients are one-hot encoded, the

model synthesis can be simplified as model selection, as

only one base will be selected for a particular layer. We

experimented with BasisNet-MV3 with 8 bases, and the

lightweight model is MV3-small (1.0x128). Basis models

share all layers except for L8-15, and the original BasisNet-

MV3 has an accuracy of 79.8% under this setting. Af-

ter training for 100K steps we froze the lightweight model

and transformed the predicted combination coefficients into

one-hot embedding, then continued training the basis mod-

Models Top-1 Acc. MAdds (M) Latency (ms)

BasisNet-MV3 8-routes 79.6% 281 60.6

BasisNet-MV3 16-routes 80.3% 290 62.9

– With early termination 80.0% 198 (avg.) 43.6 (avg.)

MobileNetV3 (1.25x224) 79.7% 356 66.3

MobileNetV3 (1.5x224) 80.6% 489 86.2

CondConv-MobileNetV3 79.9% 253 53.1

Table 3. Latency measurements on Google Pixel 3XL.

els. The resulting BasisNet finally achieved 78.5% accu-

racy. This is +0.7% better than post-processing a well-

trained BasisNet (77.8%) implying the potential for training

model selection end-to-end. We leave more careful finetun-

ing for the model selection as future work, but emphasize

that model selection has potential to further reduce latency

in practice from a model loading I/O perspective.

4.8. On­device latency measurements

To validate the practical applicability, we measured the

latency of the proposed BasisNet and other baselines on

physical mobile device. We choose Google Pixel 3XL and

run floating-point models on the big core of the phone’s

CPU. In Table 3 we show that BasisNet can run efficiently

on existing mobile device. Our efficiency conclusion drawn

from MAdds also applies to real latency. Specifically, Mo-

bileNetV3 with 1.25x and 1.5x multipliers have similar ac-

curacy as BasisNet-MV3 with 8 and 16 routes, while the

BasisNet has lower latency. We also measured the la-

tency for CondConv. Primarily because of the first stage

lightweight model, BasisNet without early termination has

higher latency than CondConv (62.9ms vs 53.1ms). How-

ever, we emphasize that the first stage lightweight model

generates better combination coefficients thus improves the

top-1 accuracy (80.3% vs 79.9%). Besides, the lightweight

model generates initial prediction to enable early termina-

tion. When early termination is enabled, the average la-

tency for BasisNet reduced significantly to 43.6ms
3
, which

is much lower than CondConv (53.1ms) while retaining

slightly superior accuracy (80.0% vs 79.9%). As we de-

scribed in Sec. 3.2, deploying early termination for Cond-

Conv is much more challenging.

4.9. Understanding the learned BasisNet models

Visualizing the specialization of basis models. We visu-

alized the combination coefficient vectors on ImageNet val-

idation set to better understand the effectiveness of model

synthesis. In Fig. 7 we show visually similar and dis-

tinct categories, as well as the combination coefficients

of L15. From (B) top, we can see that the lightweight

model chooses the same specialist for distinguishing dif-

3
With threshold of 0.7 on ImageNet, 39.3% of images can skip second

stage thus the estimated average latency is reduced to 0.393 × 13.7ms

+(1 − 0.393) × 62.9ms = 43.6ms.



(A) (B) (C) (D)

Figure 7. (A,C) Sample images from visually similar or distinct categories. (B) Mean coefficient weights at L15 layer for selected cate-

gories. (D) t-SNE visualization of combination coefficients.

Disturbance BasisNet-MV2 BasisNet-MV3

CORRECT 78.2 79.8

TOP-1 73.9 (-4.3) 77.8 (-2.0)

MEAN 67.2 (-11.0) 69.5 (-10.3)

UNIFORM 67.2 (-11.0) 69.7 (-10.1)

SHUFFLED 56.5 (-21.7) 58.1 (-21.7)

Table 4. Apply various disturbance to combination coefficients.

ferent dogs, in order to better handle the subtleties between

dog breeds. But for visually distinct categories, the syn-

thesized models are very different evidenced by the non-

overlapping curves in (B) bottom. In Fig. 7 (D) we show

the coefficients for all images using t-SNE [25]. The dog

categories form a single cluster while the others reside in

very different clusters. More interestingly, we find that even

fine-grained visual patterns can be distinguished as different

base models are activated, e.g., fluffy dogs mainly activate

2nd base but short-haired dogs use 14th base. More quali-

tative results are provided in supplementary materials.

The importance of optimal basis model synthesis. To

verify the importance of model synthesis, we apply distur-

bances to the predicted combination coefficients. The spe-

cialist should be most effective for the corresponding im-

age, and a disturbed synthesis signal is expected to hurt per-

formance. We train BasisNet-MV2 (Accuracy 78.2%) and

BasisNet-MV3 (Accuracy 79.8%), and share only the first 7

layers in the basis, then disturb the coefficients α as follows:

(1) preserving the highest probable basis model only (TOP-

1), (2) uniformly combining all basis models (UNIFORM),

(3) using mean weights over entire validation set (MEAN),

or (4) randomly shuffling the coefficients within each layer

(SHUFFLED). As shown in Table 4, all disturbances lead to

inferior performance validating that basis models have var-

ied expertise. SHUFFLED leads to a totally mismatched spe-

cialist thus performance drops over 20 percentage points.

Effect of model synthesis at different layers We also ap-

ply disturbances on each individual layer to investigate the

Disturbed Layer BasisNet-MV2 BasisNet-MV3

8 78.1 (-0.1) 79.6 (-0.2)

9 78.1 (-0.1) 79.6 (-0.2)

10 78.0 (-0.2) 79.6 (-0.2)

11 78.0 (-0.2) 79.4 (-0.4)

12 77.7 (-0.5) 79.0 (-0.8)

13 77.4 (-0.8) 78.3 (-1.5)

14 77.2 (-1.0) 77.9 (-1.9)

15 76.0 (-2.2) 76.4 (-3.4)

16 76.0 (-2.2) 79.1 (-0.7)

17 76.1 (-2.1) N/A

18 77.2 (-1.0) 76.6 (-3.2)

Reference 78.2 79.8

Table 5. Top-1 accuracy drops when SHUFFLED disturbance was

applied at different layer. The last row shows the reference model

that uses undisturbed predicted coefficients.

sensitivity within the model. As shown in Table 5, we find

the layers closer to the final classification layer have more

impacts, as the accuracy drop is more significant. Interest-

ingly, the regular convolutional layer right after the residual

bottleneck layers [19, 12] (e.g. L18 of MobileNetV2 and

L16 of MobileNetV3) seems less sensitive towards inputs.

5. Conclusion

We present BasisNet, which combines the recent ad-

vancements in multiple perspectives such as efficient

model design and dynamic inference. With a standalone

lightweight model, the unnecessary computation on easy

examples can be saved and the information extracted by the

lightweight model help synthesizing a specialist network for

better prediction. With extensive experiments on ImageNet

we show the proposed BasisNet is particularly effective on

efficient inference, and BasisNet-MV3 achieves 80.3% top-

1 accuracy with only 290M MAdds even without early ter-

mination.
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