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Abstract

Convolutional Neural Networks (CNNs) have achieved

remarkable success in various computer vision tasks but

rely on tremendous computational cost. To solve this

problem, existing approaches either compress well-trained

large-scale models or learn lightweight models with care-

fully designed network structures. In this work, we make

a close study of the convolution operator, which is the

basic unit used in CNNs, to reduce its computing load.

In particular, we propose a compact convolution module,

called CompConv, to facilitate efficient feature learning.

With the divide-and-conquer strategy, CompConv is able

to save a great many computations as well as parameters

to produce a certain dimensional feature map. Further-

more, CompConv discreetly integrates the input features

into the outputs to efficiently inherit the input information.

More importantly, the novel CompConv is a plug-and-

play module that can be directly applied to modern CNN

structures to replace the vanilla convolution layers without

further effort. Extensive experimental results suggest that

CompConv can adequately compress the benchmark CNN

structures yet barely sacrifice the performance, surpassing

other competitors.

1. Introduction

In recent years, Convolutional Neural Networks (CNNs)

have significantly advanced many tasks in the computer

vision field [11, 21, 36] due to their great power in learn-

ing representative features. However, such success relies

on massive computation and storage resources, hindering

these large-scale models from being deployed on resource-

limited devices in practice.

To alleviate the pressure on the demand for comput-

ing power and memory, one straight-forward solution is

to compress well-trained big models. For this purpose,

existing approaches propose either to employ a tiny model

as the student to distill the knowledge from the teacher

model [13, 8], or to prune the unimportant connections

from the learned model to make it thinner [22, 12, 10].
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Figure 1. Concept diagram of the proposed compact convolution

module, CompConv. Compared to the vanilla convolution in (a),

which fully connects the input channels with the output channels,

CompConv adopts the divide-and-conquer strategy to develop the

output recursively. (b) gives a brief illustration of the core unit

used in CompConv, which only uses the convolution operation to

contribute half number of channels (i.e., the solid line) and subtly

borrows the other half from the inputs (i.e., the dashed line).

Besides training large-scale models and then performing

compression, an alternative solution is to directly learn a

lightweight model. Nevertheless, a side effect of reducing

the model size is the sacrifice of the learning capacity.

To tackle this obstacle, it often requires careful design of

the network architecture, such as MobileNet [15, 35] and

SqueezeNet [18].

In this paper, different from prior work, we take a close

look into the convolution operator, which is the basic unit

used in all CNNs, and propose to save the computing

load by compressing the convolution module. Recall that

the convolution module learns the transformation from one

feature space to another. More concretely, given an input

feature map, with Cin channels, the convolutional kernel

projects it to a Cout-channels feature map as the output. For

each pixel in the spatial field, the conventional convolution

requires Cin × Cout connections, as shown in Fig. 1a. As

pointed out by prior work [9, 22, 10], however, the learning

of CNNs presents a definite over-parameterization and

redundancy. From this perspective, we propose CompConv

to implement the convolution more compactly.
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Specifically, instead of directly producing the final fea-

ture map, CompConv employs a core unit that equally splits

the output into two parts along the channel axis. One of

them is transformed from the input feature via convolutional

projection while the other identically borrows a subset of

input channels. In this way, we are able to pass down

the learned information across the convolution module to

the most extent yet with minor effort. Fig. 1b illustrates

the diagram of such process. More importantly, our core

unit can be performed in a recursive computing manner,

resulting in a divide-and-conquer strategy. As a result,

CompConv is able to save a great many computations as

well as parameters for more efficient feature extraction. We

summarize our contributions as follows:

• We propose a compact convolution module, termed

as CompConv, which utilizes the divide-and-conquer

strategy together with the carefully designed identical

mapping to considerably reduce the computational

cost of CNNs.

• We make exhaustive analysis of the proposed Comp-

Conv by studying how the learning capacity is affected

by the depth of the recursive computation. We further

propose a practical scheme to convincingly control the

compression rate.

• We apply CompConv to various benchmark CNNs as

a handy replacement of the conventional convolution

layer. It turns out that CompConv can substantially

save the computing load yet barely sacrifice the model

performance on classification and detection tasks, out-

performing existing approaches.

2. Related Work

Model Compression. Modern deep neural networks have

millions of weights, rendering them both memory-intensive

and computationally expensive. A straightforward way to

reduce the computational cost is to remove the unimportant

neuron connections with rule-based or learning-based meth-

ods, named network pruning [10, 22, 12, 31, 30, 6, 31, 24,

40, 17, 23, 26, 25]. Recent work also shows that precision

computation is not necessary for the training and inference

of deep models [7]. As a result, quantizing weights and

activations [19, 44] are also widely explored to improve

network efficiency. Specifically, binary networks [4, 33],

which only employ 1-bit neuron to represent the model

weights and activations, replace all MAC operation with

boolean operation to save the computation. Besides, knowl-

edge distillation [13, 8, 41, 16, 39, 39] offers an alternative

way to generate small student networks with the guidance

of a well-trained large teacher network. In this way, the

students show comparable performance as the teacher but

raise a more efficient inference process.

Lightweight Model Design. Another way of reducing

the computational cost of CNNs is to directly learn a

lightweight model, but there is a clear trade-off between the

model size and the learning capacity. As a result, existing

approaches propose to increase the model efficiency and

maintain its performance at the same time with care-

fully designed network structure [18, 15, 35, 42, 32, 14].

SqueezeNet [18] adopts a large mount of 1×1 convolutions

to reduce the number of parameters. MobileNet V1 [15]

and V2 [35] employ depth-wise separable convolutions and

inverted linear residual bottleneck to improve computation

efficiency. ShuffleNet V1 [42] and V2 [32] propose the

channel-shuffle operation to enhance the information flow

between different channel groups and provide a hardware-

friendly implementation to enable practical applications.

GhostNet [9] considers the feature redundancy between

feature maps and proposes to learn ghost features with

cheap operations. On the other hand, Network Architecture

Search (NAS) [28, 46, 45, 43] aims at finding the most ef-

ficient network structure automatically. MobileNet V3 [14]

utilizes the Auto-ML technology [1, 2] to achieve better

performance with fewer floating point operations (FLOPs).

3. Compact Convolution Module

In this section, we introduce the proposed CompConv

module, which efficiently learns the output feature from

the input using the divide-and-conquer strategy. Sec. 3.1

introduces the motivation. Sec. 3.2 describes the core

unit used in CompConv. Sec. 3.3 presents the complete

CompConv module, which executes the core unit in a

recursive fashion. Sec. 3.4 provides an adaptive strategy

of using CompConv in practice. Sec. 3.5 analyzes the

computing complexity of CompConv.

3.1. Motivation

Convolution can be treated as an operation that maps

features from one space to another. To some extent, this

process is similar to Discrete Fourier Transform (DFT),

which maps a signal sequence from the time domain to the

frequency domain. Fast Fourier Transform (FFT) is widely

used to speed up the computation of DFT. Motivated by

FFT, our CompConv is proposed to compress the vanilla

convolution module through the divide-and-conquer strat-

egy.1

Let us review the formulation of FFT. When applying

DFT to a N -points signal sequence x(t) from the time

domain, FFT proposes to split it into two N
2 -points sub-

sequences, denoted as x(e)(t) and x(o)(t), and perform DFT

1Note that the improvement from DFT to FFT does not change the

computational results, i.e., they are identical. Differently, the change from

the vanilla convolution to CompConv is not a lossless compression. We

simply design CompConv by drawing lessons from FFT for more efficient

feature learning.
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on each of them. Here, e and o stand for “even” and “odd”

respectively. Accordingly, the final result X(k) from the

frequency domain can be obtained from the intermediate

transformation results X(e)(k) and X(o)(k) with

X(k) = X(e)(k) +W k
NX(o)(k), (1)

where W k
N = exp(−j 2π

N
k) is a multiplier. Based on

this, the factorized results X(e)(k) and X(o)(k) can be

further divided into smaller groups, resulting in a recursive

computing manner.

3.2. Core Unit of CompConv

Inspired by FFT, we introduce the divide-and-conquer

strategy into the convolution module used in CNNs to

improve its computing efficiency. By analogy, we treat the

intermediate feature maps produced by CNNs as the se-

quence from the channel axis. More concretely, to develop

a feature map X with C channels, we can alternatively

develop two feature maps XA and XB , each of which is

with C
2 channels, and compose them together with

X = XA + WXB , (2)

where + denotes the concatenating operation along the

channel axis and W is a learnable parameter used to

transform feature maps.

Eq. (2) embodies the key idea of CompConv. In partic-

ular, the core unit of CompConv is implemented with two

parts, as shown in Fig. 2. One part (i.e., XA) is identically

mapped from a subset of input channels, which is able to

inherit information from the input with minor effort. The

other part (i.e., XB) is transformed from the input feature

with a native convolution module.

3.3. Recursive Computation

With the formulation in Eq. (2), CompConv can be

computed in a recursive manner by further splitting XB into

two halves as

XBi
= XAi+1

+ Wi+1XBi+1
i = 0, · · · , d− 1, (3)

where d denotes the recursion depth.

Tailing Channels. We treat the first separation step (i.e.,

{XA0
,XB0

}) differently from other steps, as shown in

Fig. 2. Concretely, XA0
is not directly borrowed from the

input but transformed from XB0
instead. There are mainly

two reasons in doing so. On one hand, XA0
is with the

most channels among all identical parts {XAi
}d−1
i=0 . If we

directly duplicate some input channels as XA0
, there will

be too much redundancy between the input feature map and

the output one, severely limiting the learning capacity of

this module. On the other hand, besides transformed from

XB0
, there are some alternative ways to obtain XA0

, such

Input
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Figure 2. Framework of the proposed CompConv with the

recursion depth d = 3. With the divide-and-conquer strategy,

CompConv computes the output from the input recursively. In

each step, to get a feature map with a certain number of channels,

the core unit of CompConv proposes to generate half of the

channels (blue blocks) with the vanilla convolution operation and

the other half (tangerine blocks) with the identical mapping from

the input. Meanwhile, to increase the learning capability yet

maintain low computing load, the identical mapping is replaced

with an additional convolution module in the first separation step

to produce tailing channels (green blocks).

as mapping from the entire input feature map or building

another recursion like the computation of XB0
. Among

all these approaches, developing XA0
from XB0

is with

the cheapest computing cost. Meanwhile, the deduction

of XB0
has already assembled enough information from

the input feature, hence the learning capacity can also be

maintained. We use group convolution with group numbers

equal to channel number for this transformation.

Integrating Recursive Results. To better utilize the

computations in the recursive process, the final output is

developed by not only grouping the two largest sub-features

(i.e., XA0
and XB0

) but also integrating all the intermediate

results, as shown in Fig. 2. In this way, we can make

sufficient use of all the computing operations to produce the

final output. In addition, a shuffle block is added after the

concatenation of these feature maps.

3.4. Adaptive Separation Strategy

As described in Sec. 3.3, CompConv adopts the divide-

and-conquer strategy for efficient feature learning. Thus

how to recursively split the channels is critical to its

computing efficiency and learning capacity. Here, we use

Cin and Cout to denote the number of input channels and

output channels respectively. Cprim refers to the channel

number of the minimum computing unit, e.g., XB2
when

d = 3 in Fig. 2. Considering the exponential growth of the

channel number during the recursive computation, we can
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expect

Cout =

d∑

i=1

2iCprim. (4)

We can easily solve Eq. (4) with

Cprim = ⌈
Cout

2× (2d − 1)
⌉, (5)

where ⌈·⌉ denotes the ceiling function that grounds Cprim

as an integer. If the sum of the channels from all units

is larger than Cout, we simply drop some last channels in

XA0
to make sure the output feature is with the proper

dimension.

Choice of Recursion Depth. We can tell from Eq. (5) that

Cprim is highly dependent of the recursion depth d, which

is a hyper-parameter in our CompConv module. Larger d

correspond to higher compression rate, where d = 0 means

no compression. Considering the different structures and

different model scales of modern CNNs, we propose an

adaptive strategy on choosing the depth as

d = max(log2(max(1,
Cin

C0
)) + 1, 3). (6)

Here, C0 is a model-specific design choice, valuing from

{32, 64, 128, 256, 512, · · · }, which can be determined by

the target compression rate and the model size. Intuitively,

larger C0 tends to induce smaller d, further resulting in

a lighter compression. From this perspective, C0 can be

used to control the trade-off between computing efficiency

and learning capacity. It’s worth noting that the recursion

depth d is related to the number of input channels, Cin, in

Eq. (6), which means our strategy will dynamically adjust

the computation depth at different layers. Meanwhile,

to guarantee the minimum unit to have adequate learning

capacity, we assign it with enough channels. In other words,

Cprim could not be too small. From Eq. (5), we see that

when d = 3, Cprim only accounts for ∼ 8% of output

channels. we therefore bound the depth d with a maximum

value 3.

Recommended Configuration. For most popular CNN

networks like VGG [36] and ResNet [11], we recommend

to set C0 = 128. We denote this setting as CompConv128.

In the following sections, we use CompConv128 by default

if no special instructions.

3.5. Complexity Analysis

In this part, we briefly discuss how CompConv can help

to save the computing load. We conduct the complexity

analysis and make a comparison between vanilla convolu-

tion and the proposed CompConv. Here, we focus on the

number of operations executed in each module.

Assuming both the input and output feature maps are

with resolution H × W , the computing complexities for

vanilla convolution and CompConv are

OConv = H ×W × k2 × Cin × Cout, (7)

OCompConv = H ×W × k2 × (Cin × Cprim+

d−1∑

i=1

(2iCprim)2 + 2d−1Cprim), (8)

where k indicates the size of the convolutional kernel.

Under the setting Cin = Cout and d = 3, CompConv only

requires ∼ 20% computational resources compared to the

conventional convolution to develop the output feature with

the same number of channels.

4. Experiments

In this section, we evaluate the effectiveness and ef-

ficiency of the proposed CompConv on various visual

benchmarks, including CIFAR-10 [20], CIFAR-100 [20]

and ImageNet [5]. Top-1 and Top-5 accuracy are reported

as the evaluation metric for comparison. Ablation studies

on various CompConv designs are also included. Besides,

detection results on COCO [27] are reported to show the

efficiency and generality of CompConv. The standard mean

average precision (mAP) is used to measure accuracy.

This section is organized as follows: Sec. 4.1 introduces

the experiment setting, including datasets and the details of

training and inference. Sec. 4.2 presents the ablation study

on the detailed setting, especially the recursive depth of our

CompConv. Sec. 4.3 and Sec. 4.4 evaluate the well designed

CompConv on various visual benchmarks.

4.1. Experimental Settings

Dataset. ImageNet [5] contains around 1.28 million

training images and 5k validation images. It includes 400

image categories in total. CIFAR-10 [20] consists of 50k

training images and 10k testing images in 10 classes. The

CIFAR-100 [20] increases the number of classes to 100,

which is a finer version of CIFAR-10 [20]. The COCO

benchmark [27] contains 118k images for training, 5k

images for validation.

Training and Inference. For ImageNet classification, we

adopt data augmentation scheme including random crop

and mirroring following [11]. We use the momentum of

0.9 and synchronized SGD training over 8 GPUs. Each

GPU has a batch-size of 32, resulting in a mini-batch of

256 in total. The learning rate is 0.1 and will be reduced

by a factor of 10 at 30, 60, 90 epochs (100 epochs in total),

respectively. At inference time, the shorter side of samples

from ImageNet is resized to 256 and then cropped with 224

× 224 at the center region.
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Table 1. Effec of Shuffle Block. We deploy CompConv on VGG-

16 following Eq. (5). The proposed CompConv shuffle channels

of feature maps after composition while the one without shuffle

block keeps sequential concatenation.

Model Params FLOPs Top-1(%)

w.o Shuffle-Block 3.3M 107M 92.8

Ours 3.3M 107M 93.8

For CIFAR-10 and CIFAR-100, we adopt simple data

augmentation for training: 4 pixels are padded on each side,

and a 32×32 crop is randomly sampled from the padded

image or its horizontal flip. We start with a learning rate of

0.1 with a total batch size of 128, divide it by 20 at 60, 120

epochs (150 epochs in total). And we feed the single view

of original images to the network at inference time.

For object detection on COCO [27], the input images

are resized to a short side of 800 and a long side without

exceeding 1333 following [3]. The models are initialized

by the pre-trained ImageNet model and trained on 8 GPUs

with 2 images per GPU for 12 epochs (1× settings). In

SGD training, the learning rate is initialized to 0.01 and then

divided by 10 at epochs 8 and 11. The weight decay and

momentum parameters are set to 10−4 and 0.9, respectively.

4.2. Ablation Study

We choose VGG16 [36] as the basic backbone network

to conduct the following ablation experiments on CIFAR-

10 [20]. All our experiments are conducted by replacing

original convolutions with the same channels of input and

output feature maps. And the new models are denoted as

Comp-VGG16. Since VGG-16 is originally designed for

ImageNet, we adopt a little modification to the structure

like [29] which is widely used in the literature to handle

samples from CIFAR-10 in lower resolution.

Effect of Shuffle Block. It’s easily noticed that the output

feature maps are obtained by integrating all recursive results

in CompConv. As shown in Eq. (3), the divided part

of feature maps, XA, identically maps few channels of

primary features and transmits them to compose the output

of the module. To ensure XA does not include fixed feature

maps with the constant position of channels, we adopt

a shuffle block [42] in 4 groups after the concatenation.

Tab. 1 compares the results between our CompConv and

the one without shuffle block. The results imply that

shuffle block can improve performance without adding any

computations. The shuffle operation in CompConv prevents

propagating the same feature from shallow feature to the

final output and enhance the feature representation ability.

Thus we’ll adopt the CompConv with shuffle block in the

following experiments.

Effect of Identical Mapping. During recursive computa-

tion in CompConv, {XAi
, i ∈ {1...d}} is implemented

Table 2. Effect of Identical Mapping. We study the effectiveness

of our fixed identity mapping. The results of conv,random and

group are shown for comparison with our fixed identity mapping.

Model Option Params FLOPs Top-1(%)

Comp-VGG16

group 3.3M 107M 93.7

random 3.3M 107M 92.7

conv 3.6M 112M 93.8

Ours fixed 3.3M 107M 93.8

by the identical mapping from the starting channels of input

feature maps. We conduct the following ablation to study

the effect of the identity mapping options for XA. The basic

operation to map starting channels from input feature map

is denoted as fixed in Tab. 2.

We first give a comparison by generating these feature

maps via applying 1 × 1 convolution to the input feature

map. The conv option brings more computations while the

performance with 93.16% is as same as the fixed mapping

option with 93.17%.

Except for the conv option with larger parameters and

FLOPs, we also give another two mapping options as group-

selected and random-selected from the input feature without

extra computation cost. The group option means dividing

input channels by several groups then pick up specific

feature maps from each group. With the same parameters

and FLOPs, feature sampling from group-division shows

similar classification accuracy with fixed option. Intu-

itively, we think that such channels assignment drives the

CompConv to seek principle feature maps in the input

regardless of positions. The random option implies no

fixed assignment but in a random mode with slightly lower

performance than other mapping options with 0.4% drop,

Thus, we choose the simple way which incorporates the

specific identical mapping from fixed starting position of

the input feature map.

Analysis on Recursion Depth d. As shown in Eq. (8), our

CompConv has one hyper-parameter d denotes recursion

depth while larger d brings greater computation compres-

sion. To explore the effect of different d, we firstly adopt

a global setting of different d by replacing all convolutions

with CompConv. As shown in Tab. 4, setting with global

d = 1 in CompConv can save half of parameters and

FLOPs with 1% loss of Top-1 accuracy. When equipping

CompConv with the global setting of d = 2 or d = 3,

the whole network is compressed with higher efficiency but

still maintains good performance. However, for d = 4
the performance presents a distinct drop compared with

the other settings because of the severe squeeze for the

primal channels based on Eq. (5). So we give the adaptive

separation strategy shown in Sec. 3 on d, not exceeding 4

as written in Eq. (6).

5



Table 3. Effect of Recursion Depth d. We conduct experiments

on global settings with different d in Comp-VGG16. SSAD

denotes the Separation Strategy with Adaptive Depth.

Model d Params FLOPs Top-1(%)

VGG16 0 14.7M 314M 94.1

Comp-VGG16

1 7.4M 158M 93.0

2 4.3M 100M 92.7

3 2.9M 73M 92.6

4 2.2M 56M 92.0

Ours(w. SSAD) - 3.3M 107M 93.8

In addition, we substitute vanilla convolution at differ-

ent stages to study the relation between d and channels.

According to the four MaxPooling layers in VGG16, we

divide the whole network into five stages. We deploy

CompConv only at the first stage with 64 channels and last

stage with 512 channels to conduct this comparative study.

Comp-VGG16(1) indicates first stage replacement using

CompConv by setting d into different values from {1, 2, 3}
while other regular convolutions keep unchanged. In this

case, d = 1, 2, 3 achieves nearly the same compression

performance, while the Top-1 accuracy for d = 2, 3 is lower

than d = 1 with 0.7%, which supports that the former stages

of the network are less redundant.

When we deploy CompConv with d = 1, 2, 3 only at the

5-th stage, it’s noticed that parameters and FLOPs of the

network decrease greatly, which still maintains considerable

accuracy yet. So we could use CompConv with a larger

d = 3 at the high-dimensional stage to achieve a better

trade-off between computing expense and accuracy. It

reveals that there is more redundancy with larger channels.

Consequently, following Eq. (6), the convolution with larger

channels are equipped with larger recursive depth and vice

versa. Based on an adaptive selection of d described in

Sec. 3.4, our Comp-VGG16 demonstrates more significant

performance than all with global d settings as well as

saving a large amount of parameters and FLOPs. Thus we

adopt the adaptive separation strategy for CompConv in the

following experiments for effectiveness and efficiency.

4.3. Image Classification

After studying the superiority of the proposed Comp-

Conv module for efficient feature learning, we then evaluate

the well-designed CompConv architecture on image clas-

sification, including various datasets including CIFAR-10,

CIFAR-100, and ImageNet.

On CIFAR-10, we use the Comp-VGG16 model men-

tioned in Sec. 4.2 to compare with other competitors. For

ResNet on CIFAR-100 and ImageNet, we conduct exper-

iments by replacing regular convolutions with CompConv

except for the Conv1 before the first MaxPooling. As a

Table 4. Effect of Recursion Depth d on Different Stages. Com-

pConv with different recursive depth d are adopted to the original

VGG-16 at first stage and last stage of VGG-16 independently,

named Comp-VGG16-1s and Comp-VGG16-5s. We use them to

evaluate the effect of recursion depth d on different stages.

Model d Params FLOPs Top-1(%)

VGG16 0 14.7M 314M 94.1

Comp-VGG16-1s

1 14.7M 295M 93.8

2 14.7M 289M 93.1

3 14.7M 287M 93.1

Comp-VGG16-5s

1 8.2M 253M 93.8

2 5.5M 228M 93.7

3 4.3M 216M 93.6

summary of former configurations, we adopt the recom-

mended separation strategy as Eq. (6). Unless specified

otherwise, the training setting is as same as in Sec. 4.1.

Other than the model in full precision, we also integrate

CompConv with a quantized network [33] to show the

generality of CompConv.

4.3.1 VGG on CIFAR-10

We compare our Comp-VGG16 with some state-of-the-art

models, including different types of model compression

approaches. i.e., l1 pruning [22], channel pruning [12],

HRank [23], SSS [17], SBP [12]. In comparison, our

Comp-VGG16 can achieve the best accuracy (only drops

0.3% than the original one) with 3× acceleration and can

save nearly about 5× storage. Specifically, HRank [23] can

achieve the smallest number of parameters, while Comp-

VGG16 saves 39M FLOPs with the 0.4% improvement on

Top-1 accuracy.

4.3.2 Binarized CompConv on CIFAR-10

Except applying our CompConv to replace regular convo-

lution in a full precision model, we also integrate Comp-

Conv with binary methods in XNORNet [33] to show the

effectiveness of CompConv in the lightweight scenario. We

perform the same binarization process as shown in [33] for

vanilla VGG-16, Ghost-VGG16 and our Comp-VGG16 and

make an apple-to-apple comparison with these methods. As

shown in Tab. 6, the binarized CompConv beat binarized

Ghost both in parameters and FLOPs, with nearly 2×
acceleration and storage saving. Though the binarized

model is lightweight enough, there still exists redundancy

of computation cost as pointed by [38], the computation

efficiency of which can also be improved by replacing

regular convolution with our CompConv.
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Table 5. Comparison of state-of-the-art methods for compressing

VGG-16 [36] on CIFAR-10 [20] dataset.

Model Params FLOPs Top-1(%)

VGG16 [36] 15M 314M 94.1

L1-VGG16 [22] 5.4M 206M 93.4

SSS-VGG16 [17] 3.9M 183M 93.0

Ghost-VGG16 [9] 7.7M 158M 93.7

HRank-VGG16 [23] 2.5M 146M 93.4

SBP-VGG16 [22] - 136M 92.5

Comp-VGG16 3.3M 107M 93.8

Table 6. Comparison with convolutional compressing design. We

use another plug-and-play Ghost module [9] to make impartial

comparison using the same binary method [33].

Model Params FLOPs Top-1(%)

Bin-VGG16 1.3M 22.4M 83.8

Bin-Ghost-VGG16 0.9M 11.6M 79.1

Bin-Comp-VGG16 0.3M 6.6M 80.0

4.3.3 ResNet on CIFAR-100

We also apply CompConv on ResNet to verify its capability

of finer classification on CIFAR-100. The samples of

CIFAR-100 are as same as CIFAR-10 but with finer labels.

Here we mainly compare with another similar lightweight

convolutional design Ghost Module.

We replace CompConv in both BasicBlock and Bottle-

Neck respectively in ResNet18 and ResNet50 illustrated

in Fig. 3. According to results listed in Tab. 7, our

CompConv achieves better accuracy (nearly 1%) but around

30% FLOPs reduction than GhostModule. The results listed

in Tab. 5 demonstrates that there is a tiny gap between

the original model and substitute one with CompConv.

Intuitively, CIFAR-100 with finer labels is more difficult

than CIFAR-10, which needs a larger model with more

computation to maintain the feature representation. In spite

of this, we still obtain a good result with 40% FLOPs

and parameters of conventional ResNet at the cost of 3%
performance drop.

4.3.4 ResNet on ImageNet

Finally, We conduct experiments for ResNet-50 on the

challenging ImageNet dataset, comparing with other state-

of-the-art methods. For this network structure, we replace

all convolutions with CompConv as shown in Fig. 3, where

we also take the example of separation strategy using

Eq. (6) as CompConv128.

In order to give a comprehensive comparison on various

FLOPs group, we apply three configurations by setting c0 to

512, 256 and 128 in Eq. (6), which are named as Comp512-

Table 7. Comparison of Ghost-ResNet [9] on CIFAR-100 [20]

dataset. We replace all convolutions in both basic block and

bottleneck with Ghost module and CompConv within ResNet.

Model Params FLOPs Top-1(%)

Res18 11.2M 0.6G 76.4

Ghost-Res18 5.7M 0.3G 72.3

Comp-Res18 3.3M 0.2G 73.1

Res50 23.7M 1.3G 77.4

Ghost-Res50 13.5M 0.7G 74.6

Comp-Res50 12.2M 0.5G 75.5

1×1 Conv

3×3 Conv

1×1 Conv

1×1 CompConv (d)

3×3 CompConv (d)

1×1 CompConv (d)

Bottleneck CompBottleneck (d)

CompBottleneck (1)

CompBottleneck (1)

CompBottleneck (2)

CompBottleneck (3)

×3

×4

×6

×3

Comp128-ResNet50

Figure 3. CompConv-ResNet50

ResNet50, Comp256-ResNet50, Comp128-ResNet50.

Compared with the recent state-of-the-art methods in-

cluding Thinet[31], Versatile filters [37] and Sparse struc-

ture selection [17] in larger FLOPs group, our Comp512-

ResNet50 beats them with 1.3%, 1.6%, 0.9% promotion of

accuracy. Besides, our Comp512-ResNet50 keeps nearly

the same performance as the original ResNet50 with 1.7×
acceleration. When we further set c0 to 256, our Comp256-

ResNet50 has a 0.6% accuracy drop while still obtains

better results than HRank [23] and GhostModule [9] with

nearly the same FLOPs and fewer parameters.

For the lower FLOPs group, our Comp128-ResNet50

achieves the highest accuracy with the lowest FLOPs and

parameters. In contrast, compared methods including ABC-

Prunner [24] , GDP[25], GAL[26] with similar weights or

FLOPs have much lower performance than ours.

All things considered, CompConv provides us with

excellent compact convolutional design for CNN network.

Since we’ve talked thoroughly about the influence of

recursion depth d when using CompConv, we adopt rec-

ommended separation strategy based on Eq. (6) with c0 =
512, 256, 128, 64, 32 to get more results in Fig. 4. This so-

lution gives a dynamic comparison by setting CompConv-

ResNet50 with different computation-consuming levels.

For comparison, we select several state-of-the-art methods

to draw the FLOPs v.s. Top-1 accuracy curve. From an
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Table 8. Comparison of state-of-the-art methods for compressing ResNet50 on ImageNet.

Model Params FLOPs Top-1(%) Top-5(%)

ResNet50 [11] 25.6M 4.1G 76.1 92.9

Versatile-ResNet50 [37] 11.0M 3.0G 74.5 91.8

SSS-ResNet50-32 [17] 18.6M 2.8G 74.2 91.9

Thinet-ResNet50 [31] 16.9M 2.6G 72.1 90.3

Comp512-ResNet50 15.3M 2.4G 75.8 92.8

HRank-ResNet50 [23] 16.2M 2.3G 75.0 92.3

NISP-ResNet50 [40] 14.4M 2.3G - 90.8

Ghost-ResNet50-s2 [9] 13.0M 2.2G 75.0 92.3

Comp256-ResNet50 13.7M 2.1G 75.2 92.3

GDP-ResNet50-0.6 [25] - 1.9G 71.2 90.7

GAL-ResNet50 [26] 19.3M 1.8G 71.8 90.8

ABC-ResNet50 [24] 11.2M 1.8G 73.5 91.5

HRank-ResNet50 [23] 13.8M 1.6G 72.0 91.0

Comp128-ResNet50 8.7M 1.6G 73.7 91.2

Table 9. Results on COCO with Faster-RCNN detector.

Model Params FLOPs mAP

ResNet50 41.5M 207.1G 37.4

Comp512-ResNet50 31.5M 176.3G 37.2

Comp128-ResNet50 30.1M 160.8G 36.6

overall view of Fig. 4, the curve of our CompConv are above

all other methods including SSS[17], Thinet[31], GDP[25]

and GAL[26], ABC-Prunner [24], HRANK [23]. It shows

that our CompConv gains higher accuracy with the same

computation cost. As for the same performance, the model

with our CompConv performs more compact than others.

4.4. Object Detection

In addition to results on classification benchmarks, we

also evaluate our CompConv in object detection on MS

COCO dataset [27]. We deploy our CompConv to the

state-of-the-art detector Faster-RCNN [34] following the

train and inference setting in Sec. 3.4. As shown in

Tab. 9 where the FLOPs are calculated using 800 ×
1333 images following MMDetection [3], our Comp512-

ResNet50 achieve nearly the same performance with lower

computational costs compared with vanilla ResNet50. The

smaller model Comp128-ResNet50 can save 47G FLOPs

and 11.43M parameters cost of a slight drop on mAP.

5. Discussion and Conclusion

To reduce the computational costs of CNN, this paper

presents a novel design denoted as CompConv from per-

spective of the basic convolution unit. It utilizes divide-and-

conquer strategy to simplify transformation of feature maps.

The proposed CompConv is a plug-and-play module for re-

1.0 1.5 2.0 2.5 3.0
FLOPs (×109)

68

69

70

71

72

73

74

75

76
To

p-
1 

(%
)

CompConv
ABCPrunner
HRank
Thinet
GAL
GDP
SSS

Figure 4. Top1-accuracy v.s. FLOPs for ResNet-50 Model on

ImageNet.

placing vanilla convolution without additional restrictions.

Comprehensive experiments conducted on various visual

benchmark models illustrate that our CompConv greatly

save FLOPs and parameters while still keeping a consid-

erable accuracy performance with good transferability. It’s

an efficient convolutional design to make CNNs lighter to

deploy on resources-limited ends.

One important future work direction is to design a more

adaptive and comprehensive solution when applying Com-

pConv to wider network. The recursion depth d accounts

a lot in saving computation and enhancing performance.

Maybe we can use AutoML technology to always find

out the most suitable settings when applying to different

networks. In that way, CompConv would play a stable

role in any convolutional network structures more easily.

Besides, how to deploy the CompConv in a smaller model

i.e. the pruned model or the quantized model to further

compress the network remains an open problem.
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