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1. Appendix
1.1. Distribution of µ, σ2

We first briefly review the classic central limit theorem
(CLT). Suppose {x1, ..., xn} is a sequence of i.i.d. ran-
dom variables with E[xi] = µ abd Var[xi] = σ2. Then
as n → ∞, the random variable xn =

∑n
i=1 xi

n converge in
distribution to a normal N (µ, σ

2

n ). For the mean variable,
we have

µbatch =

∑N
i=1 Wxi
N

.

Here we rewrite the convolution operation in matrix form.
Samples of Wxi in stochastic gradient descent are assumed
to be i.i.d. Note that the running mean and variance in Batch
Normalization layer holds that E[Wxi] = µ and E[(Wxi−
µbatch)

2] = σ2. Then by the central limit theorem, we get

µbatch ∼ N (µ,
σ2

N
).

Similarly, we consider

σ2
batch =

∑N
i=1(Wxi − µbatch)

2

N

and rewrite the σ2
batch as

σ2
batch =

∑N
i=1((Wxi − µ) + (µ− µbatch))

2

N

=
1

N

N∑
i=1

(Wxi − µ)2 +
1

N

N∑
i=1

(µ− µbatch)
2

+
2

N

N∑
i=1

(Wxi − µ)(µ− µbatch)

=
1

N

N∑
i=1

(Wxi − µ)2 +
1

N

N∑
i=1

(µ−
∑N
i=1 Wxi
N

)2

+ 2(µ− µbatch)(

∑N
i=1 Wxi
N

− µ).

∗Equal contribution.

For sufficiently large N and E[Wxi] = µ, we can further
simplify the above equation as

σ2
batch ≈

∑N
i=1(Wxi − µ)2

N
.

By central limit theorem, it holds approximately that

σ2
batch ∼ N (σ2,

Var[(Wxi − µ)2]
N

).

1.2. Model ensemble as a lower bound

We detail the similarity between model ensemble in KL
divergence and the multiple generators/discriminators train-
ing as follow:
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.

It is shown that model ensemble in KL divergence serves
as a “lower bound” for the objective with multiple com-
pressed models. That is to encourage the synthesized im-
ages to be generally “hard” for all compressed models (i.e.,
the large KL divergence corresponds to the disagreement
between full-precision networks and compressed models).


