
Supplementary Material for “Network Space Search for Pareto-Efficient Spaces”

Min-Fong Hong, Hao-Yun Chen, Min-Hung Chen, Yu-Syuan Xu,
Hsien-Kai Kuo, Yi-Min Tsai, Hung-Jen Chen, and Kevin Jou

MediaTek Inc.
{romulus.hong, hao-yun.chen, mh.chen, Yu-Syuan.Xu}@mediatek.com

A. Details of Expanded Search Space

We visualize the detailed structure of Expanded Search
Space in Figure S1. In addition to the stem with input
channel win = 3 and the prediction network with c out-
put classes, the body network consists of 3 stages and each
stage is built by stacking a sequence of identical blocks.
We select the basic residual block [2] as our building block,
which is composed of two consecutive 3 × 3 convolutions
along with a residual connection, illustrated in Figure S2.
For each stage i, the degrees of freedom include the number
of blocks di and block width wi. We consider the settings
of di ≤ 16 and wi ≤ 512, resulting in (16× 512)3 ≈ 1012

possible networks in Expanded Search Space.

B. Derivation of NSS Evaluation

As we assume architectures are uniformly sampled
from the network space, which is sampled by Gumbel-
Softmax [4], during the searching process of Network Space
Search (NSS), we here provide the theoretical proof for this
assumption. The proof is derived as follows:

EA∼PΘ
[L(A)] =

∑
Ai∈A

E[L(A)|Ai]PΘ(Ai)

=
∑
Ai∈A

∑
α∈Ai

L(α)

|Ai|
PΘ(Ai)

=
∑
Ai∈A

Eα∼U,α∈Ai [L(α)]PΘ(Ai)

= EA∼PΘ
[Eα∼U,α∈Ai

[L(α)]]

(S1)

where U denotes the uniform distribution. Since the set of
A is finite, the original expectation E[L(A)] can be ex-
panded into the summation for all possible Ai. The ex-
pected loss E[L(A)|Ai] conditioned on Ai can be further
rewritten based on the conditional expectation by evaluat-
ing the loss of each α in Ai. Moreover, the division of the
cardinality of Ai can be viewed as each L(α) multiplying

Figure S1: Network structure in Expanded Search Space.
Each network consists of a stem (3 × 3 convolution with
w0 = 16 output channels), the network body, and a predic-
tion network (global average pooling followed by a fully
connected layer) predicting output classes. The network
body is composed of 3 stages where each stage is comprised
of a sequence of identical blocks. The block parameter,
depth di, will be discovered by our proposed NSS frame-
work.

the same probability of 1
|Ai| . Therefore, the conditional ex-

pectation is equal to evaluating the expected loss of each α
uniformly sampled from Ai, and our assumption is proved.

C. Efficiency Improvement Techniques

We adopt several techniques to improve the efficiency of
NSS, which can be divided into two aspects, weight sharing
techniques and improving super network weights. We here
provide more implementation details of these techniques.

Weight Sharing Techniques. As Expanded Search Space
includes a wide range of possible network depths and
widths, simply enumerating each candidate is memory pro-
hibited for either the kernels with various channel sizes or
the stages with various block sizes. We first adopt the chan-

1

Figure S2: Basic residual block. We select the basic resid-
ual block as our building block. Each residual block con-
sists of two 3× 3 convolutions, and each convolution is fol-
lowed by BatchNorm [3] and ReLU. The block parameter,
width wi, will be discovered by our proposed NSS frame-
work.

nel masking technique [7] to efficiently search for channel
sizes. With only constructing a single super kernel with
the largest possible number of channels, smaller channel
sizes w ≤ wmax can be simulated by retaining the first w
channels and zeroing out the remaining ones. The masking
procedure achieves the lower bound of memory consump-
tion and more importantly, is differential-friendly. More-
over, the same idea of sharing a portion of the super com-
ponent among various sizes can be applied to the search for
block sizes. A single deepest stage with the largest possible
number of blocks is constructed, and shallower block sizes
d ≤ dmax are simulated by taking the output of dth block as
the output of the corresponding stage.

Improving Super Network Weights. Ensuring super net-
work weights being sufficiently well-trained provides reli-
able performance estimation of each candidate and leads
the searching process to discover promising results. There-
fore, we adopt several warmup techniques [1] to improve
the quality of super network weights. We update network
weights only and disable the searching in the first 25% of
epochs since network weights are not able to provide sta-
ble signals to appropriately guide the searching process in
the early period. In the warmup phase, despite the selected
channel size in each sampling, all the channels of super ker-
nels are randomly enabled with a probability that is linearly
annealed down to 0 over the phase. This filter warmup tech-
nique counteracts the side effects of weight sharing that the
forepart of the super kernel is always trained across dif-
ferent sampled channel sizes while right-most channels are
less updated. For the same reason, we introduce warmup to
block search where all the blocks are as well randomly en-
abled in the warmup phase to guarantee deeper blocks are
equally trained with shallower blocks.

D. Additional Experimental Results

D.1. Hyperparameter Settings

We mostly follow the hyperparameter settings in
DARTS [5], and therefore we only list the adjustments made
for our experiments here. The searching process lasts for
50 epochs where the first 15 ones are reserved for warmup.
The temperature for Gumbel-Softmax is initialed to 5 and
linearly annealed down to 0.001 throughout the searching
process. The batch size is set to 64 to fit in 4 1080Ti
GPUs. The search cost for a single run of the NSS process
is roughly 0.5 days under the above settings, and the subse-
quent NAS performed on Expanded Search Space and Elite
Spaces requires 0.5 days and merely several hours to com-
plete a searching process, respectively.

D.2. Elite Spaces under More FLOPs Regimes

In addition to the FLOPs constraints adopted in the main
context, we here provide experimental results under more
FLOPs regimes that are completely aligned with the set-
tings in [6]. Following the same evaluation procedure, Elite
Spaces are illustrated in Figures S3 and S4. Our NSS
method is demonstrated to sustainably deliver superior Elite
Spaces aligned with the Pareto front even for the most rig-
orous constraint (i.e. 200MF) or the largest complexity (i.e.
32GF).

D.3. Elite Spaces Served as NAS Search Spaces

Next, we perform NAS on the discovered Elite
Spaces from Section D.2 and directly on Expanded Search
Space, targeting several FLOPs constraints mentioned
above. The results are listed in Table 1. It is observed that
our approach outperforms the baseline in obtaining supe-
rior networks and fulfilling the constraints more rigorously
across all FLOPs regimes. Averagely, Elite Space achieves
a lower error rate (4.13% vs. 4.76%), lower deviation (2.8%
vs. 5.6%), and 97.7% fewer samples required to find a sat-
isfactory network (5 vs. 215.6) than the baseline in CIFAR-
10. The same trend can also be observed in CIFAR-100
(2.98% lower error rate, 4.3% lower deviation, and 96.0%
fewer required samples). It is worth noting that the improve-
ment is more obvious under extremely strict constraints. For
example, under the constraint of 400MF constraint in the
CIFAR-100 dataset, the architecture obtained from corre-
sponding Elite Space achieves a 22.94% error rate and 0.5%
deviation from the constraint within merely 5 samples. On
the contrary, the baseline requires 661 samples to reach the
constraint with a higher deviation (5.0%) while still deliver-
ing worse performance (29.86% error rate). Therefore, our
NSS framework is demonstrated to benefit the performance
of NAS by delivering Pareto-efficient Elite Spaces.

2

(a) Complexity 200MF (b) Complexity 400MF (c) Complexity 600MF (d) Complexity 1.6GF

(e) Complexity 3.2GF (f) Complexity 4GF (g) Complexity 6.4GF (h) Complexity 8GF

(i) Complexity 12GF (j) Complexity 16GF (k) Complexity 24GF (l) Complexity 32GF

Figure S3: Elite Spaces evaluation on CIFAR-10.

CIFAR-10 CIFAR-100

Elite Space Expanded Search Space Elite Space Expanded Search Space

Complexity FLOPs (|∆%|) #samples Error FLOPs (|∆%|) #samples Error FLOPs (|∆%|) #samples Error FLOPs (|∆%|) #samples Error

CX 200 MF 183 MF (8.5%) 5 4.98 213 MF (6.5%) 1228 6.83 198 MF (1.0%) 5 27.32 209 MF (4.5%) 470 33.21

CX 400 MF 385 MF (3.8%) 5 5.02 405 MF (1.5%) 976 6.55 398 MF (0.5%) 5 22.94 420 MF (5.0%) 661 29.86

CX 600 MF 571 MF (4.8%) 5 4.57 658 MF (9.7%) 117 6.08 568 MF (5.3%) 5 22.22 628 MF (4.7%) 147 23.48

CX 1.6 GF 1.6 GF (2.3%) 5 3.99 1.6 GF (1.1%) 45 4.33 1.6 GF (0%) 5 20.67 1.6 GF (1.9%) 84 24.45

CX 3.2 GF 3.1 GF (3.7%) 5 3.94 3.4 GF (8.1%) 86 4.51 3.3 GF (2.7%) 5 20.14 2.9 GF (9.6%) 31 25.06

CX 4 GF 3.9 GF (3%) 5 3.85 3.8 GF (4.8%) 57 4.16 4.2 GF (6%) 5 20.21 4.3 GF (7.1%) 9 22.39

CX 6.4 GF 6.4 GF (1.4%) 5 3.92 5.9 GF (7.6%) 18 4.08 6.3 GF (1.8%) 5 19.07 5.8 GF (8.8%) 17 20.74

CX 8 GF 8 GF (0.4%) 5 4.13 7.3 GF (8.7%) 13 4.09 8 GF (0.5%) 5 18.77 7.5 GF (5%) 18 21.41

CX 12 GF 11.8 GF (1.4%) 5 3.98 8.7 GF (6.5%) 14 4.23 12.4 GF (3.3%) 5 19.21 9.3 GF (7.4%) 15 21.47

CX 16 GF 15.8 GF (1.6%) 5 3.82 14.7 GF (8.1%) 12 3.93 16.2 GF (1.3%) 5 19.16 14.5 GF (9.4%) 12 21.21

CX 24 GF 23.8 GF (0.7%) 5 3.65 23.8 GF (0.8%) 15 4.53 23.9 GF (0.3%) 5 19.09 22.2 GF (7.5%) 11 20.71

CX 32 GF 31.3 GF (2.2%) 5 3.78 33.4 GF (4.1%) 6 3.86 32.5 GF (1.6%) 5 19.11 30.6 GF (4.3%) 9 19.65

Average N/A (2.8%) 5 4.13 N/A (5.6%) 215.6 4.76 N/A (2.0%) 5 20.66 N/A (6.3%) 123.7 23.64

Table 1: The comparison of NAS results performed on Elite Spaces and Expanded Search Space.

3

(a) Complexity 200MF (b) Complexity 400MF (c) Complexity 600MF (d) Complexity 1.6GF

(e) Complexity 3.2GF (f) Complexity 4GF (g) Complexity 6.4GF (h) Complexity 8GF

(i) Complexity 12GF (j) Complexity 16GF (k) Complexity 24GF (l) Complexity 32GF

Figure S4: Elite Spaces evaluation on CIFAR-100.

4

References

[1] Gabriel Bender, Hanxiao Liu, Bo Chen, Grace Chu, Shuyang
Cheng, Pieter-Jan Kindermans, and Quoc V. Le. Can weight
sharing outperform random architecture search? an investi-

gation with tunas. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages
14311–14320, 2020. 2

[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770–778, 2016. 1

[3] Sergey Ioffe and Christian Szegedy. Batch normalization: Ac-
celerating deep network training by reducing internal covari-
ate shift. In Proceedings of the International Conference on
Machine Learning (ICML), pages 448–456, 2015. 2

[4] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparam-
eterization with gumbel-softmax. In International Conference
on Learning Representations (ICLR), 2017. 1

[5] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Dif-
ferentiable architecture search. In International Conference on
Learning Representations (ICLR), 2019. 2

[6] Ilija Radosavovic, Raj Prateek Kosaraju, Ross B. Girshick,
Kaiming He, and Piotr Dollár. Designing network design
spaces. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 10425–10433,
2020. 2

[7] Alvin Wan, Xiaoliang Dai, Peizhao Zhang, Zijian He, Yuan-
dong Tian, Saining Xie, Bichen Wu, Matthew Yu, Tao Xu,
Kan Chen, Peter Vajda, and Joseph E. Gonzalez. Fbnetv2:
Differentiable neural architecture search for spatial and chan-
nel dimensions. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages
12962–12971, 2020. 2

5

