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A. Training details
A.1. Gaze Estimation

We used the MPIIGaze dataset [19, 20] that contains
45,000 annotated eye images of 15 persons (3,000 images
per person divided equally between left and right eyes).
We followed the leave-one-person-out evaluation process
similar to the original works [19, 20]. We split the data to
20% validation and 80% training sets (3 randomly selected
persons are held-out for validation and 12 persons for
training). We run each experiment three times with a
different random seed and report average error. We followed
the implementation of original works [19, 20] for training,
and used two existing architectures for student and teacher:
the student is a 4-layer LeNet [9] and the teacher is a 9-layer
PreAct-ResNet [5] trained with MixUp. The models output a
two-dimensional vector that predicts the gaze vector. When
estimating the uncertainty, we use an isotropic Gaussian
N (µ, σI) to model the output distribution. Therefore, the
network output is three-dimensional. We set weight decay to
10−4, learning rate to 10−4 for LeNet and 10−3 for ResNet
that is decayed by a factor of 10 after 30 and 36 epochs. All
models are trained using ADAM optimizer [8] for 40 epochs
with 0.9 momentum and batch-size of 32.

A.2. ResNet-18 on CIFAR100

We followed the same setup as [3] to train the ResNet-18
model [5]. Weight decay is 5×10−4, learning rate is 0.1, and
is decayed by a factor of 5 after 120, 240, and 320 epochs
and the model is trained for 400 epochs. For all experiments,
we use standard random cropping and horizontal flipping
augmentations, and train with Nesterov [12] accelerated
SGD with 0.9 momentum and batch-size of 128.

A.3. PyramidNet-200 on CIFAR100

We use the same training setup as in [17], namely,
PyramidNet [4] initialized with depth 200 and α̃ = 240,
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weight decay of 10−4, learning rate of 0.25 that is decayed by
a factor of 10 after 150 and 225 epochs. For all experiments
we use standard random cropping and horizontal flipping
augmentations and train with Nesterov accelerated SGD for
300 epochs with 0.9 momentum and batch-size of 64.

A.4. BinaryNet on CIFAR100

We implemented Binary-Weight [2, 14] ResNet-18
architecture, where all weights (with the exception of the
first and the last layers) are represented with 1-bit. We use
the binary architecture in [14], and training setup in [10],
namely, weight decay is zero, learning rate is 2 × 10−4

that is decayed by a factor of 10 after 150 and 250 epochs.
For all experiments, we use standard random cropping and
horizontal flipping augmentations and train with ADAM
optimizer [8] for 350 epochs with 0.9 momentum and batch-
size of 128. The implementation is the same as [13].

A.5. ResNet on ImageNet

We use the training setup introduced in [6]: the weight
decay is 10−4 and learning rate is linearly warmed-up during
the first 5 epochs from 0.1 to 0.4, and then decayed to 0 by
a cosine function. For all experiments, we use SGD with
Nesterov with batch-size of 1024, and apply standard data
augmentations during training: random crop and resize to
224×224, random horizontal flipping, color jittering, and
lightening. We resize the images to 256×256 followed by
a center cropping to 224×224 during test. We use 300
epochs to train all models similar to [17]. We use regular
ResNet-50 and ResNet-101 architectures [5] (not the D
variant introduced in [6]). To reduce under-fitting for XCL,
we used 10× smaller weight decay (10−5). Note that using
a reduced weight decay did not help for other methods.

A.6. XCL with GAN-Generated Synthetic Data

Transfer-set using GAN can be generated online or offline.
In the online setting, in every batch, we generate a new set
of images via GAN. This setting is used when GPU memory



is sufficient to generate a batch of samples in parallel with
distillation (e.g. for CIFAR100 benchmark). In the offline
setting, we sample a large dataset using GAN, use the teacher
to obtain soft labels, and store the extended transfer-set to
be used in distillation.

For the XCL-GAN in 2D gaze estimation experiment,
we used the conditional GAN in [15] to sample eye images
with random orientations in offline setting, adding ∼ 485k
examples to the original transfer-set.

For the classification tasks, we used BigGAN [1]
to generate samples when using XCL-GAN. BigGAN
architecture is a conditional GAN, where an embedding
vector vi is trained for each class i. At inference time,
the generative model G gets a latent variable z and an
embedding vector vi to generate a random sample G(z;vi)
from class i. To sample with mixed class vectors (between
two classes i and j) as in Section 4.2, we interpolate the
embedding vectors: v = λvi+(1−λ)vj . We then generate
a mixed sample G(z;v).

In CIFAR100 experiments, we used the online setting.
In ImageNet experiments, we used the offline setting and
sampled a transfer-set of 1M images using mixed-class
labels. At each iteration of the training we sample half
of the samples from the generated transfer-set and the other
half from the original data points.

B. Results of ResNet-50 Training on ImageNet
The results are shown in Table 1. Compared to the

standard KD we observe that XCL obtains 33% reduction in
the teacher-student accuracy gap.

method
val

top-1
val

top-1 gap
val

top-5
V2-A
top-1

V2-B
top-1

V2-C
top-1

ERM 77.3
N/A

93.6 74.5 65.6 79.4
+MixUp [18] 77.8 93.9 74.9 66.4 79.7
+CutMix [17] 78.7 94.3 75.5 66.9 80.2
KD [7] 79.2 2.4 (-) 94.3 75.6 67.3 80.6
XCL-Mix 80.0 1.6 (-33%) 95.0 77.2 68.2 81.3

Table 1: Accuracies (%) of the ResNet-50 model trained on
the ImageNet dataset. Teacher is a ResNet-152-D model
trained with CutMix (top-1 acc. = 81.6%). The std of XCL
val top-1 is ' 0.1.

C. Effect of Teacher Model
In this section, we explore alternative choices of the

teacher τ . We use XCL-Mix with the same training setup
as Section 5.2. We compare alternative choices of teacher
in Table 2. Each teacher is an ensemble of 8 instances of
the given model, trained with different initializations. We
observe a general trend that a more accurate teacher results
in a more accurate student. [11] observed that when teacher

teacher Ĥ
(%)

teacher
top-1 (%)

student
top-1 (%)

ResNet-18 23.4 81.4 80.2 ± 0.1
+LS ε=0.1 44.9 82.5 80.9 ± 0.2
+MixUp 31.0 83.1 81.1 ± 0.2
+CutMix 28.2 84.6 83.1 ± 0.2
Pyr.+CutMix 15.1 87.5 83.8 ± 0.1

Table 2: Analysis of different teachers. Each teacher is an
ensemble of 8 models shown in each row.

is trained with Label Smoothing (LS), it is more accurate,
but can transfer less knowledge to the student. We observe
that using XCL, a teacher trained with LS not only is more
accurate but also trains a more accurate student.

D. Analysis of Student Size
We investigate the effect of student size on the

performance of XCL and other baseline methods. Figures
1a and 1b show the student model accuracy as a function
of model size (changed by scaling the channel widths) for
both a full precision student and a binary quantized student,
respectively. As seen, XCL consistently outperforms ERM
and MixUp augmentation, as well as the standard KD which
uses the empirical distribution as the transfer-set. It is also
worth mentioning that the binary model has a better error-
size trade-off curve compared to the full precision model.

E. Label Smoothing
Label smoothing (LS) [16] with parameter ε replaces

ground truth labels with:

yj = 1− ε if: j is the correct class else:
ε

c− 1
(1)

This method artificially increases label entropy. The results
of ERM training with LS are reported in Table 3. For all
experiments we use the CIFAR100 dataset and ResNet18
architecture as described in Section 5.2. Using ε =
0.1, LS achieves 1.5% improvement over the baseline.
Note that, finding an optimal ε requires extensive hyper-
parameter tuning. XCL naturally obtains smooth labels, and
without hyper-parameter tuning obtains significant accuracy
improvement (by 3.8%) compared to the best LS.

F. Knowledge Distillation with Temperature
Scaling

In KD [7], logits of the student and the teacher are
inversely scaled by a temperature parameter T before
softmax probabilities are computed. This smoothing strategy
can slightly improve the knowledge distillation accuracy
(+1.2% compared to KD without temperature scaling). We
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Figure 1: Test error as a function of student model size for
(a) full-precision and (b) binary training.

ε Ĥ (%) top-1 (%)
0.1 17.0 79.3 ± 0.3
0.18 28.2 78.8 ± 0.2
0.4 54.5 78.0 ± 0.3
0.8 90.7 78.3 ± 0.2

Table 3: Effect of label smoothing on ERM.

T Ĥ (%) top-1 (%)
1 10.5 80.0 ± 0.2

1.5 52.8 79.9 ± 0.3
2 81.2 80.2 ± 0.1
5 99.2 81.2 ± 0.3
10 99.9 81.1 ± 0.3

Table 4: Effect of temperature on KD.

use the CIFAR100 dataset and ResNet18 architecture as
described in Section 5.2. Results are reported in Table 4.

We observe that XCL is not sensitive to temperature
(Table 5). Note that finding an optimal T requires extensive
hyper-parameter tuning. XCL does not require hyper-
parameter tuning, and compared to the best KD with
temperature scaling reduces the accuracy gap by 59%.

T Ĥ (%) top-1 (%)
1 28.2 83.1 ± 0.2

1.5 65.0 83.0 ± 0.1
2 85.8 83.1 ± 0.2
5 99.2 83.2 ± 0.2
10 99.9 83.1 ± 0.1

Table 5: Effect of temperature on XCL.
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