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A. Detailed model architecture of BasisNet
Here we describe the details about the proposed Basis-

Net, including the lightweight model and basis models.

A.1. Lightweight model

For BasisNet-MV2, the lightweight model follows the
architecture described in Table 2 of [8], and we use mul-
tiplier of 0.5 and input image resolution of 128. The
lightweight model has a computation overhead of 30.3M
MAdds and a model size of 1.2M parameters.

For BasisNet-MV3, we use MobileNetV3-small for our
lightweight model as described in Table 2 of [5], and we
use multiplier of 1.0 and input resolution of 128 or 224 for
different experiments. The model size for the lightweight
model is 2.5M parameters regardless of input image reso-
lutions. With 128 × 128 image, the lightweight model has
19.9M MAdds computation overhead, and with 224 × 224
image the computation overhead is 56.5M MAdds.

As described in Sec. 3.1, the lightweight model has two
tasks, one for initial classification prediction and the other
for combination coefficients prediction. The first task is
similar with any regular classification task, and can be for-
mally described as:

ŷ = LM(f(x);WLM) (1)

Note that the two tasks share all but the final classification
head, thus the extra computation for predicting the combi-
nation coefficients is negligible.

A.2. Detailed architectures for different experi-
ments

Here we describe the detail about models in different ex-
periments. Unless stated otherwise, we use the following
settings as default for BasisNet-MV2 and BasisNet-MV3:

• For MobileNetV2 experiments, the first-stage
lightweight model is MobileNetV2 with 0.5x mul-
tiplier and input image resolution of 128 (MV2,

0.5x128) and the second stage has 8 basis models
of MobileNetV2 1.0x with image resolution of 224
(MV2, 1.0x224). Basis models share parameters in
layers from L1 to L10 and final classification layer,
and differ in parameters in L11 to L17.

• For MobileNetV3, the lightweight model is
MobileNetV3-small with 1.0x multiplier and input
image resolution of 128 (MV3-small, 1.0x128). The
second stage has 16 basis models of MobileNetV3-
large with 1.0x multiplier and resolution of 224
(MV3-large, 1.0x224), and they share parameters in
first 7 and last 2 layers, and differ in parameters in L8
to L15.

Comparison with MobileNets (Sec. 4.2) We use
BasisNet-MV2 with 8 bases and the lightweight model is
MV2 (0.5x128). Each basis model is a MV2 (1.0x224) and
they only differ in parameters from L11-17. The basis mod-
els dropout rate is 1/8.

For BasisNet-MV3, we use 16 bases each of a MV3-
large (1.0x224), and the lightweight model is MV3-small
(1.0x128). All basis models share parameters except for in
layers L8-15. The basis model dropout rate is 1/16.

The effect of regularization for proper training (Sec. 4.3)
We use the same model architectures for BasisNet-MV2 and
BasisNet-MV3 with Sec. 4.2.

Number of bases in basis models (Sec. 4.4) We use
BasisNet-MV3 with different number of basis models, but
each is a MV3-large (1.0x224). The lightweight model is
MV3-small (1.0x224) and all basis models share parame-
ters except for layers L11-15. For BasisNet with no more
than 8 bases we use basis model dropout rate of 1/8 and for
all others (16 to 128 bases) we use a basis model dropout
rate of 1/16.
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Comparison with CondConv (Sec. 4.5) For BasisNet-
MV3, we use 16 basis models each of a MV3-large
(1.0x224), and the lightweight model is MV3-small
(1.0x224). All basis models share parameters except for
layers L11-15. The basis model dropout rate is 1/16.

Early stop to reduce average inference cost (Sec. 4.6)
We use the same BasisNet-MV3 model as in Sec. 4.5.

B. Implementations and training hyperparam-
eters

Our project is implemented with TensorFlow [1]. Fol-
lowing [8] and [5], we train all models using synchronous
training setup on 8x8 TPU Pod, and we use standard RM-
SProp optimizer with both decay and momentum set to 0.9.
The initial learning rate is set to 0.006 and linearly warms
up within the first 20 epochs. The learning rate decays ev-
ery 6 epochs for BasisNet-MV2 (4.5 epochs for BasisNet-
MV3) by a factor of 0.99. The total batch size is 16384 (i.e.
128 images per chip). For stabilizing the training, as de-
scribed in Section 3.3 we keep ε = 1 for the first 10K train-
ing steps then linearly decays to 0 in the next 40K steps.
We also used gradients clipping with clip norm of 0.1 for
BasisNet-MV3. In general, all BasisNet and reference base-
line models are trained for 400K steps. We set the L2 weight
decay to 1e-5, and used the data augmentation policy for
ImageNet from AutoAugment [3]. We choose the check-
point from [11] as our EfficientNet-b2 teacher model for
distillation, and for BasisNet-MV3 both lightweight model
and all basis models are trained with teacher supervision.
For BasisNet-MV2, we only distill the basis models but use
the groundtruths labels without label smoothing for training
the lightweight model. For basis models dropout, we use
dropout rate of 1/8 for all BasisNets with no more than 8
bases, and use 1/16 for the rest which has 16 or more bases.
Following [5], we also use exponential moving average with
decay 0.9999 and set the dropout keep probability to 0.8.

C. Comparison with other efficient networks
In Table 1 of our main paper, we show a compari-

son table with recent efficient neural networks on Ima-
geNet classification benchmark. For baselines we directly
use the statistics from the corresponding original papers,
even though the training procedures could be very differ-
ent. Some common tricks in literature include knowledge
distillation♦, training with extra data♥, applying custom
data augmentation♠, or using AutoML-based learned train-
ing recipes (hyperparameters)♣. Different models may
choose subsets of these tricks in their training procedure.
For example, [11] use 3.5B weakly labeled images as extra
data and use knowledge distillation to iteratively train bet-
ter student models. CondConv [12] use AutoAugment [3]

and mixup [13] as custom data augmentation. [10] reported
in a concurrent work that combining AutoAugment and
knowledge distillation can have even stronger performance
boost, because soft-labels from knowledge distillation helps
alleviating label misalignment during aggressive data aug-
mentation. In FBNetV3 [4] the training hyperparameters
are treated as components in the search space and are ob-
tained from AutoML-based joint architecture-recipe search.
OFA [2] use the largest model as teacher to perform knowl-
edge distillation to improve the smaller models. Notably,
in our main paper, unless stated otherwise, we always re-
ported the statistics from our re-implementations, thus the
comparison in our ablation studies are fair, but some results
might be inconsistent with this table. It is also worth men-
tioning that even though we did not explicitly use extra data
for training BasisNet, the teacher model checkpoint that we
used for knowledge distillation is from noisy student train-
ing [11], thus our model may indirectly benefit from the ex-
tra data (thus noted by ♡). However, we also experimented
with 1.4x MobileNet-V2 as teacher model (which is not ex-
posed to extra data) to train BasisNet-MV2, and verified
that the main conclusion still holds.

D. More quantitative experiments
D.1. Detailed comparison with MobileNets (Sec. 4.2)

In Table 1, we show original data of Fig. 3 of the main
paper, so readers can get the exact accuracy numbers more
easily. Specifically, we show the model performance with
different regularizations at 4 different image resolutions
{128, 160, 192, 224} in the last four columns. We com-
pare the data augmentation (Preprocess, regular represents
the Inception preprocess as in [8, 5], and AA represents
AutoAugment from [3]), distillation with different teachers
(MV2 1.4x represents MobileNetV2 with 1.4x multiplier,
EfN-b2 represents EfficientNet-b2 model from [11]), and
basis model dropout.

We experimented with different teacher network to dis-
till the BasisNet. Note that the MobileNetV2 1.4x teacher
we used is from [8] and has accuracy of 74.9%, and our
BasisNet achieves even higher accuracy of 75.4% than the
teacher. We also experimented different variations of Effi-
cientNet (b0, b2, b4, b7) and find that models trained with
EfficientNet-b2 has the best performance, and using even
better teacher network does not bring performance gain to
the BasisNet. We suspect this is related to the gap between
teacher and student network as reported in [6].

D.2. Detailed experiments for number of bases in
basis models (Sec. 4.4)

In Table 2, we present the original data for Fig. 4 of
the main paper, so readers can get the exact accuracy num-
bers more easily. Notably, we find that BasisNet-MV3 with
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Table 1. Detailed comparison of BasisNet-MV2 with MobileNetV2.

Model Preprocess Distillation # Bases (BMD) 128 160 192 224

MobileNetV2 regular None N/A 66.6 69.5 71.5 72.9
MobileNetV2 AA None N/A 67.8 70.7 72.7 73.7
MobileNetV2 AA MV2 1.4x N/A 68.8 71.4 72.4 73.1
MobileNetV2 AA EfN-b2 N/A 69.8 72.6 73.8 74.9
BasisNet-MV2 regular None 8 (0) 68.6 71.4 73.3 74.7
BasisNet-MV2 AA None 8 (0) 70.4 72.8 74.6 75.6
BasisNet-MV2 regular EfN-b2 8 (0) 71.8 74.8 76.2 77.2
BasisNet-MV2 regular None 8 (1/8) 69.1 71.9 73.7 75.0
BasisNet-MV2 AA None 8 (1/8) 70.9 73.2 75.1 75.9
BasisNet-MV2 AA MV2 1.4x 8 (1/8) 72.3 73.8 74.7 75.4
BasisNet-MV2 AA EfN-b2 8 (1/8) 73.5 75.9 77.0 78.1

Table 2. Detailed comparison of BasisNets with different number
of bases.

Model #MAdds(M) #Params(M) Acc.(%)

MV3 (1.0x224) 217 5.45 77.7
MV3 (1.25x224) 356 8.22 79.7
MV3 (1.5x224) 489 11.3 80.6
MV3 (2.0x128) 276 19.1 79.2
MV3 (2.5x128) 435 29.0 80.4

#Bases=1 273 8.07 77.7
#Bases=2 274 9.19 78.0
#Bases=4 277 11.4 78.8
#Bases=8 281 15.9 79.6
#Bases=16 290 24.9 80.3
#Bases=32 308 42.8 80.5
#Bases=64 344 78.6 80.7
#Bases=128 416 150.3 80.9

16 bases is a good balance between model accuracy and
computation budget, achieving 80.3% top-1 accuracy with
290M Madds. This table also shows that BasisNet tech-
nique optimizes MAdds at the expense of model size.

D.3. Model synthesis with varying sized lightweight
model

We studied the performance of BasisNet with
lightweight model of different size. Here the size is
measured by the Multiply-adds (MAdds) as we pay more
attention to the inference cost. We experimented with a
BasisNet-MV3 of MV3-large (1.0x224) with 8 bases. The
lightweight model is MV3-small, and we experimented
with two hyperparameters, i.e. the input image resolution
to lightweight model ({128, 160, 192, 224}) and the
multiplier ({0.35, 0.5, 0.75, 1.0}). As shown in
Figure 1, even an extremely efficient lightweight model
(MV3-small (0.35x128), computation overhead of 13.8M
Madds) can lead to a performance boost from 77.7% to
78.9% (+1.2%). This experiment shows that resolution

Figure 1. BasisNet-MV3 with lightweight model of different sizes
(#MAdds).

and multiplier can have an equivalent effect as reported in
[7] and a lightweight model with a smaller computation
overhead can bring most of the performance gain. Thus it
might be more beneficial to scale the model multiplier and
resolution coordinately [9].

D.4. Model synthesis with early termination

To better understand the capability of the lightweight
model and the synthesized specialist, we split the 50K vali-
dation images into multiple buckets according to the sorted
highest probability, and show the accuracy of different mod-
els for each bucket in Figure 2. Specifically, we show
the accuracy within each bucket by the lightweight model,
synthesized specialist model and a reference MobileNetV3
baseline. We observe that for at least one third of images
where lightweight model has high prediction confidence,
the accuracy gaps between these three models are negligible
(< 1%). The BasisNet has clear advantage over MobileNet
in all buckets, especially for more difficult (low confidence)
cases.

3



Figure 2. Prediction accuracy is comparable for more confident
predictions (e.g. top 40%), and the synthesized specialist consis-
tently outperforms regular MobileNet in all buckets.

E. More qualitative visualizations

E.1. Top categories handled by different basis mod-
els

In Figure 3 we show several most strongly activated cat-
egories for four different basis models on ImageNet vali-
dation set. Specifically we trained BasisNet-MV3 with 16
bases, and checked the mean weights at the last non-sharing
layer (L15) and show the categories that have the highest
mean weights. It is clear that the lightweight model cap-
tures the fine-grained visual similarity, for example the base
2 seems to handle the fluffy dogs while the base 14 is more
about short-haired dogs. Another example is for base 13
that a clear grid pattern can be found in the images, but se-
mantically these categories are loosely related.

E.2. Combination coefficients for visually similar
categories

In Figure 4 we show 10 categories regarding different
types of cars and the mean predicted combination coef-
ficients for these categories in all layers. Obviously the
lightweight model assigns similar coefficients for various
cars, implying the effectiveness of the lightweight model.
For example, we see that in Layer 14 almost all cars are re-
lying on base 8, and in L15 all cars use a combination of
base 3 and base 6. Quantitatively BasisNet over these 10
categories have an accuracy of 76.6%, but a corresponding
regular MobileNetV3 has only 73.2%.
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Figure 3. Categories with highest mean coefficients for different basis models.

Figure 4. Visualization of predicted combination coefficients for similar categories over all layers.
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