
Combining Weight Pruning and Knowledge Distillation For CNN Compression

Nima Aghli

Florida Institute of Technology

150 W University Blvd, Melbourne, FL 32901

naghli2014@my.fit.edu

Eraldo Ribeiro

Florida Institute of Technology

150 W University Blvd, Melbourne, FL 32901

eribeiro@fit.edu

Abstract

Complex deep convolutional neural networks such as

ResNet require expensive hardware such as powerful GPUs

to achieve real-time performance. This problem is criti-

cal for applications that run on low-end embedded GPU

or CPU systems with limited resources. As a result, model

compression for deep neural networks becomes an impor-

tant research topic. Popular compression methods such as

weight pruning remove redundant neurons from the CNN

without affecting the network’s output accuracy. While

these pruning methods work well on simple networks such

as VGG or AlexNet, they are not suitable for compressing

current state-of-the-art networks such as ResNets because

of these networks’ complex architectures with dimension-

ality dependencies. This dependency results in filter prun-

ing breaking the structure of ResNets leading to an untrain-

able network. In this paper, we first use the weight pruning

method only on a selective number of layers in the ResNet

architecture to avoid breaking the network structure. Sec-

ond, we introduce a knowledge distillation architecture and

a loss function to compress the untouched layers during the

pruning. We test our method on both image-based regres-

sion and classification networks for head-pose estimation

and image classification. Our compression method reduces

the models’ size significantly while maintaining the accu-

racy very close to the baseline model.

1. Introduction

Deep-learning algorithms are currently the major pro-

ducer of state-of-the-art results for computer-vision prob-

lems such as object detection [22, 23, 24], image classifica-

tion [13, 9], and image segmentation [4, 5].

Despite their remarkable accuracy, most state-of-the-art

CNNs are both computationally expensive and memory de-

manding. For instance, deep CNN architectures such as

ResNets [9] have millions of parameters that require expen-

sive hardware such as GPUs with a large amount of memory

and parallel-computation capabilities if real-time inference

is expected.

Different methods have been proposed to reduce the

computational complexity of CNNs while maintaining the

compressed network’s accuracy similar to that of the orig-

inal model. Leng et al. [20] proposes a weight quantiza-

tion algorithm to compress CNNs by quantizing each full-

precision weight in the network to a small number of bits.

Hinton et al. [10] introduces the teacher-student knowledge

distillation (KD) method, where a deeper teacher network

distills the knowledge of its feature maps to a smaller stu-

dent network. Additionally, different weight-pruning meth-

ods have been proposed [12, 8], where neurons that do not

contribute to the model’s prediction are removed.

In this paper, we propose a network-compression method

for deep CNNs by combining weight pruning via activa-

tion analysis [12] and knowledge distillation. To demon-

strate our approach, we apply the compression method to a

head-pose estimation regression network and to an image-

classification network without any significant loss of ac-

curacy over the original uncompressed network. We also

compare inference time of the compressed networks on a

PC, embedded GPUs, and embedded ARM CPU. Finally,

we compare the compressed head-pose model’s robustness

against occlusion, motion-blur, and brightness changes.

2. Related Work

Early and shallow networks have been largely outper-

formed by deeper and wider networks with complex archi-

tectures as these networks can capture more complex fea-

tures. However, most deeper networks suffer from signifi-

cant redundancy [6] as many network neurons have no con-

tribution to the prediction while still consuming memory

and computation. Such redundancy can be reduced by prun-

ing neurons based on their numerical properties. In general,

network trimming methods are divided into connection and

weight-pruning categories. Han et al. [8] propose a model-

compression method as an iterative approach that prunes

the connections from the weights with near-zero values fol-

lowed by weight quantization. Instead of pruning connec-

tions, Hu et al. [12] propose an iterative neuron pruning

as they show that connection pruning does not bring large

improvements on GPUs since convolutional operations in

GPUs are converted from 2-D to 1-D vectors followed by

matrix multiplication. Hence, when pruning connections

instead of neurons, the multiplications stay the same.

Knowledge distillation is another approach to compres-

sion that transfers useful feature representation from a

teacher network to a student network that has less pa-

rameters, and then fine-tunes the student network after

knowledge distillation. The teacher-student knowledge-

distillation method was first proposed by Hinton et al. [10]

for classification networks by introducing a distillation loss

that uses the softened output of the softmax layer in the

teacher network. One of the main challenges with the pro-

posed method was its reduced performance when applied

to very deep networks. Additionally, the proposed softened

softmax loss was only applicable to classification tasks. To

address these issues, Romero et al. [25] used an intermedi-

ate representation of the teacher model as a hint in addition

to the output layer, which improved performance when dis-

tilling knowledge from deeper teacher networks. Yim et

al. [32] applied knowledge distillation to the ResNet archi-

tecture by minimizing the L2 loss of Gramian [7] feature

matrix in the ResNet modules between teacher and student.

Currently, proposed weight-pruning methods are applied

to basic CNN architectures such as AlexNet [19] and VGG

[27]. The deeper state-of-the-art models, such as ResNets

[9], have complex architectures that limit the application

of pruning methods on them. In this paper, we focus

on compressing ResNet architectures as they are vastly

used in current state-of-the-art classification and regression

computer-vision tasks. Our compression method applies to

all ResNet-based models.

Our main contributions are threefold: (1) We propose

a new weight-pruning strategy for the ResNet architecture

inspired by zero-activation pruning [12]. (2) We propose a

new knowledge-distillation architecture by using the pruned

model as a teacher. (3) We Introduce a new distillation loss

to transfer knowledge from the teacher to the student model.

Finally, we validate our proposed method by compressing

ResNet-based image regression and classification networks.

3. Method

Our method has two main steps: 1) Pruning the baseline

network by activation analysis to remove neurons that do

not contribute to prediction output. 2) Performing knowl-

edge distillation from the pruned (teacher) network to a

smaller (student) network to achieve further compression.

3.1. Pruning ResNets with zero activation analysis

As our focus is the real-time inference on GPUs,

and neuron pruning has shown effectiveness in reducing

GPU computation, we have employed the iterative weight-

pruning method from [12] with some differences. First,

Hu et al. [12] applies their method to relatively simple and

shallow networks such as VGG-16 [27] and LeNet [19].

Instead, we apply pruning to deeper and more complex

ResNet architecture. The main challenge with pruning neu-

rons from the ResNets is the dimensionality dependency

between some layers to the layers in the previous resid-

ual blocks. Residual blocks are the main building parts of

ResNets and consist of a residual connection from the pre-

vious residual block to the last layer of the current block,

followed by an add operation between them. As a result,

pruning any layers with such a dependency results in each

side of the add operation to have different dimensions and

hence, making the model untrainable. Figure 1 shows the

internal architecture of two different residual blocks with

prunable and un-prunable layers colored in yellow and red,

respectively.

Res Block X-1

Conv
Batch Norm

Relu

Conv
Batch Norm

Relu

Conv
Batch Norm

Conv
Batch Norm

Add
Relu

Res Block X+1

Re
s B

loc
k X

Res Block X-1

Conv
Batch Norm

Relu

Conv
Batch Norm

Relu

Conv
Batch Norm

Add
Relu

Res Block X+1

Re
s B

loc
k X

Figure 1. Two different residual blocks in our ResNet50 model.

Conv layers in red show un-prunable layers. (left) Residual block

with identity connection only. (right) Residual block with addi-

tional 1× 1 convolution for dimensionality reduction.

Second, Hu et al. [12] apply pruning to a small num-

ber of layers in the model as they point outs that pruning

too many neurons from multiple layers at one step will re-

duce the model’s performance so much that it cannot be re-

covered with fine-tuning. In this paper, we show that by

skipping unprunable layers in the pruning process, we can

remove a large number of filters from multiple layers where

the fine-tuning step can recover the model’s accuracy on the

validation-set to be close to that of the baseline model.

To calculate the importance of any neuron in prun-

able layers, we calculate the Average Percentage of Zeros

(APoZ) [12] for activation output of each neuron for all

the samples in the validation-set. Given a prunable layer

PLi = {i = 1, 2, 3, . . . , n}, where n is the total number of

prunable layers in the network, we calculate the importance

of the convolutional filter c in layer i as follows:

PL(i)
c =

∑N

k=1

∑M

j=1 f(PL
(i)
cj (k))

N ×M
, (1)

where M and N are the total number of validation samples

and dimension of the output feature map in the channel c

respectively and f is calculated as follows:

f(·) =

{

1, if f(PL
(i)
cj (k)) = 1

0, if f(PL
(i)
cj (k)) = 0.

(2)

The pruning process starts by calculating neuron’s im-

portance in all prunable layers using Equation 1. If the

APoZ of the neuron is larger than the standard deviation of

the average APoZs in the same layer, both the neuron and its

connections are removed. Once the pruning of all layers is

completed, the network is fine-tuned to recover the original

accuracy using the baseline model’s training configuration.

We repeat the process until the network accuracy drops sig-

nificantly after the iteration.

3.1.1 Knowledge distillation from pruned network to

student

One of the challenges with the current KD methods is that

the number of layers and neurons in the student network is

selected arbitrarily. In other words, it is not guaranteed that

the student network will not have redundancy in the layers

after KD. As a result, the student network can not be con-

sidered entirely compressed. We use the pruned model as a

teacher instead of the vanilla model in our proposed distil-

lation method. This way, we can ensure that the distillation

method will not transfer the student model’s possible redun-

dancies. However, as the pruning method could not prune

neurons from the un-prunable layers, we reduce the size of

those layers in the distillation process by reducing them by

a ratio in the student network. As a result, the number of

parameters in the student network drops significantly com-

pared to the teacher network.

KD methods that use intermediate layer representation

tend to distill the knowledge from the first and the last sec-

tion of the residual block [7] or use the teacher’s middle-

layer as a hint [25]. In practice, deeper layers in the network

learn the complex features, where the shallow layers learn

the simple features. Since the complex features are hard

to learn, we distill layer-wise knowledge from the teacher

network’s last pruned layers and let the student learn the

simple features during the KD process. Our proposed ap-

proach teaches the student network to minimize the cosine

similarity between deep layers and the prediction layer with

respect to the teacher’s layers. Figure 3 shows the complete

architecture of our proposed KD method on ResNet50 net-

work for head-pose estimation.

To distill the knowledge of the teacher’s layers to the

student’s layers, we propose a new loss function. Given

a teacher network, T , and student, S, we minimize the fol-

lowing distillation loss:

CDL =

M
∑

i=1

~Ti · ~Si

||~Ti|| ||~Si||
+ λ

~To · ~So

|| ~To|| || ~So||
, (3)

where M is the number of the intermediate KD layers in

the teacher network and ~To and ~Do is the output layer of

the network. For regression network the output vector is

regression layer and for classification is the softmax layer.

λ is a hyper-parameter to define the importance of the final

prediction in last layer over the total loss. In this paper, we

set M to 9 and λ to 1.

Knowledge distillation is a two-step process that starts

by freezing the teacher network’s layers and feeding a batch

of the input samples from the training images to both net-

works. Then, it calculates the loss based on the distillation

loss defined in the Equation 3 and back-propagate the error

only on the student network.

Figure 2. Number of pruned neurons at each step in different layers

of the baseline model. Deeper layers show a higher rate of average

zero activation larger than 90% during pruning.

4. Experiments

We evaluated our compression method on image-based

classification and regression networks. For regression, we

compressed a 3D head-pose estimation model trained on the

ResNet50 [9] network. For classification, we compressed

an image-classification network trained on ResNet110 and

ResNet164. We used Keras1 for implementation.

4.1. Optimizer

We used the stochastic gradient descent (SGD) [1] with

momentum 0.09 for training the baseline networks and

fine-tuning the pruned baselines and student networks after

1https://keras.io/

C
onv_4_2_1 (153)

C
onv_4_2_2 (242)

C
onv_4_2_3 (1024)

C
onv_4_3_1 (214)

C
onv_4_3_2 (128)

C
onv_4_3_3 (1024)

C
onv_4_4_1 (213)

C
onv_4_4_2 (110)

C
onv_4_4_3 (1024)

C
onv_4_5_1 (92)

C
onv_4_5_1 (13)

C
onv_4_5_3 (1024)

C
onv_4_6_1 (13)

C
onv_4_6_2 (38)

C
onv_4_6_3 (1024)

C
onv_5_1_1 (135)

C
onv_5_1_2 (61)

C
onv_5_1_3 (2048)

C
onv_5_2_1 (162)

C
onv_5_2_2 (31)

C
onv_5_2_3 (2048)

C
onv_5_3_1 (28)

C
onv_5_3_2 (353)

C
onv_5_3_3 (2048)

FC
1 512

FC
2 128

Yaw
Pitch

R
oll

D(2048)

C
onv_4_1_1(33)

C
onv_4_1_2 (152)

C
onv_4_1_3 (1024)

R
es Block #2

R
es Block #1

D(2048)

C
onv_4_2_1 (153)

C
onv_4_2_2 (242)

C
onv_4_2_3 (32)

C
onv_4_3_1 (214)

C
onv_4_3_2 (128)

C
onv_4_3_3 (32)

C
onv_4_4_1 (213)

C
onv_4_4_2 (110)

C
onv_4_4_3 (32)

C
onv_4_5_1 (92)

C
onv_4_5_1 (13)

C
onv_4_5_3 (32)

C
onv_4_6_1 (13)

C
onv_4_6_2 (38)

C
onv_4_6_3 (32)

C
onv_5_1_1 (135)

C
onv_5_1_2 (61)

C
onv_5_1_3 (64)

C
onv_5_2_1 (162)

C
onv_5_2_2 (31)

C
onv_5_2_3 (64)

C
onv_5_3_1 (28)

C
onv_5_3_2 (353)

C
onv_5_3_3 (64)

FC
2 128

Yaw
Pitch

R
oll

D(64)

C
onv_4_1_1(33)

C
onv_4_1_2 (152)

C
onv_4_1_3 (32)

C
onv 7x7

D(32)

6X Res Block #3 3X Res Block #4

C
os

 L
os

s

C
os

 L
os

s

C
os

 L
os

s

C
os

 L
os

s

C
os

 L
os

s

C
os

 L
os

s

C
os

 L
os

s

C
os

 L
os

s

C
os

 L
os

s

6X Res Block #3 3X Res Block #4

Te
ac

he
r N

et
w

or
k

St
ud

en
t N

et
w

or
k

C
onv 7x7

Input
Image

4x3x
R

es Block #1

R
es Block #2

4x3x

C
os

 L
os

s

CDL =

Figure 3. KD architecture of our proposed method. The red layers show the layers that are ignored during the weight pruning process and

have the same filter size as the baseline network. The numbers in the parenthesis show the number of filters in each layer. Layers labeled

as D are 1x1 dimensionality reduction layers as shown in more details in Figure 1.

knowledge distillation. We used Hyperbolic-Tangent Decay

(HTD) [11] as our learning-rate scheduler. For fine-tuning

the pruned pose-estimation network at each iteration, we

used a learning rate of 0.001 for 20 epochs, and for im-

age classification, we used a learning rate of 0.01 for 200

epochs.

The pose-estimation student network was fine-tuned

with a learning rate of 0.1 for 100 epochs, and the student

image classifier was fine-tuned with a learning rate of 0.001

for 200 epochs. The end learning-rate in HTD scheduler for

all experiments was 0.

We used Adam [15] optimizer with an initial learning

rate of 0.1 and scheduling of the learning rates to 0.01,

0.001, 0.0001, and 0.00001 after epoch 20, 45, 55, and

65, respectively, for 85 epochs in the knowledge-distillation

process.

4.2. Head­pose estimation

The head-pose estimation baseline network was trained

on ResNet50 network with two dense layers of size 512 and

128 and a linear layer of size 3 for Yaw, Pitch, and roll

estimation at the end of the network. The weights of the

network were initialized from the face-recognition network

[3]. The input size of the baseline network is 224 × 224
colored images. The baseline was trained on the 300W-LP

[33] dataset with image augmentation. All images in the

dataset were duplicated and then augmented with random

zoom, cropping, and brightness change. For fine-tuning the

pruned network at each pruning iteration, we used the same

augmented version of 300W-LP and tested on AFLW2000

[33]. The AFLW2000 is a challenging test-set for evaluat-

ing head-pose estimation models. It includes ground-truth

3D faces as well as 68 facial-landmarks and head-pose val-

ues in yaw, pitch, and roll from the first 2000 images in

the AFLW [16] dataset. Unlike the synthesized images in

the 300W-LP, the images in the AFLW2000 were gathered

from the wild and undergo various illumination and trans-

formations. In addition to testing on AFLW2000, we cre-

ated three versions of AFLW2000 to test the robustness

of the compressed network against motion blur, brightness

change, and random cropping of the images as follows:

• AFLW2000-MB. Images in the AFLW2000 are con-

volved with blur kernel of size 25× 25.

• AFLW2000-LB. The brightness of the images in the

AFLW2000 is reduced with the delta value of −0.4.

• AFLW2000-OC. Random rectangular black patches

of size 35 × 35 pixels are applied to the images in the

AFLW2000. Table 4 shows 3 different examples from

augmented versions of AFLW2000.

4.3. Results

We pruned the prunable layers from the baseline head-

pose estimation network for 16 steps. Figure 2 shows the

number of pruned neurons for each layer at each pruning

step. The results show that the majority of redundancy in

the neurons occurs in the first and deeper layers. After fine-

tuning the network in the 16-th step, we use it as a teacher

network in our knowledge distillation network.

Table 1. Comparisons with state-of-the-art on AFLW2000.

Size Yaw Pitch Roll MAE

Dlib (68 points) [14] - 23.1 13.6 10.5 15.8
FAN (12 points) [2] 183 6.36 12.3 8.71 9.12
Landmarks [26] - 5.92 11.86 8.27 8.65
3DDFA [33] - 5.40 8.53 8.25 7.39
Hopenet [26] 95.9 6.47 6.56 5.44 6.16
SSR-Net-MD [30] 1.1 5.14 7.09 5.89 6.01
FSA-Caps [29] 5.1 4.50 6.08 4.64 5.07

ResNet-50 (Baseline) 99.2 4.38 4.85 3.44 4.22

ResNet-50 (Teacher) 32.6 5.38 5.69 4.19 5.03

ResNet-50 (Student-Distilled) 4.9 5.89 5.63 4.28 5.25

ResNet-50 (Student-Scratch) 4.9 6.95 6.19 4.62 5.90

The student network was initialized with random

weights and has the same number of filters in each layer as

the teacher network. However, the un-prunable (untouched)

layers in the student are divided by 32 in all layers in the

student network.

We compared the accuracy, the number of parameters,

and the final student model’s size with the state-of-the-

art head-pose estimation models trained on the same train-

ing/testing protocol.

To show the effectiveness of distilling knowledge from

teacher to student, we also trained the same student net-

work without distillation. Table 1 shows the accuracy and

compression achieved by our method compared to the state-

of-the-art. The results show that our compressed pose-

estimation model achieves similar results to the state-of-the-

art. However, the network in [29] was trained on images of

size 64× 64 to achieve a smaller model size.

Since we have compressed the network with the input

size of 224×224 and the larger images represent more infor-

mation about the subject, the network should perform bet-

ter against alterations in the input image such as occlusion

or motion blur. To make a fair comparison, we tested the

augmented version of AFL2000 on our compressed model

and state-of-the-art model [29]. Additionally, we tested the

student (Student-DS) network on downsampled to 64 × 64
version of augmented AFLW2000. Table 2 shows the test re-

sults of the student network on the augmented AFLW2000

as well as the downsampled version where our compressed

model outperformed [29] in all versions.

4.4. Image Classification

In the second experiment, we used the Cifar10 [17]

image-classification dataset. Cifar10 has ten image classes

with a total of 50k training and 10k testing images. Here,

we trained two ResNet baseline networks (ResNet-110 and

ResNet-164) and pruned them for 6 iterations. The pruned

networks were used as a teacher in the distillation configu-

ration. The un-prunable layer size was selected in the stu-

Figure 4. Examples of random occlusion, brightness and motion-

blur applied to images in AFLW2000.

dent network by dividing their size in the teacher network

by 2. The prunable layer size between the teacher and the

student remained the same. Table 3 shows the compres-

sion result on ResNet-110 and ResNet-164. Our method

achieved 4.7 and 3.36 compression rates on ResNet-110 and

ResNet-164, respectively while the accuracy only dropped

by 1%. Additionally, in Table 4 we compare the compres-

sion results on ResNet-110 to different compression meth-

ods where the results indicate that our method achieves

higher compression rate. Note that in FSNET [31], we only

compared to pre-quantization results since weight quantiza-

tion can be applied to all the networks.

Additionally, we compared our compression method

with the TensorFlow Model-Optimization Toolkit

(TFMO)2. We test all the models on a ARMv7 processor on

a Raspberry Pi2 board.

Table 5 shows a comparison of the baseline model op-

timized with TFMO and our compression method. While

the TFMO archives a 4× size and a 2× computation effi-

ciency, the accuracy of the optimized model drops signif-

icantly. Our compressed model shows significantly better

results, while the estimation accuracy stays close to that of

the baseline model.

4.5. Inference­time comparison

We compared the inference speed-up achieved by our

model-compression approach with the baseline head-pose

estimation model. We also compared the results to FSA-Net

2https://www.tensorflow.org/model optimization

Table 2. Comparisons with state-of-the-art on AFLW2000 with Occlusion, Motion-Blur and Low Brightness.

Motion Blur Low Brightness Random Occlusion

FSA-Net [29]

Caps-Fusion
Student
(ours)

Student-DS
(ours)

FSA-Net [29]

Caps-Fusion
Student
(ours)

Student-DS
(ours)

FSA-Net [29]

Caps-Fusion
Student
(ours)

Student-DS
(ours)

Yaw 21.90 12.97 11.56 7.80 8.41 8.75 8.57 8.23 8.62

Pitch 11.07 8.83 8.73 7.28 6.91 7.09 7.87 8.02 8.36

Roll 11.05 7.48 7.12 6.11 5.43 5.65 7.05 6.27 6.4

MAE 14.67 9.76 9.13 7.06 6.91 7.16 7.83 7.5 7.79

Table 3. Compression results on Cifar10

Model Accuracy #Params CR Rate

ResNet-110 (Baseline) 94.27 1.74M -

ResNet-110 (Teacher) 94.04 0.75M 2.32

ResNet-110 (Student-Distilled) 93.0 0.37M 4.7

ResNet-110 (Student-Scratch) 90.0 0.37M 4.7

ResNet-164 (Baseline) 94.52 2.62M -

ResNet-164 (Teacher) 94.30 1.44M 1.81

ResNet-164 (Student-Distilled) 93.7 0.72M 3.63

ResNet-164 (Student-Scratch) 89.6 0.72M 3.63

Table 4. Cifar10 compression comparison on state-of-the-art

Model Accuracy #Params CR Rate

ResNet-110 (Baseline) 94.27 1.74M -

ResNet-110-Student (Ours) 93.0 0.37M 4.7

ResNet-110- Filter pruning [21] 93.30 1.16M 1.5

ResNet-110- FSNET [31] 93.81 0.44M 3.97

Table 5. Comparison between baseline model compressed with our

method and TFMO.

Model name MAE Size (MB) Inference(sec)

ResNet-50 (Baseline) 4.77 98 MB 2.5
ResNet-50 (TFMO) 24.4 24.7 MB 1.3
ResNet-50 (Student)(Ours) 5.25 4.9 MB 0.4

since it is the state-of-the-art head-pose estimation model

from the accuracy and network complexity perspectives.

To further compress our model, we also applied a 16-bit

weight quantization [28] to the distilled student model using

TensorRT 3. The test was applied to different PC and low-

power embedded GPUs. Table 6 shows the results of run-

ning models on different machines where our compressed

model archives the lowest inference time while maintaining

the state-of-the-art results on the AFLW2000.

3https://developer.nvidia.com/tensorrt

Table 6. Inference time comparison in seconds.

Model name GTX1050Ti Jetson Nano Jetson Xavier

FSA-Net [29] 0.01 0.08 0.04

ResNet-50 (Baseline) 0.07 0.22 0.03

ResNet-50 (Student) 0.02 0.04 0.02

ResNet-50 (Student)16 0.004 0.008 0.005

5. Conclusion

In this paper, we proposed a compression method for

network architectures such as ResNets. First, we showed

that the ResNet networks’ neurons could be pruned only on

specific layers. Second, we showed that our knowledge-

distillation architecture and loss function reduce the num-

ber of weights that could not be pruned due to dimension-

ality dependencies. Our compression approach works on

ResNet-based regression and classification networks.

We used ResNet50 head-pose estimation network for

regression tasks. For classification, we used ResNet-110

and ResNet-164. While we achieved similar results in the

head-pose estimation network to the state-of-the-art on both

model size and accuracy, we showed that our compressed

head-pose estimation model outperforms the state-of-the-

art on heavily occluded test images. In image classification

networks, we achieved similar results to the state-of-the-art

accuracy but outperformed on the compression rate.

Finally, as the primary goal of compression is real-time

inference on low-end systems, we compared the inference

time on multiple embedded GPU and CPU boards. The re-

sults presented in this work show the possibility of deploy-

ing large Convolutional Neural Networks in low-cost em-

bedded computers for real-world application in the industry.

In this paper, we focused mainly on the ResNet architec-

ture. In future work, we plan to apply the method to dif-

ferent architectures, and also on networks trained on larger

image datasets such as Cifar100 [17] and ImageNet [18].

References

[1] Léon Bottou. Large-scale machine learning with stochastic

gradient descent. In Proceedings of COMPSTAT’2010, pages

177–186. Springer, 2010. 3

[2] Adrian Bulat and Georgios Tzimiropoulos. How far are we

from solving the 2d & 3d face alignment problem?(and a

dataset of 230,000 3d facial landmarks). In Proceedings

of the IEEE International Conference on Computer Vision,

pages 1021–1030, 2017. 5

[3] Q. Cao, L. Shen, W. Xie, O. M. Parkhi, and A. Zisserman.

Vggface2: A dataset for recognising faces across pose and

age. In International Conference on Automatic Face and

Gesture Recognition, 2018. 4

[4] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,

Kevin Murphy, and Alan L Yuille. Semantic image segmen-

tation with deep convolutional nets and fully connected crfs.

arXiv preprint arXiv:1412.7062, 2014. 1

[5] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,

Kevin Murphy, and Alan L Yuille. Deeplab: Semantic image

segmentation with deep convolutional nets, atrous convolu-

tion, and fully connected crfs. IEEE transactions on pattern

analysis and machine intelligence, 40(4):834–848, 2017. 1

[6] Misha Denil, Babak Shakibi, Laurent Dinh, Marc’Aurelio

Ranzato, and Nando De Freitas. Predicting parameters in

deep learning. In Advances in neural information processing

systems, pages 2148–2156, 2013. 1

[7] Leon A Gatys, Alexander S Ecker, and Matthias Bethge.

A neural algorithm of artistic style. arXiv preprint

arXiv:1508.06576, 2015. 2, 3

[8] Song Han, Jeff Pool, John Tran, and William Dally. Learning

both weights and connections for efficient neural network. In

Advances in neural information processing systems, pages

1135–1143, 2015. 1

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016. 1, 2, 3

[10] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-

ing the knowledge in a neural network. arXiv preprint

arXiv:1503.02531, 2015. 1, 2

[11] Bo-Yang Hsueh, Wei Li, and I-Chen Wu. Stochastic gradient

descent with hyperbolic-tangent decay on classification. In

2019 IEEE Winter Conference on Applications of Computer

Vision (WACV), pages 435–442. IEEE, 2019. 4

[12] Hengyuan Hu, Rui Peng, Yu-Wing Tai, and Chi-Keung

Tang. Network trimming: A data-driven neuron pruning ap-

proach towards efficient deep architectures. arXiv preprint

arXiv:1607.03250, 2016. 1, 2

[13] Andrej Karpathy and Li Fei-Fei. Deep visual-semantic align-

ments for generating image descriptions. In Proceedings of

the IEEE conference on computer vision and pattern recog-

nition, pages 3128–3137, 2015. 1

[14] Vahid Kazemi and Josephine Sullivan. One millisecond face

alignment with an ensemble of regression trees. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 1867–1874, 2014. 5

[15] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014. 4

[16] Martin Koestinger, Paul Wohlhart, Peter M Roth, and Horst

Bischof. Annotated facial landmarks in the wild: A large-

scale, real-world database for facial landmark localization.

In 2011 IEEE international conference on computer vi-

sion workshops (ICCV workshops), pages 2144–2151. IEEE,

2011. 4

[17] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple

layers of features from tiny images. 2009. 5, 6

[18] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-

works. In Advances in neural information processing sys-

tems, pages 1097–1105, 2012. 6

[19] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick

Haffner. Gradient-based learning applied to document recog-

nition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

2

[20] Cong Leng, Zesheng Dou, Hao Li, Shenghuo Zhu, and Rong

Jin. Extremely low bit neural network: Squeeze the last bit

out with admm. In Thirty-Second AAAI Conference on Arti-

ficial Intelligence, 2018. 1

[21] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and

Hans Peter Graf. Pruning filters for efficient convnets. arXiv

preprint arXiv:1608.08710, 2016. 6

[22] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian

Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C

Berg. Ssd: Single shot multibox detector. In European con-

ference on computer vision, pages 21–37. Springer, 2016. 1

[23] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali

Farhadi. You only look once: Unified, real-time object de-

tection. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 779–788, 2016. 1

[24] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster r-cnn: Towards real-time object detection with region

proposal networks. In Advances in neural information pro-

cessing systems, pages 91–99, 2015. 1

[25] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou,

Antoine Chassang, Carlo Gatta, and Yoshua Bengio. Fitnets:

Hints for thin deep nets. arXiv preprint arXiv:1412.6550,

2014. 2, 3

[26] Nataniel Ruiz, Eunji Chong, and James M Rehg. Fine-

grained head pose estimation without keypoints. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition workshops, pages 2074–2083, 2018. 5

[27] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556, 2014. 2

[28] Han Vanholder. Efficient inference with tensorrt, 2016. 6

[29] Tsun-Yi Yang, Yi-Ting Chen, Yen-Yu Lin, and Yung-Yu

Chuang. Fsa-net: Learning fine-grained structure aggrega-

tion for head pose estimation from a single image. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 1087–1096, 2019. 5, 6

[30] Tsun-Yi Yang, Yi-Hsuan Huang, Yen-Yu Lin, Pi-Cheng

Hsiu, and Yung-Yu Chuang. Ssr-net: A compact soft stage-

wise regression network for age estimation. In IJCAI, vol-

ume 5, page 7, 2018. 5

[31] Yingzhen Yang, Nebojsa Jojic, and Jun Huan. Fsnet: Com-

pression of deep convolutional neural networks by filter sum-

mary. arXiv preprint arXiv:1902.03264, 2019. 5, 6

[32] Junho Yim, Donggyu Joo, Jihoon Bae, and Junmo Kim. A

gift from knowledge distillation: Fast optimization, network

minimization and transfer learning. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 4133–4141, 2017. 2

[33] Xiangyu Zhu, Zhen Lei, Xiaoming Liu, Hailin Shi, and

Stan Z Li. Face alignment across large poses: A 3d solu-

tion. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 146–155, 2016. 4, 5

