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Abstract

The field of view (FOV) of convolutional neural networks
is highly related to the accuracy of inference. Dilated con-
volutions are known as an effective solution to the problems
which require large FOVs. However, for general-purpose
hardware or dedicated hardware, it usually takes extra time
to handle dilated convolutions compared with standard con-
volutions. In this paper, we propose a network module, Cas-
caded and Separable Structure of Dilated (CASSOD) Con-
volution, and a special hardware system to handle the CAS-
SOD networks efficiently. A CASSOD-Net includes multi-
ple cascaded 2 x 2 dilated filters, which can be used to re-
place the traditional 3 x 3 dilated filters without decreasing
the accuracy of inference. Two example applications, face
detection and image segmentation, are tested with dilated
convolutions and the proposed CASSOD modules. The new
network for face detection achieves higher accuracy than
the previous work with only 47% of filter weights in the di-
lated convolution layers of the context module. Moreover,
the proposed hardware system can accelerate the computa-
tions of dilated convolutions, and it is 2.78 times faster than
traditional hardware systems when the filter size is 3 X 3.

1. Introduction

Dilated convolutions in Convolutional Neural Networks
(CNNSs) can be applied to different kinds of applications, in-
cluding audio processing [6], crowd counting [9], semantic
image segmentation [3, 14, 18, 20], image classification [7],
image super-resolution [11], road extraction [22], image de-
noising [17], face detection [8], object detection [10], and
so on. For many vision applications, the receptive field, or
the field of view (FOV) [12] of convolutional neural net-
works is highly related to the accuracy of inference. Large
FOV can be obtained by increasing the filter size or by in-
creasing the number of convolution layers. However, the
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Figure 1: Concept of the proposed CASSOD module.

computational time might also increase because the compu-
tational cost is proportional to the filter size and the number
of layers. Dilated convolutions are known as an effective
method to enlarge the FOV of a network without increasing
the computational costs. By adjusting the dilation rate D, a
3 x 3 filter can be enlarged to a (2D + 1) x (2D + 1) filter
with 3 x 3 Multiply-Accumulate (MAC) operations.

Deng et al. propose a context module, which is inspired
by the SSH face detector [16], to increase the FOV [2]. Wu
et al. propose a Joint Pyramid Up-sampling (JPU) module
and formulate the task of extracting high-resolution feature
maps into a joint up-sampling problem [20]. In the JPU
structure, the generated feature maps are up-sampled and



Table 1: Comparison of Number of Filter Weights

Network Structure No. of Filter Weights

Dilated Convolution 32 x C1 x Cy

CASSOD-A

2
(1st layer: DW Conv.*) 22 x G x (1+Cy)

22 x (Cl —i—Cg) x (4

CASSOD-C (No DW Conv.*) or

22 X (Cl +CQ) X CQ
Dilated / Depthwise Convolution 32 x 4
CASSOD-D 92 o (C1 x 2)

(1st and 2nd layer: DW Conv.*)

*DW Conv. denotes the depthwise convolutions.

concatenated, and 4 separable convolutions with different
dilation rates (D = 1,2, 4, 8) are included in the same con-
volution layer. Hamaguchi et al. propose a segmentation
model, which includes a front-end module, a local feature
extraction (LFE) module, and a head module [3]. The di-
lation rate in the front-end module is gradually increased to
extract the features from a large range, and the dilation rate
in the subsequent LFE module is gradually decreased to ag-
gregate local features generated by the front-end module.
The above mentioned network models are designed for ap-
plications related to face detection and image segmentation.
There are still many kinds of network architectures contain-
ing dilated convolution layers, which are used to improve
the accuracy of other applications.

In order to implement dilated convolutions on mobile de-
vices and embedded system platforms, it is necessary to re-
duce the memory size and the computational costs without
decreasing the accuracy. For some hardware devices, in-
cluding GPUs, convolution operations are only optimized
for standard convolutions. Even though the 3 x 3 dilated fil-
ters require only 3 x 3 MAC operations, the overhead to skip
the pixels which do not engage in the process of convolu-
tions is not always zero. For some dedicated hardware sys-
tems based on systolic arrays, when the dilation rate is high,
the memory footprint might increase since the addresses of
the pixels to be processed are not consecutive.

In this paper, we propose a new network module, Cas-
caded and Separable Structure of Dilated (CASSOD) Con-
volutions, to approximate the 3 x 3 dilated convolutions with
low memory cost for filter weights and low computational
costs for convolutions. The concept of the proposed method
is shown in Fig. 1.

2. Proposed Network Module

In this section, the 2 x 2 dilated convolutions and the
proposed CASSOD module are introduced in the following

subsections. The cascaded 2 x 2 dilated convolution, which
can be a separable version of the traditional 3 x 3 dilated
convolution, is an important component of the CASSOD
module. In this paper, the 2 x 2 (or 3 x 3) dilated convolu-
tions refer to the convolutions where the filter size is 2 x 2
(or 3 x 3) before the filters are dilated (D = 1).

2.1. Dilated Convolutions with Fewer Filter Weights

In previous works [3, 6, 7, 9, 11, 14, 17, 20, 22], the
dilated filters are generated based on 3 x 3 filters. A total of
9 filter weights are used to compute the convolution results
for one input feature map. The FOV is expanded when the
dilation rate D is larger than 1. The larger the dilation rate
D, the larger the FOV.

The dilated filters which are generated based on 2 x 2
filters, are proposed in this work. The output result of the
proposed dilated filters is calculated based on the following
equation.
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c-1 1 1
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where O, ;) is the output feature map, (. ; j is the c-th in-
put feature map, and W, .., is the filter weight for the c-th
input feature map. The parameters (4, j) represent the index
of the pixels in the feature maps, and the ranges of both
and j depend on the size of feature maps. The parameter
C denotes the number of channels. There are only 4 filter
weights for 1 input feature map and the ranges of both x
and y are [0, 1].

Two examples of the 2 x 2 filters and dilated convolutions
are shown in Fig. 2. Fig. 2(a) shows an example where the
dilation rate D is 2. Two cascaded 2 x 2 dilated convolutions
where the dilation rate D is 2 can be an approximation to a
3 x 3 dilated convolution with the same dilation rate since
the positions of zero weights are exactly the same. Sim-
ilarly, as shown in Fig. 2(b), two cascaded 2 x 2 dilated
convolutions with the dilation rate D = 4 can be an ap-
proximation to a 3 x 3 dilated convolution with the same
dilation rate. The dilation rate D is always set to a multiple
of 2.

2.2. Cascaded and Separable Structure of Dilated
(CASSOD) Convolution

The concept of the proposed CASSOD module is shown
in Fig. 1. The upper part of the figure shows an example
of dilated convolutions [19] where the dilation rate D is 2.
There are C; channels in the input feature maps, and Cs
channels in the output feature maps. The number of filter
weights of the dilated convolutions is 3 x 3 x C7 x Cl.

The lower part of the figure shows an example of the
proposed CASSOD module where the dilation rate D is
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Figure 2: Example of the 2 x 2 dilated convolutions where
(a) the dilation rate D = 2 and (b) the dilation rate D = 4.

2. There are two convolution layers in this module and 3
sets of feature maps. Either of the first convolution layer or
the second convolution layer can be a depthwise convolu-
tion [5] layer. The variations (CASSOD-A,C,D) are shown
in Table 1.

In the CASSOD-A module, there are Cq, C, and Cy
channels in the first, the second, and the third set of feature
maps, respectively. The numbers of channels in the first and
the second set of feature maps are the same because the first
convolution layer includes depthwise separable operations.
The first convolution layer includes a series of 2 x 2 depth-
wise and dilated filters, which are different from the tradi-
tional 3 x 3 dilated filters. The second convolution layers
includes a series of 2 x 2 dilated filters. The number of filter
weights of the dilated convolutions is 22 x C; x (1 + Cy).
Table 1 also shows the comparison of the number of filter
weights. It can be observed that, when Cs is large, the num-
ber of filter weights in the CASSOD-A module is close to
44.4% (4/9) of the number of filter weights in the traditional
dilated convolution.

In the CASSOD-C module, there are C7, Cy (or Cy),
and Cy channels in the first, the second, and the third set of
feature maps, respectively. Both convolution layers include
a series of 2 x 2 dilated filters. The number of filter weights
of the dilated convolutions is 22 x (C; + Cy) x Cj or 22 x
(C1+C2) x Cy. Tt can be observed that, when C1 is equal to
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Figure 3: An example of the architecture of the proposed
hardware system.

C5, the number of filter weights of the CASSOD-C module
is close to 88.9% (8/9) of the number of filter weights in the
traditional dilated convolution.

The CASSOD-A,C modules have lower computational
costs than the traditional 3 x 3 dilated convolutions. The
number of filter weights is also proportional to the compu-
tational cost, which is equal to the number of MAC oper-
ations. Compared with the traditional 3 x 3 dilated con-
volutions, 1 additional convolution layer is required to im-
plement the CASSOD modules. The batch normalization
operations and the activation functions (e.g. ReLU) can be
included in the additional convolution layer if necessary.
The CASSOD-A,C modules are alternatives to the dilated
convolutions, and the CASSOD-D module is an alternative
to the depthwise and dilated convolutions. The number of
filter weights of the CASSOD-D module is close to 88.9%
(8/9) of the depthwise and dilated convolutions.

3. Proposed Hardware Architecture

The analysis of computational time of dilated convolu-
tions and the proposed hardware architecture are shown in
the following subsections.

3.1. Computational Time of Dilated Convolutions

Table 2 shows an example of the computational time
of dilated convolutions when the size of input image is
320 x 320 pixels. A network with 3 layers is used to mea-
sure the computational time of CPU, and a network with 10
layers is used to measure the computational time of GPU.
There are 64 input channels and 64 output channels in each
layer of the networks, and the dilation rates D of the 3 x 3
convolution layers are set to the same value.

The results show that the processing time does not
change much when the dilation rate D is larger than 1 for ei-
ther CPU or GPU. The computational time of standard con-
volutions, where the dilation rate is set to 1, is the shortest,
and the reason can be that the framework (e.g. CUDA li-



Table 2: Processing Time of Dilated Convolutions

Processing Time (ms)

Dilation Rate Convolutions Depthwise Conv.

CpPU* GPU** | CPU* GPU**
D=1 39.53 6.53 21.57 11.81
D=2 862.56 19.12 | 86199 11.83
D=3 868.83  19.17 | 865.09 11.79
D=4 854.23 19.21 | 862.95 11.78
D=5 85242 19.23 | 87142 11.78

*The CPU is Intel Xeon E5-2640 v4 (2.40 GHz) and the memory size is
256 GB.
**The GPU is TITAN Xp (12 GB), and the version of cuDNN is 7.6.5.

brary) includes some optimized operations to accelerate the
computations of standard convolutions. The speed of di-
lated convolutions may depend on the performance of sys-
tem platforms, but the dilated convolutions with a dilation
rate larger than 1 cannot necessarily achieve the same level
of speed as standard convolutions with a dilation rate of 1.
The goal of this work is to design a hardware system which
can handle both dilated convolutions and standard convolu-
tions efficiently.

For hardware implementation, the pixel values in the fea-
ture maps are usually stored in a shift register array. One
solution to handle dilated convolutions using a shift register
array is to add zeros to the filter weights and compute the
results of standard convolutions. To handle a dilated 3 x 3
filter where the dilation rate D is 2, it is necessary to com-
pute the products of 25 filter weights and 25 input pixels. A
total of 16 filter weights equal to zero can be skipped. The
computational time is proportional to the size of dilated fil-
ters, and the efficiency of filter processing is relatively low
compared with CPU and GPU.

To solve this problem, a new hardware architecture is
proposed to speed up dilated convolutions. An example of
the architecture of the proposed hardware system is shown
in Fig. 3, which includes 6 modules and DRAM. The fil-
ter weights stored in the “Filter Weight Memory” are sent
to the “Filter Weight Cache,” and the feature maps of the
current convolution layer stored in the “Pixel Memory” are
sent to the “Pixel Array.” The filter weights and the pixels
of feature maps are sent to the “Convolution Processor” to
compute the convolution results, and the convolution results
are sent to the “Activation and Pooling Unit” to generate the
feature maps for the next convolution layer. The “Pixel Ar-
ray” includes multiple hierarchical stages of pixel caches,
which can generate the input pixels for dilated convolutions
with a different dilation rate D.

3.2. Pixel Array for Dilated Convolutions

The “Pixel Array,” including multiple hierarchical
stages, can handle dilated convolutions with different di-
lation rates efficiently. The proposed hardware architec-
ture can be implemented in a Field-Programmable Gate Ar-
ray (FPGA) or an Application-Specific Integrated Circuit
(ASIC). Fig. 4 shows an example of the architecture and the
interconnections of the proposed shift register array, where
there are 3 hierarchical stages. In this example, there are
6x 6 pixel buffers (or selectors) in each stage, and each pixel
buffer (or selector) is connected to 4 other pixel buffers
(or selectors) in the up, right, down, and left directions. It
means that the pixel stored in the pixel buffer can be trans-
ferred to one of the 4 connected pixel buffers (or selectors).
In the first hierarchical stage, the input of a pixel buffer is
connected to the input of its neighboring pixel buffer and
the pixel selector with the same position in the second stage.
The difference of the shifted index and the original index of
the pixel, Xo, is 0 or 1 (29). Similarly, in the second hi-
erarchical stage, the difference of the shifted index and the
original index of the pixel, Xy, is 0 or 2 (21, and in the
third hierarchical stage, the difference of the shifted index
and the original index of the pixel, X5, is 0 or 4 (2%).

The supported dilation rate, which is equal to the total
difference of the shifted index and the original index of the

pixel in all hierarchical stages (X, X1, Xo, ... , Xg—_1)1is
shown in the following equation.
H—-1
D= X,-2", )
h=0

where H is the total number of the hierarchical stages. In
this example, H is equal to 3, but H can be set to any num-
ber to support 27 — 1 dilation rates (D = [1,2# — 1]) ac-
cording to the network architectures. When the gate count
of each stage is the same, the total hardware cost is propor-
tional to the number of hierarchical stage, H.

4. Experimental Results

The experimental results contain 3 parts. The first part is
the comparison of accuracy of face detection. The second
part is the comparison of accuracy of image segmentation.
The third part is the analysis of the performance of the pro-
posed hardware architecture.

4.1. Accuracy of Face Detection

The proposed network architecture, CASSOD-Net, is
evaluated based on the RetinaFace [2], which is designed
for face detection tasks. The context module, inspired by
the SSH face detector [16], is used to increase the FOV and
enhance the rigid context modeling power. To compare the
accuracy, the convolution layers in the context modules is
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Figure 4: An example of the hardware architecture and the interconnections of the “Pixel Array” with 6 x 6 pixels.

replaced by the Feature Enhance Module (FEM), which in-
cludes dilated convolution structures, in the Dual Shot Face
Detector (DSFD) [8]. Then, the dilated convolutions in the
DSFD [20] are replaced by the proposed CASSOD mod-
ules. The network architecture of the modified context mod-
ule is shown in Fig. 5. To keep the computational costs at
the same level, the number of input channels of the FEM
is changed from 256 to 64, and the number of input chan-
nels in the remaining layers is reduced by the same ratio.
Fig. 5(a) shows the original context module in the Reti-
naFace, and Fig. 5(b) shows the modified context module
with FEM, which includes dilated convolution layers with a
dilation rate (D) of 2.

MobileNet-0.25 [5] is used as the backbone network.
The accuracy of face detection is shown in Table 3. Af-
ter replacing the dilated convolutions with the CASSOD-C
and CASSOD-A modules, the accuracy does not decrease.
Besides, the proposed CASSOD module can achieve higher
accuracy than the previous architecture with batch normal-
ization and activation. The CASSOD-C module has bet-
ter performance than the CASSOD-A module on the 3 cat-
egories (easy, medium, and hard), and the reason can be
that the CASSOD-C module has more parameters than the
CASSOD-A module. It is shown that the CASSOD mod-
ule is a good alternative to the original dilated convolutions.
The accuracy of the CASSOD-A module shows that the new
network achieves higher accuracy than the FEM-based net-
work with only 47% of filter weights in the dilated convo-

lution layers of the context module.

4.2. Accuracy of Image Segmentation

The proposed network architecture, CASSOD-Net, is
evaluated based on the FastFCN [20], which is designed
for semantic image segmentation tasks. The JPU mod-
ule, which is included in the FastFCN, combines the up-
sampled feature maps by using 4 groups of dilated con-
volutions with different dilation rates. The JPU modules
also contain depthwise convolution layers. It can extract
multiple-scale context information and increase the accu-
racy of image segmentation.

To compare the accuracy, the dilated convolutions in the
JPU [20] are replaced by the proposed CASSOD-D mod-
ules. The network architecture of the modified JPU is
shown in Fig. 6. ResNet-50 [4] is used as a backbone net-
work and trained with Pascal Context [15] and ADE20K
datasets [21]. The accuracy of image segmentation is shown
in Table 4. The results [20] and our re-implementation re-
sults are very close. After replacing the dilated convolutions
with the CASSOD modules, the accuracy does not decrease.
Besides, the proposed CASSOD module can achieve higher
accuracy than the previous architecture with batch normal-
ization and activation. It is shown that the CASSOD module
is a good alternative to the original dilated convolutions for
image segmentation. Also, the proposed CASSOD modules
can be applied to networks with depthwise and dilated con-
volutions. The computational time of GPU increases after
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Figure 5: (a) The context module of RetinaFace [2] with the SSH structure [16] and (b) the modified context module with the
FEM structure [8], in which the dilated convolutions can be replaced by the proposed CASSOD modules.

Table 3: Comparison of Accuracy of Face Detection [2] between Dilated Convolutions and CASSOD Modules

. . Parameter Size of
Context Module of RetinaFace [2] Easy (%) Medium (%) Hard (%) Dilated Conv. Layers
SSHT 88.72 86.97 79.19 (11,520)
FEMTT 88.87 86.74 80.26 23,040
FEMTf-CASSOD-C 89.05 87.46 81.09 15,360
FEMTT-CASSOD-C with BN* 89.21 87.55 81.28 15,552
FEMT-CASSOD-C with BN* and ReLU** 89.12 87.62 81.16 15,552
FEM'T-CASSOD-A with BN* and ReLU** 88.88 87.40 80.74 10,912

TSSH represents single stage headless face detector [16]. The parameter size of convolution layers to be replaced by dilated convolution layers and CASSOD

modules is 11,520.
TTFEM represents feature enhance module [8].
*BN represents batch normalization.

**ReLU represents rectified linear unit.

applying the CASSOD modules because an extra layer is
added. This problem can be solved by using the proposed
hardware architecture.

4.3. Analysis of Hardware Systems

To show the advantages of the proposed hardware sys-
tem, the hardware architecture and the CASSOD modules
are compared with previous works. The previous works re-
fer to the hardware systems [1, 13] which do not accelerate
the algorithms with the 3 x 3 dilated convolutions shown in
Sec. 2. Since the hardware systems of the related works are
not available, we re-implement a hardware system on our
platforms without using the “Pixel Array” shown in Sec. 3.2

for comparison. The results are shown in Fig. 7.

Fig. 7(a) shows the relation between the computational
time and the dilation rate (D) with 3 x 3 filters. The num-
ber of cycles is equivalent to the computational time. In
previous works, since there are no special hardware archi-
tectures to handle dilated convolutions, it is necessary to
add zero-values to the filter weights after a filter is dilated.
The computational time increases as the dilation rate D in-
creases and is roughly proportional to a square of the di-
lation rate (D). In the proposed hardware system, the in-
put pixels of dilated convolutions can be adjusted according
to the dilation rate (D) and dumped consecutively, and the
computational time does not vary with the dilation rate D.



Table 4: Comparison of Accuracy of Image Segmentation [20] between Dilated Convolutions and CASSOD Modules

Datasets Networks pixAcc (%) mloU (%) Speed (fpsT)
EncNet + JPU (Table 2, 3 in [20]) - 51.20 37.56
EncNet + JPU (Re-implementation) 77.88 49.44 35.30
EncNet + JPU-CASSOD-D (Proposed Work) 79.52 52.51 34.73
Pascal Context [15] | EncNet + JPU-CASSOD-D with BN and ReLU 79,67 5272 34.57
(Proposed Work)
EncNet + JPU-CASSOD-D with BN
(Proposed Work) 79.75 52.76 34.12
EncNet + JPU (Table 2, 4 in [20]) 80.39 42.75 37.56
EncNet + JPU (Re-implementation) 80.04 42.09 35.30
EncNet + JPU-CASSOD-D (Proposed Work) 80.35 42.72 34.73
ADE20K [21] EncNet + JPU-CASSOD-D with BN and ReLU 80.48 42.86 34.57
(Proposed Work)
EncNet + JPU-CASSOD-D with BN
(Proposed Work) 80.42 42.78 34.12

TFps represents frame per second, which is the unit of processing speed of the GPU, TITAN Xp (12 GB).
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Figure 6: The modified JPU [20] in which the dilated convolutions are replaced by the proposed CASSOD modules.

It can be observed that the proposed hardware system can
handle both dilated convolutions and standard convolutions
(D = 1) efficiently. When the dilation rate (D) of a 3 x 3
filter is 2, the proposed hardware system is 2.78 times faster
than the previous work.

Fig. 7(b) shows the relation between the computational
time and the dilation rate (D). By replacing the traditional
dilated convolutions with the CASSOD module, the com-
putational cost and the parameter size can be reduced even
though 1 additional convolution layer is required. In the
proposed hardware system, the time to set the parameters
for 1 additional layer is relatively small. The results show
that the computational time of the proposed hardware sys-
tem can be further reduced by using the CASSOD module,
which achieves similar accuracy as the traditional dilated
convolutions.

Fig. 7(c) shows the relation between the gate count of the
“Pixel Array” and the maximum dilation rate (D). It can be
observed that the overhead of hardware cost increases as

the dilation rate D increases, but the difference of hardware
cost between the previous work and the proposed work is
not proportional to the maximum dilation rate, D. The pro-
posed hardware system scales well because it can support
23 — 1 dilation rates (D = [1,7]) with less than 3 times of
hardware costs.

The supported dilation rates also depend on the filter
size and the interface between modules. Table 5 shows the
specifications of the proposed hardware architecture. Dif-
ferent from previous works, the proposed hardware system
can handle 2 x 2 and 3 x 3 dilated convolutions efficiently.
The maximum supported dilation rate for 2 x 2 filters is 6,
and the maximum supported dilation rate for 3 x 3 filters
is 3. By replacing the traditional dilated convolutions with
the CASSOD module, an approximated 3 x 3 dilated filters
with a dilation rate of 6 can be implemented with cascaded
2 x 2 filters with a dilation rate of 6. The computational
costs and memory footprints can also be reduced. Since
the “Pixel Array” with 3 hierarchical stages only occupies
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Figure 7: Analysis of (a) the computational time of 3 x 3 filters and the dilation rate (D), (b) the computational time of the
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Table 5: Specifications of Proposed Hardware Architecture

Table 6: Processing Speed of Proposed Hardware

Gate Count Total: 24 M RetinaFace [2] RetinaFace [2]
(NAND-Gates) (Pixel Array: 0.5 M) +FEM [8] +FEM [8]
Process 28-nm CMOS technology +CASSOD-A
Clock Frequency 400 MHz without Pixel Array 171 fps 224 fps
Supported Filter Size Maximum 7 x 7 with Pixel Array 222 {ps 244 fps

Supported Dilation Rate 2 x 2filter: D =2,4,6
2,3

3 x 3filter: D =1, 2,

No. of Hierarchical Stages H=3
Memory Size 128 KB
Performance 409.6 GOPS*

*GOPS represents giga operations per second. There are 2 operations in 1

MAC operation.

only 21% of the total area, the overhead to support the di-
lated convolutions is relatively small. A comparison of the
processing speed of the proposed system is shown in Ta-
ble 6. The resolution of the input image is 512 x 512 pixels,
and the network is RetinaFace [2] with FEM [8], which is
shown in Table 3. By using the proposed hardware archi-
tecture with the shift register array, 23% of processing time
can be reduced. By replacing the dilated 3 x 3 filters with
the proposed CASSOD modules, 9% of processing time can
be further reduced. The result clearly shows the advantages
in terms of computational speed.

5. Conclusions and Future Work

In this paper, we propose an efficient module, which is
called Cascaded and Separable Structure of Dilated (CAS-
SOD) Convolutions, and a special hardware system to han-
dle the CASSOD networks efficiently.

To analyze the accuracy of algorithms, two example
applications, face detection and image segmentation, are

tested with dilated convolutions and the proposed alterna-
tives. For face detection, the RetinaFace [2] network archi-
tecture can achieve the same level of accuracy after replac-
ing the dilated convolutions in the context module with the
proposed CASSOD modules. For image segmentation, the
FastFCN [20] can achieve the same level of accuracy af-
ter replacing the dilated convolutions in the JPU with the
proposed CASSOD modules, which also contain depthwise
convolutions. It is shown that the CASSOD module is a
good alternative to the traditional dilated convolutions for
both applications.

The performance of hardware is analyzed in terms of
computational time and hardware costs. The input pixels of
dilated convolutions can be adjusted according to the dila-
tion rate (D) and dumped consecutively, the computational
time does not vary with the dilation rate . By using the
proposed hardware architecture with the shift register array,
23% of processing time can be reduced for face detection
applications.

The experiments clearly show that both the proposed
hardware system and the proposed CASSOD modules have
advantages over previous works. For future works, we plan
to test the proposed hardware system and the CASSOD
modules with other applications.
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