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Abstract

This paper introduces Phase Selective Convolution

(PSC), an enhanced convolution for more deliberate utiliza-

tion of activations in convolutional networks. Unlike con-

ventional use of convolutions with activation functions, PSC

preserves the full space of activations while supporting de-

sirable model nonlinearity. Similar to several other network

operations, e.g., the ReLU operation, at the time of their

introduction, PSC may not execute as efficiently on plat-

forms without hardware specialization support. As a first

step in addressing the need for optimization, we propose

a hardware acceleration scheme to enable the intended ef-

ficiency for PSC execution. Moreover, we propose a PSC

deployment strategy, with which PSC is applied only to se-

lected layers of the networks, to avoid excessive increase in

the total model size. To evaluate the results, we apply PSC

as a drop-in replacement for selected convolution layers in

several networks without affecting their macro network ar-

chitectures. In particular, PSC-enhanced ResNets achieve

higher accuracies by 1.0-2.0% and 0.7-1.0% on CIFAR-

100 and ImageNet, respectively, in Pareto efficiency. PSC-

enhanced MobileNets (V2 and V3 Large) and MobileNetV3

(Small) achieve 0.9-1.0% and 1.8% accuracy gains, respec-

tively, on ImageNet at little (0.2-0.7%) total model size in-

crease.

1. Introduction

The activation function of convolutional neural networks

(CNNs) plays mixed roles. On the one hand, it enhances the

expressive power of CNNs over otherwise an interconnec-

tion of linear operations. On the other hand, it is also the

reason why characterization for the internal processes re-

garding the preservability and invertibility of information

can be difficult [29, 33]. While it is true that not all the in-
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Figure 1. PSC expressive power in comparison to other convolu-

tion block types. (Definitions and details are given in 3.1 and 3.2.)

formation from the input data needs to be preserved in order

for the network to express the desirable functions, dispos-

ing too much information through the activation functions

in certain portions of the network could create undesirable

information loss [16, 33].

For example, the ReLU [31, 20, 13] activation function,

by definition, disposes all negative pre-activations, encour-

aging the network to turn useful information into the posi-

tive space, yet risking variable degrees of information loss.

Prior work has studied this issue to some extent. For ex-

ample, MobileNetV2 [33] deals with the bottleneck archi-

tecture and attempts to attain invertability of a convolution

layer with ReLU by allocating significantly wider output

channels than the input ones. CReLU [34] addresses invert-

ibility by applying ReLU to pre-activations and their nega-

tions followed by concatenation of activations. Other works

[15, 27, 7, 22, 32, 5, 30, 38] also attempt to address similar

problems by introducing new parameters or involving cer-

tain portion of negative space for activation functions.

In this paper, we introduce Phase Selective Convolution

(PSC), a generalization for several classic activation func-

tions, including ReLU [31], PReLU [15], LReLU [27], and

CReLU [34], along with the convolution operation. PSC

interestingly works as a “plug-and-play” replacement for

standard [14, 16] and depthwise [6, 18, 21, 33, 17, 37, 42,

26] convolutions, especially in a building block form, e.g., a



residual [14] or bottleneck [1] block. To address problems

of increased computation and parameters with naive PSC

application, we also propose several techniques, as detailed

in later sections, to make PSC efficient and practical.

Our contributions in this paper are summarized as fol-

lows. (1) We introduce the concepts of static PSC (sPSC)

and PSC, as motivated by generalization of several exist-

ing activation functions. (2) We discuss activation effects

of PSC, for how full space of activations can be lever-

aged and how network nonlinearity can be increased. (3)

We present a PSC hardware acceleration scheme with zero

MAC (multiply-accumulate) count increase. (4) We pro-

pose weight initialization and deployment strategies for

PSC, using examples of ResNets and MobileNets, to avoid

excessive weight increase from a naive deployment of PSC.

2. Related Work

The information preservability of ReLU, in a general

case, leads to the design of the “inverted residual block”

[33]. While such design addresses the information preserv-

ability problem to some extent, the problem is not solved

completely. Specifically, Sandler et al. [33] show that even

though a theoretical condition for information preservabil-

ity is satisfied with random initialization, the problem may

persist for a trained network depending on the point of con-

vergence.

Another line of work in addressing this deficiency of

ReLU relies on replacing ReLU with other activation func-

tions [27, 15, 34, 7, 22]. For example, Leaky ReLU [27]

differs from ReLU by preserving the negative inputs at a

small rate. Parametric ReLU [15] further generalizes leaky

ReLU by making the preserve rate for negative inputs learn-

able. Concatenated ReLU (CReLU) [34] applies ReLU to

both positive and negative pre-activations, namely

x 7→
(

ReLU(x),ReLU(−x)
)

. (1)

Note that CReLU preserves information fully, which natu-

rally comes at the cost of doubling complexity. To address

this issue, the authors of [34] make changes to their baseline

network when applying CReLU; for example, they may add

CReLU in only certain layers, and for such layers, they also

reduce the number of convolutional filters by half.

One important point to consider is the location where

CReLU is applied, not only within the network, but also

within a given layer. In [34], a convolution, followed by

a CReLU is defined as a layer, whereas in our work, the

reverse – an activation function followed by a convolution

– is considered. This simple change of viewpoint results

in a number of fundamental insights in terms of both ar-

chitecture design and hardware implementation. While one

variation of our PSC module, called “static PSC,” is equiv-

alent to applying CReLU prior to a convolutional layer, our

Figure 2. PSC enhances both nonlinear and linear types of layers.

Top: A bottleneck block example. Bottom: Drop-in replaceable

PSC for all layers to reclaim lost activations and increase nonlin-

earity. Inclusion of batch normalization in PSC module is optional.

main PSC module is more general and captures CReLU as a

special case. We describe these ideas in Section 3 in detail.

The discussion on activation functions would be incom-

plete without mentioning swish [32]. Unlike most other

activation functions, swish is discovered via automated

search. In [32], the authors show that a parameterized

version of swish outperforms both LReLU and PReLU on

ImageNet. The performance benefits of swish are further

demonstrated in the design of MobileNetV3 [17] and Ef-

ficientNet [37] models. While the parameterized version

of swish provides state-of-the-art results [32], its hardware

implementation is costly. Because of this, [17] introduces a

“hard” version of swish called “h-swish.” While h-swish is

more hardware-friendly than swish, it still runs slower than

ReLU. In fact, in the same paper, it is demonstrated that us-

ing h-swish instead of ReLU in all layers of MobileNetV3-

Large adds 20 percent in latency. In Sections 3 and 4, we

show the benefit of using PSC with ReLU activation as an

even simpler alternative to h-swish.

As a final example on the importance of ReLU, an “IoT-

friendly” version of EfficientNet – EfficientNet-EdgeTPU

[11], uses ReLU instead of swish. To address performance

loss with ReLU, the authors rely on neural architecture

search, which results in a network with significantly more

MACs but lower latency and improved accuracy. Therefore,

the simplicity of ReLU remains an attractive option in cer-

tain designs with hardware-awareness.

3. Proposed Method

In this section, we provide the motivation, definition, and

analysis for Phase Selective Convolution (PSC). In 3.1, we

start with the intuition of simple examples leading to the

benefits of PSC. In 3.2, we define PSC and establish that the

PSC incurs zero MAC count increase. In 3.3, we provide

our perspectives on the activation effects of PSC in nonlin-

ear and linear layers. In 3.4, we propose an acceleration

design that ensures not only zero MAC count increase for

PSC but also low overhead in other non-MAC operations.



In 3.5, we discuss efficient PSC weight initialization meth-

ods for fine-tuning from pre-trained networks.

3.1. Motivation

We first define Static PSC (sPSC), a special case of PSC,

starting with a simple baseline example as follows

[y1, y2] = [w1, w2]× ReLU(x)

[z1, z2] = [y1, y2] + [b1, b2], (2)

where all variables are scalars for simplicity, with x’s, w’s,

y’s, b’s and z’s being the pre-activations, weights, activa-

tions, biases, and final activations, respectively. With slight

modification from the baseline, now we define sPSC as

[y1, y2] = [w1, w2]⊙ [ReLU(x),−ReLU(−x)]

[z1, z2] = [y1, y2] + [b1, b2]. (3)

Given the sPSC definition above with ⊙ denoting the

Hadamard product, it is straightforward to see that sPSC

preserves both the number of parameters and MAC count.

In this case since we have only one scalar input and two

scalar outputs, we use a single weight w1 when x > 0 and a

single scalar weight w2 when x is negative. In the more gen-

eral case of a higher dimensional output, an equal split be-

tween positive and negative pre-activations might no longer

be optimal. For example, it might be optimal to allocate 60

percent of the weights to positive inputs in one layer, while

only 25 percent in another. In our Supplementary Mate-

rial, we introduce a systematic method to determine how to

best allocate the numbers of weights between positive and

negative inputs. This ability to support unequal weight al-

location allows sPSC to be more general than CReLU [34].

We next demonstrate the power of sPSC compared to

our baseline module (2) in a simple regression task. Say we

seek to find the function g : [−1, 1] → R that best approxi-

mates the function f : [−1, 1] → R, where f(x) = |x| for

each x with respect to the L2-loss

L(f, g) ,

∫ 1

−1

∣

∣f(x)− g(x)
∣

∣

2
dx.

Let g be limited to functions which consist of the baseline

computational module, as described by (2), followed by a

pooling unit. The pooling unit takes the vector input [z1, z2]
and outputs the scalar z = z1 + z2. Then it is possible to

show that for any such g,

L(f, g) > 0.

That is, the L2-loss is bounded above zero. (In Supplemen-

tary Materials we provide the derivation.) However, if we

let g be an sPSC module, it is quite straightforward that sim-

ply setting w1 = −w2 = 1 and b1 = b2 = 0 gives

L(f, g) = 0.

Figure 3. Conceptual PSC execution for 1×1 convolution. (a) A

naive approach with straight sum of separate convolutions by signs

of activations. (b) Arithmetically equivalent to (a), PSC for one

consolidated convolution with the dynamic kernel (W psc), keep-

ing total MACs unchanged from the conventional convolution.

The sPSC module slightly modifies the network by split-

ting a layer into two parts – one for positive and the other

for negative inputs. One question that arises is whether it

is possible to benefit from negative inputs without modi-

fying the network. To answer this question, we introduce

PSC, which has a dynamic nature, in contrast to sPSC, in its

treatment of the inputs. For the baseline defined by (2), the

PSC counterpart is given by

[y11, y12] = [w11, w12]× ReLU(x)

[y21, y22] = [w21, w22]×
(

− ReLU(−x)
)

[z1, z2] = [y11 + y21, y12 + y22] + [b1, b2].

(4)

Equation (4) describes PSC during training, as it con-

nects the input via the weights to the output in a differen-

tiable manner. During inference, PSC may be simplified as

[y1, y2] = [w1, w2]× x

[z1, z2] = [y1, y2] + [b1, b2],
(5)

where

[w1, w2] =

{

[w11, w12] if x ≥ 0,

[w21, w22] else.

Due to the fact that PSC, as defined by (5), preserves the

structure of the baseline module, it can serve as a drop-in re-

placement to the baseline network to improve performance.

Even though the network is split into two branches during

training, the network structure remains unchanged from the

baseline during inference. As a result, replacing a layer with

PSC preserves the MAC count.

The second benefit of PSC is generality. In addition to

sPSC, PSC also generalizes modules based on LReLU or



PReLU. To see this, first consider sPSC. In (4), if we set

w12 = w21 = 0, (6)

then PSC specializes into sPSC with weights (w11, w22). If,

in addition to (6), we further set

w22 = a× w11 (7)

for some scalar a, then PSC specializes into the baseline

module (2) with the ReLU replaced by a LReLU or PReLU

with parameter a. Furthermore, we remark that, similar to

the above example demonstrating the strict benefit of sPSC

over the baseline module, it is possible to construct similar

regression tasks in which PSC has a strict advantage over

sPSC due to its enhanced expressive power. That is, one

may set up regression tasks in which PSC achieves zero loss

while the counterpart loss of sPSC is lower bounded by a

positive number. Figure 1 summarizes our discussion.

3.2. Definition

In this subsection, we define PSC in the (general) tensor

input case for various types of convolutions.

Consider first a matrix-vector product for 1×1 convolu-

tion after a ReLU. Denoting the weight matrix as W and the

input vector as x, the output y may be expressed as

y = W × ReLU(x). (8)

Note that ReLU discards some information by zeroing all

negative entries of x in (8). Denoting x+ , ReLU(x) and

x− , −ReLU(−x), we may express PSC as

y = W+x+ +W−x−, (9)

where W+ and W− denote the weight matrix associated

with positive and negative activations, respectively. The

computation is illustrated in Figure 3(a).

A salient observation reminds that, since x+ and x−

must complement each other by definition, the convolution

operation using a merged dynamic kernel is possible, i.e.,

y = W+x+ +W−x− , WPSCx, (10)

WPSC
:j =

{

W+
:j xj ≥ 0

W−

:j xj < 0
,

where the columns of matrix WPSC are loaded from either

W+ or W− according to the signs of corresponding entries

in x, and :j denotes the jth column of the associated matrix.

The PSC expression for 1×1 convolution in (10) also ap-

plies to fully connected (linear) operations. For other types

of convolutions, including full convolution and depthwise

(e.g., 3×3) convolution, PSC may be similarly expressed as

Y = W+ ⊙X+ +W− ⊙X−

, WPSC ⊙X, (11)

wPSC
ij =

{

w+
ij , xij ≥ 0

w−

ij , xij < 0
,

Figure 4. Weight Selection Unit (WSU) for PSC acceleration. (a)

Truth table for WSU. (b) Multiplexer operation serving the WSU.

where X+ = [x+
ij ], X

− = [x−

ij ], W
+ = [w+

ij ], W
− = [w−

ij ],

WPSC = [wPSC
ij ], and X , X+, X−, WPSC, W+, and W−

are all in same shape.

3.3. Activation Effects

In this subsection, we provide our perspectives on the

activation effects of PSC. We also give an example of how

PSC is applied as a drop-in replaceable module.

We consider restrictions associated with two types of

convolution layers – a nonlinear layer, which follows a non-

linear (activation) function, and a linear layer otherwise.

For discussion simplicity, we limit the types of nonlinear

functions to ReLU. For a nonlinear layer, information is re-

stricted (and lost) in the input, as ReLU zeros out all neg-

ative activations. For a linear layer, model nonlinearity is

also restricted, as the linear layer by definition cannot ac-

commodate a prior nonlinear operation.1

PSC helps both types of layers. For a nonlinear layer,

PSC takes both signs of activations to reclaim otherwise the

lost information, which is empirically shown useful (as dis-

cussed in 4.3.) For a linear layer, PSC takes full space of

the input and divides activations by their signs to perform

selective convolution, therefore increasing model nonlinear-

ity. Figure 2 shows an MobileNet bottleneck block exam-

ple, in which both nonlinear and linear types of layers can

be replaced with PSC for improved model accuracy.

3.4. Hardware Acceleration

In 3.2, we have established that PSC can be applied in

a way to incur zero extra MAC from conventional convolu-

tion. In this subsection, we delve into some more execution

details and propose a hardware acceleration design, which

ensures low overhead in these non-MAC operations.

In the hardware acceleration design, we propose three

sub-operations to collectively perform PSC. We remark that

the first two are parallel or batch execution of non-MAC

sub-operations, and the third operation is exact same con-

volution as in the conventional case.

1. Sign Masking: Parallel zero-MAC sub-operation that

batch extracts2 sign bits of input X into a mask M (sim-

ilar to batch execution of ReLU on tensor signs).

M =
[

mij

]

= sign ext(X). (12)

1Lower nonlinearity in model leads to lower model expressive power.
2We define y = sign ext(x) = 1 for x < 0 and y = 0 otherwise.



2. Weight Selection: Parallel zero-MAC sub-operation

that batch selects weights by the sign mask, as facilitated

by vectorized Weight Selection Units (WSUs) hardware.

Figure 4 shows the design for one single unit of the WSU

hardware.3

wPSC
ij =

{

w+
ij , mij = 0

w−

ij , mij = 1
, WPSC = [wPSC

ij ],

(13)

where W+ = [w+
ij ], and W− = [w−

ij ].

3. Convolution: Convolution (same operation as in con-

ventional case) between the weight WPSC and input X .

Y = WPSC ⊙X, (14)

where we assume the same type of convolution as in

(11). In the case of pointwise convolution, we simply

replace the “⊙” operation with the matrix-vector multi-

plication and replace X with x, similar to (10).

3.5. Weight Initialization

In this subsection, we introduce PSC weight initializa-

tion methods for fine tuning from a pre-trained network.

Similar to [15, 10], we seek to find suitable initialization

methods for the PSC module. While networks with PSC

can certainly be trained from randomly initialized weight

just like for other networks, such initialization may not al-

ways produce the best accuracy. Furthermore, when a base-

line network is already well trained, it may be desirable to

take such pre-trained weights to initialize our target PSC

network for fine tuning to save training time. We propose

two PSC weight initialization methods that work very well

empirically, as inspired from Net2Net [4], where a larger

network (e.g., wider or deeper) is initialized from a smaller

network such that the function computed by the larger net-

work initially is arithmetically identical to the smaller net-

work. The principle is that if in every step of gradient de-

scent the loss function is reduced by a non-negative amount,

then the performance of the larger network would be at least

equal to the smaller network.

• Incremental Nonlinear Initialization (INI): Incremen-

tal initialization for a nonlinear PSC layer (that follows

a ReLU operation) such that the target network, even

though larger, is equivalent to the source network.

W+ = W 0 and W− = 0, (15)

where W+ and W− are PSC weights, and W 0 is the pre-

trained weight of the corresponding non-PSC layer. We

3One acceleration design example is to co-locate (next to each other)

each pair of positive and negative (PN) weights in weight memory, such

that weight selection is efficiently executed as batch binary weight selec-

tion on the PN-paired weight tensor according to the sign mask.

Figure 5. Positive activation ratio (PAR) analysis: In all sub-

figures shown in various scenarios, ResNet and MobileNetV2

demonstrate similar behavior in preserving information in initial

layers and disposing later, as only positive pre-activations stay

over ReLU. ResNet with PSC, however, has a PAR of around 50%

in most layers for utilization of all activations. For MobileNetV2,

when PSC is applied to only one layer (Conv3x3 or Conv1x1 pro-

jection) of each bottleneck block, those layers of PSC also tend

to keep near-50% PARs. MobileNetV2 for different image reso-

lutions (224x224 and 64x64) shows similar PAR behaviors over

most layers of the networks.

refer to this as INI, since inserting (15) to (10), we get

y = W+x+ +W−x− = W 0x+ + 0x−

= W 0x+ = W 0 · ReLU(x). (16)

• Incremental Linear Initialization (ILI): Incremental

initialization for a linear PSC layer (that does not follow

a nonlinear operation) such that the target network, even

though larger, is equivalent to the source network.

W+ = W− = W 0. (17)

We refer to this as ILI, since inserting (17) to (10), we get

y = W+x+ +W−x− = W 0x+ +W 0x−

= W 0(x+ + x−) = W 0x. (18)

In (16) and (18), our methods are shown to initialize

the target (PSC) network to be equivalent to the pre-trained

source network, whether the source layer is linear or not.4

The elegance of these initialization techniques and their de-

cent performance make us wonder whether further theoret-

ical insight exists. This is subject to future work.

4Fine tuning for each increment takes only a smaller number of epochs

empirically, as training of the target network starts from a good state.



4. Experiments

In this section, we present experiments by training both

baseline and proposed PSC networks. In 4.1, we pro-

vide a PSC design examples and study positive-activation

ratio (PAR). We then discuss our proposed PSC deploy-

ment strategy. In 4.2, we show experiments with ResNe,

MobileNetV2, and MobileNetV3 on CIFAR-100 and Ima-

geNet. In 4.3, we compare PSC with an interesting dual-

positive variant. In 4.4, we discuss execution latency. Re-

sults are shown in Table 1 and Figures 5, 6, and 7.

4.1. Implementation and Deployment

4.1.1 PSC Module Design for A Single Layer

In 3.2, we have shown the complementary property of the

merged PSC dynamic kernel with proposed use of the ReLU

function. In 3.4, we have also shown our proposed scheme

for PSC hardware acceleration, which includes sign mask-

ing and weight selection using non-MAC hardware logic

units as explained to be similar to the hardware logic design

for ReLU and as illustrated in Figure 4. With those, the

execution of one single PSC module may be accelerated.

4.1.2 Positive Activation Ratio Analysis

To understand how activations of opposite phases interplay

in the network, we define a metric, Positive Activation Ratio

(PAR), as the ratio between the number of positive activa-

tions and that of all activations for a given PAR observation

point (POP). In this study, we place one POP immediately

prior to each convolution layer. Figure 5 shows results for

ResNet and MobileNetV2. Our main observations are

• PSC significantly reduces PAR swings over layers.

• PSC tends to stay much closer to the PAR = 0.5 line.

• Swings match with the basic/bottleneck block sizes.

• PAR variance significantly reduces in later layers.

• Swing range shifts towards lower PARs in later layers.

In Figures 5, the PAR swings somehow reflect the block

structure. For example, we observe that the baseline ResNet

tends to permit more activations in initial layers and reject

more activations in later layers, leading to more maxima

and more minima in the initial and final layers, respectively.

The PAR observation is also interesting on MobileNetV2

for three variant models shown: baseline (i.e., no PSC), PSC

in pointwise projection layers, and PSC in depthwise layers.

First, the PARs at the expansion layers are always near 0.5

regardless of the models, as those layers have no preceding

ReLUs. Second, PARs at the projection layers for PSC also

are close to 0.5, while PARs at the depthwise convolutions

show no obvious consistency, most likely resulting from the

smaller number of kernel entries per channel. Finally, we

Figure 6. We train and test both baseline and PSC counterpart

ResNets from scratch in all-identical settings. In (a), (b), and

(c) on CIFAR-100, PSC applied to front 2/3 layers of ResNet-

29/56/110/218/434 outperforms legacy ResNet of either basic or

bottleneck blocks. In (c), PSC is more efficient even when com-

paring over parameters in bottom and top curves for basic and bot-

tleneck blocks, respectively. In (d) and (e) on ImageNet, PSC ap-

plied to front half layers of ResNet also outperforms. Top two

points are for ResNet50 and rest are for shallower ResNets.

Figure 7. We discover that our proposed MobileNetV2/V3-PSC

gain particularly well with suboptimal (restricted) search using

incremental initialization and training. (a) shows accuracy over

number of (applied) PSC layers, and (b) shows accuracy over num-

ber of parameters relative to the baseline (1X). We see that PSC

on depthwise convolutions achieves best among all three types of

convolutions in a bottleneck block. The ”suboptimal” curve shows

search results with greedy/ad-hoc layer choices for PSC. Our best

MobileNetV2-PSC result from the overall suboptimal search has

PSC applied in layers {0, 1, 3, 4, 6, 7, 9, 10}, which achieves 0.9%

accuracy gain at only 0.4% total parameter increase.

see downward trend with the swings over layers, somewhat

similar to with ResNet.

PAR also suggests the utilization of activations. In con-

trast, a PSC layer does not suffer from such information

loss, as activations in either phase are always convolved by

a PSC kernel; that is, PSC has full utilization of activations.

4.1.3 PSC Deployment Strategy

The PAR analysis in 4.1.2 suggests that a full-network ap-

plication for PSC may not be necessary. Even though PSC



in theory (see Figure 1 and 3.1) generalizes several types of

classic activation functions and should perform equal to or

better than its non-PSC counterpart, applying PSC to more

layers than necessary would only increase parameters at di-

minishing or no gains. We summarize our empirical PSC

deployment strategy as follows.

• We prioritize on front layers as possible for PSC ap-

plication, as a front layer tends to have fewer channels

and hence smaller parameter count.

• We prefer depthwise convolution to pointwise one as

possible for PSC application, as the former has less

model size impact.

• We apply PSC also to the stem layer (namely, the first

convolution layer in the network) as possible.

4.2. Image Classification

In this section, we experiment on PSC with several CNN

architectures, involving residual and bottleneck blocks as

well as standard, pointwise, and depthwise convolutions.

To train each instance of networks with PSC (applied only

in selected layers) in our experiments with ResNets, we

train both the baseline and our proposed PSC networks in

all-identical settings, including hyperparameters, optimizer,

and learning rate schedule. For MobileNets and Efficient-

Nets, we take the pre-trained weights from the baseline

and fine tune the PSC layers by 40-50 epochs on a cosine

annealing schedule with one-tenth learning rates from the

original under SGD optimizer of the unchanged loss func-

tion. We discover that our proposed Mobilenets with PSC

respond pretty well with non-trivial accuracy gains using

such training setup.

4.2.1 ResNet on CIFAR-100 and ImageNet

We evaluate PSC on ResNet [16]. Given our PAR analy-

sis in 4.1.2 and Figure 5, which show a tendency towards

higher PARs in front layers of the network, we choose the

front portion of the layers in the network to apply (drop-in

replaceable) PSC. Figure 6 shows our experiment results,

where we observe consistent accuracy gains with PSC in the

range of 0.7-1.1% over both computation complexity and

model size, we apply PSC to the front 2/3 layers of ResNet-

29/56/110/218/434 on CIFAR-100 [23] and front half layers

of ResNet-18/34/42/50 on ImageNet [8].5

4.2.2 MobileNetV2 and MobileNetV3 on ImageNet

MobileNetV2 [33] and MobileNetV3 [17] are a family of

CNN architectures that employs depthwise separable con-

volutions and the inverted residual bottleneck structure to

handle feature sizes over the pointwise expansion and pro-

jection layers according to the expansion ratio. Unlike the

5We keep all hyperparameters unchanged for ResNet-PSC, as parame-

ter increase is small, and train ResNet-PSC from scratch.

Network Architecture Top-1 Acc Acc Gain MACs (mil) Params (mil)

MobileNetV3-S 66.4% - 60 2.94

MobileNetV3-S-PSC (ours) 68.2% 1.8% 60 2.96

MobileNetV2 71.8% - 300 3.50

MobileNetV2-PSC (ours) 72.7% 0.9% 300 3.51

MobileNetV3-L 72.6% - 220 5.48

MobileNetV3-L-PSC (ours) 73.6% 1.0% 220 5.49

EfficientNet-B0 77.0% - 402 5.29

EfficientNet-B0-PSC (ours) 77.5% 0.5% 402 5.31

EfficientNet-B1 78.9% - 713 7.80

EfficientNet-B1-PSC (ours) 79.2% 0.3% 713 7.84

Table 1. MobileNet and Efficient results on ImageNet, with PSC

hardware acceleration and selected-layer deployment.

other two layers in the bottleneck block, the first convolu-

tion layer in the bottleneck block has no preceding ReLU

(and hence a linear layer). We can apply (drop-in replace-

able) PSC to any of these layers, whether linear or not.

While being able to train MobileNets straight from

scratch at higher resource costs, in this experiment we

showcase the incremental initialization methods, as pro-

posed in 3.5, to leverage from pre-trained non-PSC net-

works for resource saving and to study PSC effects on dif-

ferent types of convolutions in the bottleneck blocks. Given

the freedom to apply PSC or not for each layer, we phrase

this as a search problem for the best combination of layer-

wise PSC application choices to maximize network effi-

ciency under costs. Instead of applying exhaustive search

over 2L possible networks, with L denoting the number of

PSC-applicable layers, we use our PAR insight in 4.1.2 and

proceed with a sub-optimal (restricted) global search along

same types of convolution of each bottleneck (conceptually

similar to depth-first search) and over the layer sequence

(conceptually similar to breadth-first search). Over a few it-

erations, we then take the winners and continue with ad hoc

”local search” (conceptually similar to the greedy search)

until further improvement in performance efficiency cannot

be made6. Results are shown in Figure 7, Table 1, and Ta-

ble 2. Remarkably, PSC works for both types of linear and

nonlinear layers and these PSC accuracy gains require only

0.2− 0.7% parameter increase, as only several front layers

in the network are applied with PSC.

4.2.3 EfficientNet on ImageNet

EfficientNet is a later family of networks derived with co-

efficient model scaling in multiple parameter dimensions

[37]. Similar to MobileNetV3, which uses a h-swish ac-

tivation function [32], EfficientNet uses the swish activa-

tion function for a subset of network layers. In our experi-

6Another promising search method is Dynamic Programming (DP)

with memorization, which takes incremental PSC layers on top of pre-

trained weights for initialization and training. This is a subject of our on-

going work.



ment, when we apply (drop-in replaceable) PSC for a layer,

the h-swish or swish function of the same layer is replaced

along. We again used our proposed incremental initializa-

tion methods to initialize and train the PSC network. Re-

sults are shown in Table 1.

4.3. PSC vs. Dual­Positive Convolution

To confirm the significance of dual-phase pre-activations

utilized by PSC, we evaluate a PSC variant where the neg-

ative phase is substituted with the positive phase, resulting

in a dual-positive convolution that is same as PSC in com-

plexity and model size. I.e., only the negation operation into

the PSC modules is switched off for the dual-positive vari-

ant. In our results, we observe that PSC consistently out-

performs such dual-positive counterparts with ResNet by a

significant margin in the range of [0.7%, 1.8%] over a wide

range of model sizes and complexities.

4.4. Latency Measurements

As PSC benefits from wider space of the input activa-

tions to the convolution, it is different enough from standard

convolutions with classic activation functions. To enable

best efficiency for PSC, we anticipate hardware accelera-

tion for PSC in an inference engine.

To clarify on the feasibility of our acceleration proposal,

here we summarize on some design considerations.

• PSC acceleration in our proposal consists of 3 sub-

operations as described in 3.4. The first two opera-

tions, Sign Masking (SM) and Weight Selection (WS),

involve no MAC operations, and the third is identical

to the standard (conventional) convolution.

• The logic for the SM sub-operation is similar to that for

the ReLU operation, and therefore it can be optimized

(just like for ReLU).

• The logic for the WS sub-operation is achievable with

vectorized WSU operations as proposed in Figure 4.

• To further facilitate weight memory access, we pro-

pose a weight structure with weight parification, which

allocates weight elements of both phases next to each

other, to lighten up with local binary selections.

Before PSC acceleration becomes available for a hardware

platform, we provide some latency measurements in Table

2 as examples, based on the naive design of PSC (Figure

3(a)) in a current platform. I.e., the unoptimized ”double

convolutiones” for each PSC layer with EfficientNet.

5. Conclusion

We discuss the PSC method and considerations. We fur-

ther propose initialization and acceleration techniques that

help enable higher performance and efficiency of PSC with

new hardware acceleration. We demonstrate that PSC is

more Pareto efficient with ResNets and MobileNets.

Figure 8. Derivation for W psc with an existing PyTorch function,

torch.where(x >= 0,Wp,Wn), for non-hardware-acceleration

realization to our proposed sub-operations of sign masking and

weight selection in an example of a depthwise 3 × 3 kernel be-

tween Wp = W+ and Wn = W− in batch processing. We

include all required sub-operations and needed sizes of tensor

operands for the weights and activations, as described in 3.4, in

our PSC acceleration latency estimation. Although these PyTorch

commands are not completely identical to our proposed ideal PSC

accelertation in the hardware perspective, they are equivalent in

number of operations for our latency estimation purpose.

Network Architecture CPU Latency (ms) CPU ∆ GPU Latency (ms) GPU ∆

EfficientNetB0 49.2 - 0.491 -

EfficientNetB0-PSC (ours) 52.5 +6.7% 0.518 +5.5%

EfficientNetB1 66.8 - 0.675 -

EfficientNetB1-PSC (ours) 70.7 +5.8% 0.708 +4.9%

Table 2. Estimated inference latency on ImageNet: PyTorch with

TeslaV100-SXM2 32GRAM GPU and Intel i7-9700 CPU. Note

that this estimation is with a current-generation platform and does

not use our proposed PSC hardware acceleration. Please see the

”Supplementary Materials” section for more description.

Additionally, we have discussed activation analysis with

positive activation ratios (PAR) and selected PSC deploy-

ment with method of depth-first search, breadth-first search,

and greedy search for suboptimal (restricted) PSC layer

search. While in this work we mainly focus on the de-

sign and simple restrictive search with the goal of achiev-

ing high efficiency, the general problem of where PSC

ought to be applied in the network would be best handled

by automated neural architecture search (NAS) methods

[44, 45, 25, 24]. In particular, hardware-aware NAS algo-

rithms [9, 36, 40, 39, 3, 35, 2, 41] allow one to incorporate

metrics in search that may be more important in practice

than model size, such as on-device latency or total energy

consumption. This is a subject of ongoing work.

While some of these mentioned topics remain open ques-

tions, we are pleased to present our recent results and intend

to continue with developments in future study.
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