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Abstract

Estimating precise metric depth is an essential task for

UAV navigation, which is very difficult to learn unsuper-

vised without access to odometry. At the same time, depth

recovery from kinematics and optical flow is mathematically

precise, but less numerically stable and robust, especially in

the focus of expansion areas. We propose a model that com-

bines the analytical, vision-with-odometry approach, with

deep unsupervised learning, into a single formulation for

metric depth estimation, which is both fast and accurate.

The two pathways – analytical and data-driven – form a ro-

bust ensemble, which provides supervisory signal to a single

deep net that distills the consensus between scene geometry,

pose, kinematics, camera intrinsics and the input RGB. The

distilled net has low runtime and memory costs, being suit-

able for embedded devices. We validate our results against

an off-the-shelf SfM-based solution. We also introduce a

new real-world dataset of almost 20 minutes of continu-

ous UAV flight, on which we demonstrate better accuracy

and capabilities than the deep learning and analytical ap-

proaches.

1. Introduction

Retrieving metric depth information is especially im-

portant in autonomous robotics for their safe navigation

in complex environments. Monocular depth estimation is

useful for many robotics tasks, including SLAM, obstacle

avoidance, object detection, tracking and semantic segmen-

tation. In particular, in the context of UAVs, estimating

depth is vital for ensuring a safe flight. In this paper we con-

sider the scenario of a flight within a given perimeter, with

focus on unsupervised learning to estimate depth within the

larger context of aerial scene understanding.

During training, our approach takes full advantage of

the complementary properties of two depth estimation path-

ways as shown in Fig. 1: the analytical path using odom-

etry and the optical flow, data-driven, deep learning path,

respectively. While the analytical path is mathematically

perfect, it lacks robustness in the presence of noise and nu-

merically fails in focus of expansion areas. On the other

hand, the unsupervised data-driven approach is robust and

smooth over time, but it is not as accurate and metric. By

forming an ensemble from the two pathways and distilling

them into a single net, we manage to improve both accuracy

and speed, which is perfectly suitable for real-time compu-

tation on UAVs. We introduce the following main contri-

butions:

1. A novel approach to metric depth estimation for UAVs,

from monocular RGB, capable of learning unsuper-

vised from a single continuous UAV flight. We dis-

till depth into a single net, by using as ”teacher” the

ensemble formed by an analytical approach (based on

odometry and flow) and an unsupervised data-driven,

deep learning method. We show experimentally that

the final net has superior performance to its teacher.

2. An improved and robust analytical depth estimation

from camera velocities and optical flow, based on the

simultaneous estimation of the angular velocity error

and depth.

3. A novel dataset of approximately 20 minutes of UAV

flight, with kinematics and GPS information, covering

two European mountain town resorts.

Related work: Combining vision and sensors to obtain

a better scene representation is well studied [3]. How-

ever, most methods are either challenging to deploy on

UAVs (e.g., LIDAR), provide sparse information (keypoint-

based), are of low resolution [9] or are computationally in-



Figure 1. Overview of our approach, combining several complementary pathways for accurate metric depth estimation. Along one path,

we estimate consistent non-metric depth in an unsupervised way (DUnsup). Along a different path we use odometry and optical flow to

estimate exact, metric depth (DOdoFlow).DOdoFlow is used to scale DUnsup and make it metric, then the two form an ensemble teacher,

used to distill a student net for metric depth estimation (Fig. 3). Along a third path, depth is reconstructed with structure from motion

software (DSfM ), which is made metric by aligning its predicted trajectory with the metric trajectory from GPS. DSfM , computed offline,

plays the role of ground truth and is used for evaluation only. By finding consensus between different data-driven and analytical paths, we

exploit the complementary benefits of both approaches in order to efficiently learn metric depth estimation from single images.

tractable for on-board use. Our approach combining vision

and sensors is very fast at test time (one feed-forward pass

through a small net) and during training, i.e. additionally

requiring only linear and angular camera velocities and op-

tical flow to output dense depth. As ground truth depth is

difficult to obtain, many recent approaches [11], [12] or [4]

focus on self-supervised learning from monocular video.

However, they do not generalize very well to unseen data

and their estimations are arbitrarily scaled with respect to

the real world. Our approach handles these issues by com-

bining the monocular unsupervised approach with an ana-

lytical solution that offers a precise and metric depth from

video, once odometry data is given.

Geometric constraints are popular for depth learn-

ing [11]. Spatial and temporal consistency is also used [12],

as well as constraints of constant speed [26] or constant

camera height above ground [21]. Structure from motion

systems are the most popular for providing accurate depth

maps, but they are computationally very heavy and often

slow to converge, which makes them impractical for real

time usage or embedded systems [23]. Moreover, they usu-

ally do not provide metric depth. A similar work result-

ing in distilled depth is [16] where the authors fine-tune a

depth CNN to output consistent results, by selecting image

pairs, using optical flow and back-propagating the depth er-

ror. Nevertheless, the method does not output metric depth

and it must be fine-tuned at test-time for each new video,

which requires SfM poses for all images (that is, the most

computationally expensive part of SfM needs to executed

beforehand), thus limiting its applications.

Some works [27] use consensus for estimating depth, but

using stereo, not monocular video as in our case. Others [1]

also use distillation in combination with sparse, feature-

based matches, as supervisory signal for improving a stereo

matching network. We are interested in developing a com-

putationally tractable algorithm, which remains accurate on

novel scenes that are sufficiently different from the training

ones. The most successful approaches use a variation of

SLAM, keypoint-based (ORB-SLAM3) [6] or planar-based

(TT-SLAM) [25]. Unfortunately, there are far fewer options

for arbitrary dense outputs, as required for robust UAV navi-

gation. For example, DeepFactors [9] is limited to 256×192

px (on a desktop GPU). Also, SLAM-like methods do not

output metric depth without external cues. Different from

SLAM, we do not provide a 3D model of the whole scene

from multiple views, but focus on the less expensive task of



instantaneous depth prediction from a single image.

Datasets for UAV research. Most datasets for depth es-

timation involve objects close to the camera (indoors or

driving). Although UAVs, with six degrees of freedom,

make video acquisition easily accessible, there is a strong

need for high quality videos, with proper annotations (seg-

mentation) and additional information (sensors) in the re-

search community, to train accurate models on various tasks

for on-board deployment. Some efforts were made in this

direction and we will also make all our data fully acces-

sible. Most public datasets target specific tasks, such as

object-detection [18], traffic surveillance [5] or semantic

segmentation [20]. While some offer video data for both

real [20, 17] and synthetic environments [15, 10], most lack

the information needed for proper scene understanding (e.g.

GPS, velocity and camera angles). Our dataset has multi-

ple advantages: real-world video data of two well-surveyed

complex scenes, at different altitudes, with full data ana-

lytics provided, suited for several tasks, such as estimating

depth and trajectories.

2. Metric depth distillation

Trajectory estimation from GPS: In order to recover

metric depth from a single camera, additional sensors are

required. We assumes having a sensing system (available

on commercial drones), which gives GPS positions, cam-

era orientation, linear and angular velocities. In practice,

measurements are not perfectly synchronized with the RGB

frames since their frequency is considerably lower. We pro-

pose fitting 3rd-degree time polynomials on fixed-size win-

dows of consecutive GPS samples.

Analytical depth from odometry and flow: The metric

depth, optical flow and the spatial velocities of the camera,

which consist of the linear and angular velocities, are math-

ematically related and this can be completely described us-

ing the Image Jacobian [8]. Provided that instant velocities

are available from the odometry system and dense optical

flow can be robustly computed from consecutive frames, a

dense metric depth map can thus be solved. Please refer to

section 3 for detailed derivation, where we also propose an

improved, robust estimation method.

Unsupervised metric depth learning: Unsupervised

deep learning approaches for depth estimation, provide

dense maps arbitrarily scaled w.r.t the real world. How-

ever, by comparing the un-scaled depth maps with the

odometry-based metric depth, a suitable scaling ratio r
can be determined. We use a two-step approach. We

first employ median scaling, commonly used in unsuper-

vised evaluations, for valid pixels that lie within a cer-

tain depth range of interest (r = median(DOdoFlow ∗
V alid)/median(DUnsup ∗ V alid), with V alid represent-

ing a True, False pixel map). Second, we refine r by iter-

ative recalculation the median ratio for pixels from the two

depth maps that lie into a certain maximum distance from

one another (V alid = l1(DOdoFlow, DUnsup) < dmax).

The 2nd step helps reduce the influence of errors (pixels

that assign wildly different Z values for the same point in

space) on the final scaling ratio.

Distillation of multiple depths: Knowledge distilla-

tion [13] is essential in machine learning. It consists of

a teacher-student scheme, to distill the knowledge of the

”teacher” into a more compact ”student”. The teacher (T)

can be any process that yields predictions of type fT :
A −→ B. The student (S) has to mimic the teacher, in-

stead of learning the actual process fT , by minimizing:

minL(fS(A), fT (A)). To perform unsupervised distilla-

tion and evaluation, we define 3 depth maps per frame:

• DSfM depth estimated from the 3D model of the scene

computed with structure from motion software, using

the flight video, after automatic alignment of the SfM

trajectory (with a similarity transformation) to the real

GPS trajectory. DSfM is used for evaluation only.

• DOdoFlow instantaneous depth computed analytically

(Sec. 3), from the optical flow between consecutive

frames and sensors information, by carefully match-

ing 3 coordinate spaces: camera, UAV and GPS

logs. Once they are synchronized, dense metric depth

is computed via instantaneously angular and transla-

tional speeds. Note that we consider the camera intrin-

sic parameters K known, after prior calibration.

• DUnsup by using a deep neural network specifically

fine-tuned, unsupervised, on the training flight video,

to maximize performance on this particular scene.

DUnsup becomes metric by scaling it according to

DOdoFlow (find a single scale parameter per frame, by

matching the depths per pixel). Both DOdoFlow and

DUnsup form the unsupervised teacher.

During training, the student learns to mimic the ”teacher”,

which is the ensemble formed by averaging the analytical

depth DOdoFlow with the data-driven, deep learning depth

DUnsup. The student becomes a compact representation of

both pathways (Fig. 1): fS : RGB −→ Depth, and it is

used for real-time metric depth prediction from single RGB

frames, with no sensor information required.

SfM alignment: For evaluation, we use an off-the-shelf

structure from motion (SfM) solution, able to reconstruct

the 3D surface of the surveyed area (Sec. 4.1). This is a

computationally demanding, offline stage, yielding a single

globally optimal result, very useful for evaluation, but im-

practical for real-time on-board use. Since SfM provides a



3D model that is arbitrarily scaled, w.r.t to an arbitrary co-

ordinate system, we bring it to the correct scale in the world

coordinates by automatic matching of the GPS and SfM

trajectories using scale invariant graph matching, once the

matches are found, a similarity transformation between the

world and the SfM 3D models estimated by least squares.

Then, by interpolating the camera poses along the SfM tra-

jectory we can obtain virtual depth maps that, while incom-

plete (as the surface is not necessarily continuous) map sur-

prisingly well the real RGB frames and the 3D SfM model.

3. Mathematical Formulation

Analytical trajectory estimation: The GPS coordinates

are first transformed into 2D Cartesian coordinates (xi, yi),
where i indexes odometry measurements. Polynomials are

fit separately on the two coordinates on a fixed-size slid-

ing window of samples. In the case of the first axis and

third degree polynomials, the coefficients a0, a1, a2, a3 are

the least squares solution to the system formed by the equa-

tions xk = a0 + a1tk + a2t
2
k + a3t

3
k, where k indexes the

measurements xk in the window and tk is their associated

timestamp. These can be expressed relative to timestamp of

the middle sample for improved numerical stability. Given

the timestamp of a camera frame, the position of the de-

vice at that time is computed using the polynomial with the

closest middle sample timestamp. In the considered UAV

flights the motion is mostly planar, so only GPS is taken

into consideration. However, height information can be in-

corporated for more complex motion.

While the spatial velocities of the device could be solved

in closed-form using the analytical trajectory, the orienta-

tion of the UAV and that of the camera do not coincide most

of the time. Thus, it is preferred to use information about

camera pose from the odometry system instead. In this case,

the provided linear velocity and camera orientation are in-

terpolated linearly and with slerp, respectively. The interpo-

lated orientation provided by odometry Rj , where j indexes

frames, is used to estimate angular velocities ωj as:

ωj =
(log(Rj

j+1))
∨ − (log(Rj

j−1))
∨

2∆t
(1)

where Rj
j+1 = RT

j Rj+1 is the relative rotation between

frames j and j + 1, ∆t is the time difference between

consecutive frames, log is the matrix logarithm and ()∨

maps skew-symmetric matrices to the corresponding 3-

dimensional vectors.

Depth from odometry, flow and trajectory: the optical

flow of a pixel is proportional to the movement of the cam-

era, but inversely proportional to the relative distance be-

tween the camera and the corresponding world point. More

precisely, a point P = (X,Y, Z) expressed in the cam-

era frame is projected by the pinhole model in the point

(x, y) = (X/Z, Y/Z) with the temporal derivatives:

ẋ =
ẊZ −XŻ

Z2
, ẏ =

Ẏ Z − Y Ż

Z2
(2)

Considering the linear velocity ν and angular velocity ω
of the camera, the temporal derivative of P is:

Ṗ = −ω × P − ν (3)

which can be written in scalar form as:

Ẋ = ωzY − ωyZ − νx

Ẏ = ωxZ − ωzX − νy (4)

Ż = ωyX − ωxY − νz

The normalized image-plane coordinates (x, y) are re-

lated to the pixel coordinates (u, v) and the centered coordi-

nates (ū, v̄) by the intrinsic camera parameters (u0, v0, f):

fx = u− u0 = ū, fy = v − v0 = v̄ (5)

By substituting Eq. 4 and 5, along with their derivatives,

into Eq. 2 and rearranging the terms it follows that:

(

˙̄u
˙̄v

)
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(6)

The matrix in 6 is called the Image Jacobian matrix. The

depth can be solved by rewriting 6 as:

(Jνν)
1

Z
= ˙̄p− Jωω (7)

where Jν and Jω are the two halves of the Jacobian, af-

ter factoring out the 1
Z

term. This is a linear equation in

the scalar 1
Z

with A = Jνν and b = ˙̄p − Jωω, which are

2-dimensional vectors. The b vector represents the optical

flow of the point caused only by translational motion, after

removing the rotational component Jωω. Similarly, vector

A is the flow explained by the linear velocity of the camera

and should ideally be equal to b, up to the scaling factor 1
Z

.

Thus, the least squares solution is simply:

Z =
‖A‖2

AT b
(8)

In order to account for the errors in the numerically es-

timated angular velocity, we augmented equation 7 to ac-

count for a correction ∆ω:

Jνν
1

Z
+ Jω∆ω = ṗ− Jωω (9)



which is a linear system in both Z and ∆ω. As there are 4

unknown variables and only 2 equations, the equations for

multiple pi points, 1 ≤ i ≤ N , N > 2, are stacked in order

to solve for their respective depths Zi and ∆ω:
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(10)

A subset of the pixels in a frame is first used to solve

for the angular velocity correction with Eq. 3 and then

the depth of each pixel is solved individually using the cor-

rected angular velocity by 8. Our robust depth computation

which takes into account errors in angular velocity measure-

ments is another theoretical contribution of our work.

Post-processing for depth computation: the dot product

AT b in the denominator of Eq. 8 causes numerical issues

when the norm of either vector is close to 0 or they are close

to perpendicular. The norm of the optical flow ‖b‖2 reaches

very small values around the focus of expansion. Moreover,

the angle between vectors A and b should be 0 for them

to be equal up to the scaling factor 1/Z. Thus, depths are

considered invalid if ‖b‖2 is below a threshold ǫ (20 px/s),

the angle between A and b is above a threshold δ (20◦), or

the depth is below a threshold γ (20 m) and the image point

is close to the point where ‖A‖2 reaches its minimum.

3.1. Depth distillation algorithm

Suppose we are presented with N independent predic-

tions of the same source and target domain fi : A −→ B, i ∈
{1, ..., N}. We aim to create a direct morphing between

them via agreement so that, in the end, we are left with

one unique prediction: f(A) = ensemble(fi(A)). In our

case, we have 1 RGB input and 3 independent depth maps:

DUnsup, DOdoF low and DSfM . We will keep DSfM as

”ground truth”, for evaluation, being one that is computed

by a sophisticated global optimization process, which is

heavy computationally and can be done only offline. There-

fore, it is expected that DSfM is the more accurate of the

three, even if the 3D SfM model is neither complete, nor

perfect (i.e. it contains holes, the surface is often simpli-

fied). In contrast, both DUnsup and DOdoFlow are instan-

taneous and can be computed fast, thus making them suit-

able for online training and prediction. We employ a sim-

ple ensemble function to combine DUnsup and DOdoF low,

which computes the element-wise average of the two depth

maps.

We are also careful with invalid predictions: DOdoFlow

outputs invalid values in areas of small or no motion (e.g.

focus of expansion areas) and DSfM outputs invalid values

in the areas not properly covered by the 3D model. When

applying the ensemble function, in the DOdoFlow’s case,

we fallback to DUnsup when evaluating the result. Since

we use DSfM as ”ground truth”, we choose to mask its in-

valid regions from the evaluation. As presented in Figures 1

and 3, we will train a student net to predict, from a sin-

gle RGB image, the metric depth output of the teacher en-

semble combining DOdoFlow and DUnsup. As mentioned,

we perform all evaluations on DSfM , considered as ground

truth.

Algorithm 1: Neural network depth distillation

for RGB,DUnsup, DOdoFlow ∈ Dtrain do

Dprediction ← f(RGB) ;

Densemble ← ensemble(DUnsup, DOdoFlow) ;

L← Ltrain(Dprediction, Densemble) ;

Optimize(f, L)
end

for RGB,DSfM ∈ Dvalidation do

Dprediction ← f(RGB) ;

E ← LSfM (Dprediction, DSfM )
end

return f, E
f - neural network; ensemble - ensemble-merging function; optimize -

SGD-based optimization

The training ”teacher” ensemble is the average between

DOdoFlow and DUnsup, where DOdoFlow is valid, while

it considers only DUnsup, where DOdoFlow is invalid.

DUnsup is scaled according to DOdoFlow by estimating a

single scaling parameter per frame. The ensemble produces

a dense depth map per frame, with no holes or invalid depth

pixels. Error is computed as pixel-wise average L1 distance

between the output and SfM depth. This can be written

as: L = 1
|Ntest|

∑

|Dpred −DSfM | ∗MaskSfM , where

(Dpred, DSfM ) ∈ Dtest, MaskSfM is a binary mask that

discards invalid SfM positions.

4. Experimental Analysis

Our main goal is to learn unsupervised metric depth es-

timation from single RGB images, by using as teacher the

consensual output of two pathways, one that uses an analyt-

ical solution from odometry, trajectory and flow and another

which is a purely unsupervised vision-based approach. For

this task we introduce a novel dataset of two continuous

UAV flights in two mountain town resorts, termed Slanic

and Herculane. We divide Slanic in two non-overlapping

subsets, one used for training the depth-distillation neural

network and the other for testing purposes, measuring how

well a UAV would perform in the same scene on a new

flight. Herculane is used for testing only, to estimate the

generalization capabilities of the proposed solutions, in dif-

ferent novel scenes, not seen during training.



Figure 2. Trajectories of our UAV flights. We collected data from

two different mountain towns in order to evaluate the generaliza-

tion capabilities of our system (the 2nd scene is used for evaluation

only). Images are captured from manual flights - as opposed to the

grid-based pattern traditionally used for SfM reconstruction.

Dataset description: Slanic and Herculane sequences in-

clude GPS information, linear and angular velocities, as

well as camera absolute angles. The total length is approx-

imately 20 minutes, the videos feature 3840x2160 30 FPS

images, while the odometry is provided at 10 Hz.

Slanic - The set consists of 14777 frames - 9022 training

and 5755 testing frames. It features images from a mountain

area, with fairly low altitude buildings surrounded by forest.

The relative altitude is fairly constant (≈50m).

Herculane - The set consists of 18044 frames, out of which

9022 were used for testing. It features a resort, with taller

buildings (mostly hotels) and higher altitude (≈60-70m).

4.1. Experimental setup

For the DUnsup → DOdoFlow scaling procedure

(which makes DUnsup metric) we use a range of depth of

[50, 150] meters and further refine r by masking all pix-

els that are more than 5 meters apart, for a maximum

of 10 iterations. By the last iteration we observe that

30 − 40% of pixels are considered valid. We derive this

ratio for each frame independently. We also limit our depth

maps by clipping values to the range of [0, 400] meters.

All depth estimation procedures require knowledge of the

intrinsic camera parameters, which we derive from specifi-

cations provided by the manufacturer.

For the SfM reconstruction, we settled for Meshroom [2]

– a fully automated pipeline – mostly for its speed compared

to wider used software, such as COLMAP [23]. We sam-

pled the videos at 7FPS, resulting in approximately 1300

images, depending on the used dateset. Additional frames

(up to 3100) quadrupled the computation time, while pro-

viding very small gains in mesh quality. We originally

used GPS information, but discovered the algorithm failed

to match a number of frames and still resulted in offsets.

Since we already had metric depth, we decided, as men-

tioned previously, to align a higher quality mesh by match-

ing GPS and SfM reconstructed trajectories. Z-Depth in-

formation was then captured by importing the mesh into

Blender [7], interpolating the SfM trajectory, and render-

ing depth maps in locations corresponding to the real-world

trajectory. For unsupervised depth estimation, we used [4],

but our approach is agnostic of what approach we used for

this step. For optical flow, we achieved the best results with

RAFT [24]. Nevertheless, we also explored faster alterna-

tives such as a light version of RIFE [14] which yielded

good results at over 30FPS on an embedded platform.

For the training process, we divide the training dataset,

Slanic-Train, in two parts, one for optimization and one for

validation and model selection, using a standard 80/20 split.

The second dataset, Herculane, is kept as is, and only used

for testing. All the neural networks are deep convolutional

architectures, based on [19], that have been successfully de-

ployed on embedded systems and also offer real-time infer-

ence for supervised depth estimation. We employ two vari-

ants: SafeUAVTiny and SafeUAVLarge and we analyze the

trade-offs between speed and accuracy below.

We use PyTorch [22] as neural network framework. For

each dataset, we work with 4 synchronized items: RGB

and the 3 independent metric-based depths, obtained as

described above: DUnsup (Unsupervised neural network),

DOdoFlow (Flow and Odometry based) and DSfM (Struc-

ture from motion based). Our goal is to obtain a neural

network that predicts f : RGB −→ Depth by creating a

morphing consensus between the three independent depths.

For this purpose, we use two ensemble algorithms that tries

to optimize between DUnsup and DOdoFlow, while using

DSfM for model selection only. We use a simple L2 loss

function between the predicted depth from RGB and the

two depth maps we optimize against. Furthermore, one is-

sue with these maps is that they are sparse, containing in-

valid entries (NaNs) in some situations, such as sky or no

motion field zones. For this purpose, we mask these in-

valid regions, thus optimizing only on reliable depth data.

The ensemble algorithms we use are: alternate and sim-

ple mean. The first one alternatively uses DOdoFlow and

DUnsup as pseudo ground truth during the training process.

The second one combines the two depth maps by doing a

pixel-wise average, while being careful about invalid posi-

tions in DOdoFlow falling back to DUnsup which provides

dense predictions, where needed.

4.2. Results

In Tab. 1 we present the percentage of valid data for

each dataset. In Tab 2 and 3 we present the results of the

three methods used to extract the metric depth on which

the neural networks are trained. Two metrics are employed:

namely L1 metric and Relative L1 metric. The first one

computes the average pixel difference between the predic-

tion and the GT (SfM). The second one weighs down er-

rors for far away distances by computing an error relative

to distance: Relative(i) = Pred(i)−GT (i)
GT (i) . We evaluate the

distilled neural nets on the Slanic dataset, proving that the

distilled students could improve over their teacher.



Figure 3. Our depth distillation procedure for accurate metric depth estimation. We combine two label-free methods (unsupervised and

analytical) into a single result and evaluate it against the SfM reconstruction. The distilled student is able to significantly improve over its

teacher on the test video from the first scene, while remaining competitive on the second scene, unseen during training.

DSfm DOdoFlow

Slanic 2.28% 19.70%

Herculane 3.45% 30.61%
Table 1. Percentage of invalid pixels for the analytical method

DOdoFlow (sky, remote and focus of expansion areas) and DSfM

(usually sky, meshing errors could result in holes inside the mesh).

Slanic Herculane

Metric Relative Metric Relative

DUnsup 27.28 m 17.10 % 44.39 m 20.29 %

DOdoFlow 26.05 m 16.34 % 39.67 m 17.53 %

DEnsemble 25.63 m 15.88 % 41.18 m 18.29 %

T iny − 16 21.58 m 14.58 % 46.77 m 24.09 %

Large− 16 21.84 m 14.65% 48.00 m 23.97 %
Table 2. Mean absolute and relative errors on entire valid

map against DSfM ground truth depth. For DOdoFlow and

DEnsemble, we use DUnsup prediction in the invalid regions.The

distilled students have best results on Slanic test data.

Baseline results: We test on the full area (Tab. 2), where

DOdoFlow’s invalid pixels are replaced with DUnsup and on

the ”good” area (Tab 3), where both DOdoFlow and DUnsup

are valid. We notice that DOdoFlow is generally superior to

DUnsup in the valid areas, whereas the ensemble is better

than both, as expected. Also, errors of both DOdoFlow and

DUnsup in the ”good” areas are much smaller than the av-

erage overall error of DUnsup.

Distilled student network: After training on the mean

ensemble teacher combining DUnsup with DOdoFlow, test-

ing was done on both datasets (Tab. 2 and 3) with two stu-

dent nets, one small and another large in terms of number of

parameters. Interestingly enough both distilled student nets

are superior on Slanic to their teachers and they are also able

to generalize to the new scene in Herculane.

Slanic Herculane

Metric Relative Metric Relative

DUnsup 21.06 m 15.31 % 31.61 m 16.60 %

DOdoFlow 19.56 m 14.39 % 24.97 m 12.72 %

DEnsemble 19.03 m 13.81 % 27.10 m 13.79 %

T iny − 16 16.11 m 12.90 % 37.42 m 22.95 %

Large− 16 16.66 m 13.41 % 37.43 m 22.41 %
Table 3. Absolute and relative errors on the good area, which

is defined by masking both invalid DSfM and DOdoFlow predic-

tions. We observe that these areas yield much better and stable

overall results. Herculane has higher errors mainly due to the

higher height of the dataset. The distilled students have best re-

sults on Slanic test data.

Figure 4. Errors distributions as functions of distance on test set

of Slanic (of the distilled net). The overall (blue), good (green)

and bad (red) errors are shown. We also plot pixel distribution per

distance. Note how the absolute error increases with distance.

Analysis of the good and bad areas: We observe that

the good area (where DOdoFlow is valid) is correlated with

shorter distances, while the bad area is mostly represented

by far away regions. Consequently the ”bad” area has larger

errors, as expected. Humans also have much better depth



Method # Parameters Desktop[FPS] Embedded[FPS]

DUnsup [4] 14,842,236 166.703± 3.27 11.631± 0.55)

OpticalF low(only) [14] 15,263,888 83.404± 2.65 43.699± 3.13
DOdoFlow n/a 26.807± 6.17 10.127± 0.73
T iny − 16 [19] 1,119,862 54.922± 1.33 10.357± 0.22
Large− 16 [19] 2,005,239 51.969± 1.32 9.045± 0.13

Table 4. Frames per second on desktop and embedded GPUs. The depth from flow algorithm runs on CPU. The desktop features a RTX

2080 GPU and Ryzen 7 3700 CPU. Note that the speed on the embedded platform (Nvidia’s Jetson TX2) is near real-time.

Figure 5. Qualitative results on the test set from each of our flights

(Slanic - first row, Herculane - second row). From left to right,

we present in order: RGB, DStudent, DSfM , DOdoFlow and

DUnsup [4]. Dark regions (DOdoFlow) and white areas (DSfM )

indicate invalid or missing depth. Note how the student learns to

combine DUnsup and DOdoFlow, often improving over both.

estimation nearby or in regions where the motion field is

informative. In practice, we are also more interested in ob-

jects that are close to the UAV, in order to avoid obstacles,

rather than objects at hundreds of meters away.

Qualitative results: We observe the strengths and weak-

nesses of all the solutions in Fig. 5. First, our nets learn

to estimate depth with high confidence, while maintaining

a competitive inference time. The SfM solution is precise,

revolving around a built 3D model, but its detail accuracy is

questionable – since it starts from sparse points. It also takes

a very long computation time for global SfM optimization

and it is not feasible for real time operation. The unsu-

pervised method has a better accuracy around object fea-

tures, but it is fairly slow in training and not metric. Finally,

the Flow-Odometry method is accurate, needs no training

but it does require optical flow, for which fast options are

available (see Table 4). Furthermore, it has a considerable

amount of invalid predictions at long distances.

Computation speed: Tab. 4 presents real-time usage for

the external method (DUnsup [4]), compared to the 6 net-

works we used. For a regular consumer GPU (RTX 2080),

most algorithms operate in real-time. Furthermore, the nets

or algorithms are also good embedded candidates (near real-

time). Our embedded platform (Jetson TX2) can be de-

ployed on a commercial drone, enabling real-time inference

in any conditions. For this purpose alone, we will only take

the performance numbers on the two smallest networks into

account, Tiny-16 and Large-16.

Comments on the numerical results: We still do not

know our true absolute error since we compare to SfM not

to the absolute ground truth, which is not available. What is

really important, besides the absolute numbers, are some

key aspects, such as: 1) the student can outperform the

teacher and generalizes well to new scenes; 2) the errors

are significantly smaller for shorter distances, which is what

we need in practice; 3) the errors are also small in ”good”

areas, where odometry and flow matter, which could be au-

tomatically detected. 4) the student net is small, it can be

deployed on an embedded GPU and it has, besides strong

performance, a near real-time speed.

5. Conclusions

There is no silver bullet for fast, robust metric depth es-

timation, especially when no absolute ground truth is avail-

able during the training process. Each of the investigated

methods (unsupervised, depth from optical flow, SfM) is

prone to specific errors or compute constraints. Neverthe-

less, our study shows that understanding the validity regions

and distilling the knowledge from geometry and deep learn-

ing approaches results in a competitive pipeline for embed-

ded use (10FPS, 12% error). What makes our work unique

is the idea to combine two complementary solutions, the an-

alytical method based on flow and odometry and the data-

driven unsupervised learning approach, to form a powerful

ensemble, which becomes a strong unsupervised ”teacher”

for a lightweight student net, which often manages to im-

prove over both its teachers. The extensive evaluation using

the more accurate depth from SfM (which is globally opti-

mized) from familiar as well as novel scenes, proves that our

self-supervised training on the teacher ensemble is effective

in practice. Future work aims to improve the learning from

consensus algorithm by incorporating additional represen-

tations and constraints. We are also optimizing the pipeline

to achieve real-time inference on embedded devices.
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